
Archived
Deep Learning on AWS 
Guide 

August 2019 

This paper has been archived.

For the latest technical content, see the
AWS Whitepapers & Guides page:

aws.amazon.com/whitepapers

https://aws.amazon.com/whitepapers


Archived

Notices 

Customers are responsible for making their own independent assessment of the 

information in this document. This document: (a) is for informational purposes only, (b) 

represents AWS current product offerings and practices, which are subject to change 

without notice, and (c) does not create any commitments or assurances from AWS and 

its affiliates, suppliers or licensors. AWS products or services are provided “as is” 

without warranties, representations, or conditions of any kind, whether express or 

implied. AWS responsibilities and liabilities to its customers are controlled by AWS 

agreements, and this document is not part of, nor does it modify, any agreement 

between AWS and its customers. 

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved. 

  



Archived

Contents 

Overview .............................................................................................................................. 1 

Deep Learning Landscape ............................................................................................... 2 

Using this Guide ............................................................................................................... 3 

Deep Learning Process for Build, Train, and Deploy ......................................................... 4 

Step 1. Collect Data ......................................................................................................... 4 

Step 2. Choose and Optimize Your Algorithm ................................................................ 5 

Step 3. Set up and Manage the Environment for Training ............................................. 6 

Step 4. Train, Retrain, and Tune the Models .................................................................. 7 

Step 5. Deploy Models in Production .............................................................................. 8 

Step 6. Scale and Manage the Production Environment ................................................ 9 

Challenges with Deep Learning Projects ............................................................................ 9 

Software Management ..................................................................................................... 9 

Performance Optimization ............................................................................................. 10 

Collaborative Development ............................................................................................ 10 

Infrastructure Management ............................................................................................ 10 

Scalability ....................................................................................................................... 11 

Highly Optimized AWS Technology Building Blocks for Deep Learning ......................... 12 

Storage ........................................................................................................................... 12 

Compute ......................................................................................................................... 15 

Software.......................................................................................................................... 18 

Networking ...................................................................................................................... 20 

Solutions ......................................................................................................................... 23 

Code, Data, and Model Versioning ................................................................................... 25 

Version Code with Git .................................................................................................... 25 

Version Data in Amazon S3 ........................................................................................... 25 

Version Model in Amazon S3 ........................................................................................ 25 



Archived

Automation of Deep Learning Process for Retrain and Redeploy ................................... 25 

AWS Step Functions for Amazon SageMaker .............................................................. 26 

Apache Airflow for Amazon SageMaker ........................................................................ 26 

Kubeflow Pipelines on Kubernetes ................................................................................ 26 

Patterns for Deep Learning at Scale ................................................................................. 27 

Options for Deep Learning on AWS .............................................................................. 27 

Advanced Use Cases: Use Amazon SageMaker with Other AWS Services ............... 36 

AWS Guidance .................................................................................................................. 44 

Conclusion ......................................................................................................................... 45 

Contributors ....................................................................................................................... 45 

Further Reading ................................................................................................................. 46 

 

  



Archived

About this Guide 

Today, deep learning is at the forefront of most machine learning implementations 

across a broad set of business verticals. Driven by the highly flexible nature of neural 

networks, the boundary of what is possible has been pushed to a point where neural 

networks outperform humans in a variety of tasks, such as classifying objects in images 

or mastering video games in a matter of hours. This guide outlines the end-to-end deep 

learning process implemented on Amazon Web Services (AWS). We discuss 

challenges in executing deep learning projects, highlight the latest and greatest 

technology and infrastructure offered by AWS, and provide architectural guidance and 

best practices along the way.  

This paper is intended for deep learning research scientists, deep learning engineers, 

data scientists, data engineers, technical product managers, and engineering leaders. 

 



Archived

Amazon Web Services Deep Learning on AWS 

 Page 1 

Overview 

The basic idea of deep learning has been around for decades. However, due to a recent 

surge in the digitization of information, organizations have amassed large amounts of 

data that are easily consumable by machine learning pipelines. 

Even more, our generation is spending more time on mobile phones and computers 

connected on social media and that has led to more data. Even in medicine, an x-ray 

image is stored as a digital record instead of a physical film. 

On one hand, the amount of data has exploded, but the performance of traditional 

machine learning algorithms such as logistic regression, decision trees, support vector 

machines, and others have plateaued even when fed with more data. 

In a turn of events, the small neural network has improved in accuracy of application; 

the medium neural network has improved in accuracy of application; and the deep 

neural network continues to improve in accuracy when fed with more data. We have yet 

to reach the limits of accuracy we can get by introducing more layers and more data in a 

deep neural network. 

Adding more layers to a neural network and providing more data helped improve the 

accuracy of deep learning applications. However, training the deep neural network was 

a hurdle because training requires access to powerful and often expensive compute 

infrastructure. Cloud computing solved this problem by offering on-demand GPUs in a 

cost effective and elastic manner, enabling large scale experimentation required to 

achieve the desired level of model accuracy.  

Although there are other tools under the broader umbrella of machine learning, such as 

probabilistic graph models, planning algorithms, search algorithms, and knowledge 

graphs, which are steadily improving, deep learning has improved exponentially and 

continues to break new ground.  

In this guide, we discuss the unique value proposition that Amazon Web Services 

(AWS) offers to support deep learning projects. You can leverage AWS innovation in 

the deep learning domain to improve the training time of deep learning jobs by using 

AWS optimized compute, storage, and network infrastructure. Deep learning jobs 

become more productive and agile from using AWS services and by offloading the 

undifferentiated heavy lifting involved in managing deep learning infrastructure and 

platform on AWS. AWS offers the deepest and broadest set of capabilities and flexibility 

that is required for the explorative nature of deep learning projects.  



Archived

Amazon Web Services Deep Learning on AWS 

 Page 2 

Throughout this guide, we use deep learning engineers and deep learning scientists to 

refer to users of AWS services for deep learning. Deep learning engineers and deep 

learning scientists implies a broader team working on a deep learning project with 

different titles. 

Deep Learning Landscape 

The following figure is a visual boundary of the deep learning landscape that we cover 

in this guide. See the following table for detailed descriptions of various parts of the 

diagram.  

 

Figure 1: Deep learning landscape 



Archived

Amazon Web Services Deep Learning on AWS 

 Page 3 

Table 1: Deep learning landscape diagram descriptions 

Label Description 

1 Six steps required to execute deep learning projects. The six steps involved are 

discussed in Deep Learning Process for Build, Train, and Deploy.  

2 The different layers required to support a deep learning environment for build, train, 

and deploy tasks. The layers in the figure extend from infrastructure to tools required 

for deep learning projects.  

3 The do-it-yourself (DIY) option where the customer is responsible for building and 

managing components and features required for deep learning using AWS compute, 

storage, and network technology building blocks. 

4 Amazon SageMaker is a fully-managed service that covers the entire deep learning 
workflow to label and prepare your data, choose an algorithm, train the model, tune 
and optimize it for deployment, make predictions, and take action. Your models get to 
production faster with much less effort and lower cost. 

 

5 A measure of infrastructure experience required to set up the deep learning 

environment in the context of ease-of-use and the shared responsibility model 

between customer and AWS. Fully managed is easy to use because AWS manages 

the major part of the stack. The do-it-yourself (DIY) option is more challenging 

because customers manage most of the stack 

Note:  Between the fully managed (4) and do-it-yourself (DIY) (3) options, there is a 

partially managed approach where you use a fully managed container service and a 

self-managed deep learning workflow service like Kubeflow. This partially managed 

approach is relevant for organizations that have decided to standardize their 

infrastructure on top of  Kubernetes. For more details, see DIY Partially Managed 

Solution: Use Kubernetes with Kubeflow on AWS. 

Using this Guide 

This guide is organized into seven sections, as described below.  

1. Deep Learning Process for Build, Train, and Deploy 

2. Challenges with Deep Learning Projects 

3. Highly Optimized AWS Technology Building Blocks for Deep Learning 

4. Code, Data, and Model Versioning 

5. Automation of Deep Learning Process for Retrain and Redeploy 

https://aws.amazon.com/sagemaker
https://aws.amazon.com/compliance/shared-responsibility-model/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 4 

6. Patterns for Deep Learning at Scale 

7. AWS Guidance 

If you are not familiar with the deep learning process and the deep learning stack, read 

this guide in its entirety, in sequence.  

If you are familiar with AWS Deep Learning building blocks, deep learning challenges, 

and deep learning process, you can skip to sections 4, 5, 6, and 7. 

Deep Learning Process for Build, Train, and 

Deploy 

The following image shows the six steps of the deep learning process. In the following 

sections, we provide more information on each step of the deep learning process, 

explain challenges in terms of infrastructure performance, bottlenecks, scalability, 

reliability, and ease of use. 

 

Figure 2: Six steps of deep learning process 

Step 1. Collect Data 

Deep learning is different from traditional machine learning with regard to data collection 

and preparation steps. Although feature engineering tends to be the bottleneck in 

traditional machine learning implementations, in deep learning (specifically in image 

recognition and natural language processing [NLP] use cases), features can be 

generated automatically by the neural network as it learns. The features are extracted 

by having each node layer in a deep network learn features by repeatedly attempting to 

reconstruct the input from which it draws its samples, allowing it to minimize the delta 

between the network’s guesses and the probability distribution of the input data itself. 

However, when training from scratch, large amounts of training data are still necessary 

to develop a well-performing model, and this necessitates substantial amounts of 

labeled data. There may not be enough labeled data available upfront especially when 

dealing with new applications or new use cases for a deep learning implementation.  



Archived

Amazon Web Services Deep Learning on AWS 

 Page 5 

We will discuss ways to mitigate these unique challenges to deep learning in the Highly 

Optimized AWS Technology Building Blocks for Deep Learning section of this paper. As 

a first step, use the diagram below to assess your data collection process. 

 

Figure 3: Data collection assessment1 

Data Preprocessing 

Data preprocessing comprises data cleaning, data integration, data transformation, and 

data reduction, with the intent to mitigate inaccurate, missing, noisy, and inconsistent 

data before starting the training process. AWS provides a variety of tools and services 

that you can use to perform the data preprocessing steps in addition to performing 

feature engineering: AWS Glue, Amazon EMR, AWS Lambda, Amazon SageMaker, 

AWS Batch, and AWS Marketplace. The use of these tools is described in detail in the 

Big Data Analytics Options on AWS whitepaper.  

Most important, with the widespread availability of many open source deep learning 

frameworks, a broad variety of file formats have emerged to accommodate the 

individual frameworks. The choice of file format for your data ingestion process is an 

important step in the data preprocessing phase and greatly depends on the framework 

chosen to perform the deep learning implementation. Some of the standard formats 

include RecordIO, TFRecords, Hierarchical Data Format (HDF5), pth, N5, and light 

memory mapped database (LMDB).  

Step 2. Choose and Optimize Your Algorithm 

Within deep learning implementations, we differentiate between various network 

architectures and deep learning algorithms. Discussing every available network 

architecture and learning algorithm is outside the scope of this paper. For brevity, we 

briefly discuss three of the most commonly used network architectures and some 

popular learning algorithms used today. 

https://aws.amazon.com/glue
https://aws.amazon.com/emr
https://aws.amazon.com/lambda/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/batch/
https://aws.amazon.com/marketplace/
https://d1.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS.pdf
http://mesos.apache.org/documentation/latest/recordio/
https://www.tensorflow.org/tutorials/load_data/tf_records
https://www.hdfgroup.org/solutions/hdf5/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 6 

Deep Learning Network Architecture 

• Multilayer Perceptrons (MLPs) (Feedforward neural networks [FFNNs]) 

• Convolutional Neural Networks (CNNs) 

• Recurrent Neural Networks (RNNs) 

At a high level, we chose a network architecture based on the specific use case that we 

are trying to solve. The following table is a decision matrix mapping use cases to the 

individual network architectures. 

Table 2: Mapping use cases to network architectures 

MLPs (FFNNs) CNNs RNNs (LSTM) 

Tabular Datasets Image Data Text Data 

Classification Prediction 

Problems 

Classification Prediction 

Problems 
Speech Data 

Regression Prediction 

Problems 

Regression Prediction 

Problems 

Classification Prediction 

Problems 

  
Regression Prediction 

Problems 

Deep Learning Algorithms 

Most deep learning models use gradient descent and backpropagation to optimize the 

neural network’s parameters by taking partial derivatives of each parameter’s 

contribution to the total change in error during the training process. Exploring 

optimization techniques concerning the training performance of deep learning 

algorithms is a topic of ongoing research and still evolving. Many new variants of the 

conventional gradient descent-based optimization algorithms such as momentum, 

AdaGrad (adaptive gradient algorithm), Adam (adaptive moment estimation), and 

Gadam (genetic-evolutionary Adam) have emerged to improve the learning 

performance of your deep learning network.  

Step 3. Set up and Manage the Environment for 

Training 

Designing and managing the deep learning environments for your training jobs can be 

challenging. Deep learning training jobs are different from traditional machine learning 



Archived

Amazon Web Services Deep Learning on AWS 

 Page 7 

implementations. Challenges arise based on the complexity of most neural networks, 

the high dimensionality of the dataset, and lastly the scale of the infrastructure needed 

to train large models with a lot of training data. To accommodate these challenges, you 

need elasticity and performance in your compute and storage infrastructure.  

On AWS, you can choose to build your neural net from the ground up with the AWS 

Deep Learning Amazon Machine Image (AWS DL AMI) which comes preconfigured with 

TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit, Gluon, 

Horovod, and Keras, enabling you to quickly deploy and run any of these frameworks 

and tools at scale. Additionally, you can choose to use the preconfigured AWS Deep 

Learning Containers (AWS DL Containers) preinstalled with deep learning frameworks 

supporting TensorFlow and Apache MXNet and run them on Amazon Elastic 

Kubernetes Service (Amazon EKS), self-managed Kubernetes, Amazon Elastic 

Container Service (Amazon ECS), or directly on Amazon Elastic Compute Cloud 

(Amazon EC2). Lastly, you can take advantage of the AWS SDK for Python. This SDK 

provides open source APIs and containers to train and deploy models in Amazon 

SageMaker with several different machine learning and deep learning frameworks. We 

will discuss the most common solutions and patterns using these services in the second 

half of this paper.  

Step 4. Train, Retrain, and Tune the Models 

Training neural networks is different from traditional machine learning implementations 

because the model needs to learn the mapping function from the inputs to the outputs 

via function approximation in a nonconvex error space with many “good” solutions. 

Since we can’t directly compute the optimal set of weights via a closed form solution (as 

is the case with simple linear regression models), and we cannot get global 

convergence guarantees, training a neural network can be challenging and usually 

requires much more data and compute resources than other machine learning 

algorithms.   

AWS provides a variety of tools and services to simplify the training process of your 

neural networks. Throughout this paper, we will discuss a variety of options that 

includes running your self-managed deep learning environment on Amazon EC2; 

running a deep learning environment on Amazon EKS or Amazon ECS; or using fully 

managed service Amazon SageMaker for deep learning. All these environment uses 

highly customized GPU powered hardware to reduce training time and training cost. 

In addition to the model design discussed in Step 2. Choose and Optimize Your 

Algorithm, you also have the option of setting hyperparameters before starting the 

https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/ec2/
https://aws.amazon.com/eks/
https://aws.amazon.com/ecs/
https://aws.amazon.com/sagemaker/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 8 

training process. Searching for the optimal hyperparameters is an iterative process, and 

because of the high dimensionality and complexity of the search space in deep learning 

implementations, this endeavor can be labor and cost intensive. A variety of strategies 

have been developed to find the optimal hyperparameter settings via techniques such 

as grid search, random search, and Bayesian optimization.  

Hyperparameter tuning is available as a turn key feature in Amazon SageMaker. 

Step 5. Deploy Models in Production 

Deploying a machine learning model into production often poses the most challenging 

part of an end-to-end machine learning pipeline. That is because deploying machine 

learning workloads differ from traditional software deployments.  

First, we must consider the type of inference that the model provides: batch inference 

(offline) versus real-time inference (online). As the name implies, batch inference 

generates predictions asynchronously on a batch of observations. The batch jobs are 

generated on a recurring schedule (e.g., hourly, daily, weekly). These predictions are 

then stored in a data repository or a flat file and made available to end users. Real-time 

inference is the process of generating predictions in real time and synchronous upon 

request, most often on a single observation of data at runtime.  

Second, we must consider how the model is retrained. For a model to predict 

accurately, the data that is provided to the model to make predictions on must have a 

distribution similar to the data on which the model was trained. However, in most 

machine learning deployments, data distributions are expected to drift over time, and 

because of that, deploying a model is not a one-time exercise but rather a continuous 

process. It is a good practice to monitor the incoming data continuously and retrain your 

model on newer data if you find that the data distribution has deviated significantly from 

the original training data distribution. Based on your use case, an automatic instead of 

an on-demand approach to retrain your model may be more appropriate. For example, if 

monitoring data to detect a change in the data distribution has a high overhead, then a 

simpler strategy such as training the model periodically may be more appropriate. 

Third, implementing model version control and having a scaling infrastructure to meet 

demand is not specific to deep learning, but requires additional consideration. Version 

control is essential because it allows for traceability between the model and its training 

files in addition to allowing for verifiability, letting you tie the output generated by a 

model to a specific version of that model. Dynamically adjusting the amount of compute 

capacity for an inference endpoint in addition to having the capability to add fractions of 

https://aws.amazon.com/sagemaker/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 9 

a GPU core to an inference endpoint allows you to meet the demands of your 

application without overprovisioning capacity. 

Fourth, implementing tools to audit the performance of a model over time is the last step 

in implementing a model into production. The auditing solution must be able to 

accurately observe an objective evaluation metric over time, detect failure, and have a 

feedback loop in place should the model’s accuracy deteriorate over time. Note that we 

do not cover auditing solutions in this guide.  

Lastly, we will discuss the different model deployment and model and data version 

control approaches available to you on AWS in more detail in the next two sections – 

Code, Data and Model Versioning and Patterns for Deep Learning at Scale. 

Step 6. Scale and Manage the Production Environment 

Building and deploying effective machine learning systems is an iterative process, and 

the speed at which changes can be made to the system directly affects how your 

architecture scales, while also influencing the productivity of your team. Three of the 

most important considerations to achieve scale and manageability in your deep learning 

implementations are modularity, tiered offerings, and choosing from a multitude of 

frameworks. This decoupled and framework agnostic approach will provide your deep 

learning engineers and scientists with the tools that they want, while also catering to 

specific use cases and skillsets in your organization. 

AWS provides a broad portfolio of services that cover all the common machine learning 

(ML) workflows while also providing you the flexibility to support the less common and 

custom use cases. Before discussing the breadth and depth of the AWS machine 

learning stack, let us look at the most common challenges encountered by machine 

learning practitioners today. 

Challenges with Deep Learning Projects 

Software Management 

Deep learning projects are dependent on machine learning frameworks. Many deep 

learning frameworks are open source and supported by the community that is actively 

contributing to the framework code. The changes are frequent and sometimes breaking. 

In some cases, you need to customize the framework to meet your immediate needs for 

performance by writing custom operators.  



Archived

Amazon Web Services Deep Learning on AWS 

 Page 10 

Building, testing, and maintaining machine learning frameworks requires work. If the 

changes are breaking, you must make changes to your script as well. However, it is 

important to take advantage of the latest from the open source AI community and to 

support requirements of internal projects. 

Performance Optimization 

The full stack of deep learning has many layers. In order to extract maximum 

performance out of the stack, you must fine-tune every single layer of software that 

includes drivers, libraries, and dependencies. Poorly tuned layers in the software can 

increase the training time of the model and can lead to increased cost of training. 

Tuning the deep learning stack requires multiple iterations of testing and specialized 

skills. Most often tuning is required for both training and inference stacks. Different 

stacks may have different bottlenecks—network, CPU, or storage I/O—that must be 

resolved with tuning.  

Collaborative Development 

In most cases, it’s a team of deep learning engineers and deep learning scientists that 

would collaborate on a deep learning project. The team must conform to certain 

standards to collaborate and provide feedback on each other’s work. As the project 

moves from proof of concept to production, it is important to track that the model’s 

performance over time for  consistency. Consistency is required between the dataset 

and hardware versions and software configuration of different stacks used during the 

training by different practitioners. Consistency is also required between the training and 

the inference stack. The stack and the results from the stack should be reproducible. 

Infrastructure Management 

In order to prove the value of the model, it should be trained with the appropriate 

hyperparameters and on a large dataset. The search for the most optimal 

hyperparameters requires multiple jobs to be run concurrently on a large dataset. This 

exercise requires working with job schedulers, orchestrators, and monitoring tools, 

which creates dependency on IT assets managed by centralized IT teams. Even after 

the first version of the model is fully developed, the DevOps team must support the 

infrastructure required to retrain the model on fresh data, and to monitor and support the 

endpoint used to deploy the model. 



Archived

Amazon Web Services Deep Learning on AWS 

 Page 11 

Scalability 

Both deep learning training and inference workloads have spiky characteristics. There 

may be a specific time period during the project where you may have to scale specific 

experiments to hundreds and thousands of instances. This is true for inference and 

when seasonal spike in inference is expected during special events during the year. 

Planning and forecasting the high-performance compute required to support 

experiments and seasonal bursts for training and inference is difficult to plan. 

AWS services optimized for deep learning solves above challenges faced by deep 

learning engineers and deep learning scientists.  Let us take a closer look at the 

individual buildings blocks.  



Archived

Amazon Web Services Deep Learning on AWS 

 Page 12 

Highly Optimized AWS Technology Building 

Blocks for Deep Learning 

The following figure outlines the composition of the individual deep learning layers on 

AWS. 

 

Figure 4: Building blocks for deep learning 

Storage 

Amazon Simple Storage Service (Amazon S3) 

Data acquisition and making that data available for exploration and consumption across 

the enterprise for different deep learning projects is an important strategic initiative. It 



Archived

Amazon Web Services Deep Learning on AWS 

 Page 13 

involves tasks such as ingesting the data, performing extract, transform, load (ETL), 

visualizing data, and wrangling data to develop high-quality training dataset for training 

deep learning models.  

Amazon Simple Storage Service (Amazon S3) can be used as central storage layer to 

store and democratize data for deep learning. Your applications can easily achieve 

thousands of transactions per second by using Amazon S3 as the storage tier for deep 

learning training jobs. Amazon S3 automatically scales to high request rates. 

Make sure to consider the throughput between Amazon EC2 and Amazon S3 during 

ingestion and reading of objects from Amazon S3. You can achieve higher performance 

using multiple Amazon EC2 instances in a distributed manner. 

Amazon SageMaker uses Amazon S3 as a storage tier for data used in training jobs 

and batch inference, and for storing trained models. Amazon SageMaker supports both 

batch and pipe mode to read data from Amazon S3 in the local Amazon Elastic Block 

Store (Amazon EBS) volume of Amazon SageMaker training instances. 

DIY customers who want to manage their own compute clusters on Amazon EC2 can 

use Amazon S3 as the storage layer or they can use Amazon FSx for Lustre hydrated 

from Amazon S3 with lazy loading to build a data caching layer for deep learning jobs. 

Both of the options are available for a DIY setup. You must make a tradeoff between 

price and performance. 

Amazon FSx for Lustre 

Amazon FSx for Lustre is built on open-source Lustre. Lustre is an open-source highly 

scalable, highly distributed, and highly parallel file system that can be used as a deep 

learning data caching layer for distributed training. 

The high-performance capabilities and open licensing make Lustre a popular choice for 

deep learning workloads. Lustre file systems are scalable and can be used with multiple 

compute clusters with tens of thousands of client notes, PBs of data, and TB per second 

of aggregate I/O throughput. 

If you are training a deep neural network, Lustre provides you with the capability to get 

the source data fast with low latency. But, setting up a Lustre cluster can be 

challenging.   

Amazon FSx for Lustre simplifies the complexity of setting up and managing the Lustre 

File System and provides an experience that allows you to create a file system in 

minutes, mount it on any number of clients, and start accessing it right away. Amazon 

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/s3/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/s3/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/ec2/
https://aws.amazon.com/s3/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/s3/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 14 

FSx for Lustre is a fully managed service, so there's nothing to maintain and nothing to 

administer. You can build standalone file systems for ephemeral use, or you can 

seamlessly join them to an S3 bucket and then access the contents of the bucket as if it 

were a Lustre file system. Amazon FSx for Lustre is designed for workloads that require 

high levels of throughput, IOPS, and consistent low-latencies. 

One unique feature of Amazon FSx for Lustre is its deep integration with Amazon S3 

that allows lazy loading of data into the actual file system. If a customer doesn't know 

which object to load from the S3 bucket, the Amazon FSx for Lustre loads only the 

metadata comprised of names, dates, sizes, and so forth for the objects themselves, but 

it does not load the actual file data until it is required. By default, Amazon S3 objects are 

only loaded into the file system when first accessed by your applications. If your 

applications access objects that haven’t yet been loaded into your file system, Amazon 

FSx for Lustre automatically loads the corresponding objects from Amazon S3. 

Amazon Elastic File System (Amazon EFS) 

When selecting a storage solution, there is a tradeoff between data locality and a 

centrally managed storage solution. Amazon EFS is well-suited to support a broad 

spectrum of use cases—from highly parallelized, scale-out workloads that require the 

highest possible throughput to single-threaded, latency-sensitive workloads. However, 

when running batch processing on central locations, Amazon EFS is likely the most 

suitable storage solution. Amazon EFS enables you to provide easy access to your 

large machine learning datasets or shared code, right from your notebook environment, 

without the need to provision storage or worry about managing the network file system 

yourself.   

Amazon EFS scales automatically as more data is ingested. Data is stored redundantly 

across multiple Availability Zones and the performance scales up to 10+ GB per second 

of throughput as your data grows. Amazon EFS can be simultaneously mounted on 

thousands of Amazon EC2 instances from multiple Availability Zones.  

As shown in the diagram below, up to thousands of Amazon EC2 instances from 

multiple Availability Zones can connect concurrently to a file system. It can also be 

mounted on multiple Amazon SageMaker Jupyter Notebooks. This feature allows 

Amazon EFS to be used for data and code sharing, enabling collaboration among deep 

learning engineers and deep learning scientists. You can also use Amazon EFS as a 

caching layer for training datasets in distributed training jobs. 

The following figure shows how you can add an Amazon EFS endpoint to all ephemeral 

compute nodes to mount a centrally accessible storage solution. Most importantly, this 

https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/s3/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/s3/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 15 

endpoint can grow on-demand to petabytes without disrupting applications, growing and 

shrinking automatically, as you add and remove files. 

 

Figure 5: Multiple EC2 instances connected to a file system 

Compute 

Amazon EC2 P3 Instances 

The computationally intensive part of the neural network is made up of many matrix and 

vector operations. We can make this process faster by doing all of the operations at the 

same time instead of doing operations one after the other. This is why GPUs, which are 

better at handling multiple simple calculations in parallel are used instead of CPUs for 

training neural networks. 

Adding more layers to a neural network (up to a specific limit) and training on more and 

more data has been proven to improve the performance of deep learning models. GPU 

has thousands of simple cores and can run thousands of concurrent threads. GPUs 

have improved the training time required for training a complex neural network. The 

access and availability of high performance and cost-effective GPU infrastructure is the 

primary requirement for a project using neural network architecture to build complex 

models. The GPU-based Amazon EC2 P3 instances offer the best price/performance 

compared to other GPU alternatives in the cloud today. 

Amazon EC2 P3 instances, the next generation of EC2 compute-optimized GPU 

instances, are powered by up to eight of the latest-generation NVIDIA Tesla V100 

GPUs and are ideal for deep learning applications. 

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 16 

Amazon EC2 P3 instances provide a powerful platform for deep learning by leveraging 

64 vCPUs using the custom Intel Xeon E5 processors, 488 GB of RAM, and up to 25 

Gbps of aggregate network bandwidth leveraging Elastic Network Adapter (ENA) 

technology. We will discuss ENA is detail in the later sections. 

GPUs are faster than CPUs and can saturate the network and CPUs during the training 

job. The size of network pipe and number of vCPUs on a training instance can become 

a bottleneck and may limit you from achieving higher utilization of GPUs. 

Amazon EC2 P3dn.24xlarge GPU instances, the latest addition to the P3 instance 

family, have up to 4x the network bandwidth of P3.16xlarge instances and are purpose-

built to address the aforementioned limitation.  

The above enhancements to Amazon EC2 P3 instances not only optimize performance 

on a single instance but also reduce the time to train deep learning models. This is 

accomplished by scaling out the individual jobs across several instances that leverage 

up to 100 Gbps of network throughput between training instances. 

AWS is the first cloud provider to deliver 100 Gbps of networking throughput, which 

helps remove data transfer bottlenecks and optimizes the utilization of GPUs to provide 

maximum instance performance. The doubling of GPU memory from 16 GB to 32 GB 

per GPU provides the flexibility to train more advanced and larger machine learning 

models as well as process larger batches of data, such as 4k images for image 

classification and object detection systems. 

For a comparison of P3 instance configurations and pricing information, see Amazon 

EC2 P3 Instance Product Details. 

AWS Inferentia 

Making predictions using a trained machine learning model–a process called inference–

can drive as much as 90% of the compute costs of the application. Inference is where 

the value of ML is delivered. This is where speech is recognized, text is translated, 

object recognition in video occurs, manufacturing defects are found, and cars are 

driven. 

Amazon Elastic Inference solves these problems by allowing you to attach just the right 

amount of GPU-powered inference acceleration to any Amazon EC2 or Amazon 

SageMaker  instance type with no code changes. With Amazon Elastic Inference, you 

can now choose the instance type that is best suited to the overall CPU and memory 

needs of your application, and then separately configure the amount of inference 

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/ec2/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/machine-learning/elastic-inference/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 17 

acceleration that you need to use resources efficiently and to reduce the cost of running 

inference. 

However, some inference workloads require an entire GPU or have low latency 

requirements. Solving this challenge at low cost requires a specialized and a dedicated 

inference chip. 

AWS Inferentia is a machine learning inference chip designed to deliver high 

performance at low cost. AWS Inferentia hardware and software meet wide spectrum of 

inference use cases and state of art neural networks.  

AWS Inferentia supports the TensorFlow, Apache MXNet, and PyTorch deep learning 

frameworks, as well as models that use the ONNX format. 

Each AWS Inferentia chip provides hundreds of TOPS (tera operations per second) of 
inference throughput to allow complex models to make fast predictions. For even more 
performance, multiple AWS Inferentia chips can be used together to drive thousands of 
TOPS of throughput. AWS Inferentia will be available for use with Amazon SageMaker, 
Amazon EC2, and Amazon Elastic Inference. To be notified about AWS Inferentia 
availability, you can sign up here 

Amazon EC2 G4 

We are advancing into an age where every customer interaction will be powered by AI 

in the backend. To meet and exceed your customer demands, you need a compute 

platform that allows you to cost effectively scale your AI-based products and services. 

The NVIDIA® Tesla® T4 GPU is the world’s most advanced inference accelerator. 

Powered by NVIDIA Turing™ Tensor Cores, T4 brings revolutionary multi-precision 

inference performance to accelerate the diverse applications of modern AI. T4 is 

optimized for scale-out servers and is purpose-built to deliver state-of-the-art inference 

in real time. 

Responsiveness is key to user engagement for services such as conversational AI, 

recommender systems, and visual search. As models increase in accuracy and 

complexity, delivering the right answer right now requires exponentially larger compute 

capability. Tesla T4 delivers up to 40X times better low-latency throughput, so more 

requests can be served in real time. 

The new Amazon EC2 G4 instances packages T4-based GPUs to provide AWS 

customers with a versatile platform to cost-efficiently deploy a wide range of AI services. 

Through AWS Marketplace, customers will be able to pair the G4 instances with NVIDIA 

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://onnx.ai/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/ec2/
https://aws.amazon.com/machine-learning/elastic-inference/
https://pages.awscloud.com/AWSInferentia-preview.html
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://aws.amazon.com/ec2/
https://aws.amazon.com/marketplace


Archived

Amazon Web Services Deep Learning on AWS 

 Page 18 

GPU acceleration software, including NVIDIA CUDA-X AI libraries to accelerate deep 

learning inference. 

With new T4-based G4 instances, you can make your machine learning inference easy 

and cost-effective. 

Amazon EC2 G4 is available in preview. 

Software 

AWS Deep Learning AMIs 

Even for experienced machine learning practitioners, getting started with deep learning 

can be time consuming and cumbersome. 

To expedite your development and model training, the AWS Deep Learning AMIs 

include the latest NVIDIA GPU-acceleration through pre-configured CUDA and cuDNN 

drivers, as well as the Intel Math Kernel Library (MKL), in addition to installing popular 

Python packages and the Anaconda Platform. 

The AWS Deep Learning AMIs provide machine learning practitioners and researchers 

with the infrastructure and tools to accelerate deep learning in the cloud, at any scale. 

You can quickly launch Amazon EC2 instances pre-installed with popular deep learning 

frameworks and interfaces such as TensorFlow, PyTorch, Apache MXNet, Chainer, 

Gluon, Horovod, and Keras to train sophisticated, custom AI models, experiment with 

new algorithms. 

Deep Learning AMIs are available in two different versions—Conda AMIs and Base 

AMIs. 

For developers who want pre-installed pip packages of deep learning frameworks in 

separate virtual environments, the Conda-based AMI is available in Ubuntu, Amazon 

Linux, and Windows 2016 versions. The environments on the AMI operate as mutually 

isolated, self-contained sandboxes. The AMI also provides a visual interface that plugs 

into your Jupyter notebooks so you can switch in and out of environments, launch a 

notebook in an environment of your choice, and even reconfigure your environment—all 

with a single click, right from your Jupyter notebook browser. 

For developers who want a clean slate to set up private deep learning engine 

repositories or custom builds of deep learning engines, the Base AMI is available in 

Ubuntu and Amazon Linux versions. The Base AMI comes pre-installed with the 

foundational building blocks for deep learning. The Base AMI includes NVIDIA CUDA 

https://aws.amazon.com/ec2/
https://pages.awscloud.com/ec2-g4-preview.html
https://aws.amazon.com/machine-learning/amis/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 19 

libraries, GPU drivers, and system libraries to speed up and scale machine learning on 

Amazon EC2 instances. The Base AMI comes with the CUDA 9 environment installed 

by default. However, you can also switch to a CUDA 8 environment using simple one-

line commands. 

AWS Deep Learning Containers 

AWS provides a broad choice of compute to accelerate deep learning training and 

inference. Customers can choose to use fully managed services using Amazon 

SageMaker or decide to use a do-it-yourself (DIY) approach by using Deep Learning 

AMIs. 

DIY is a popular option among researchers and applied machine learning practitioners 

working at the framework level. 

In the last few years, using Docker containers have become popular because this 

approach allows deploying custom ML environments that run consistently in multiple 

environments. Building and testing the Docker container is difficult and error-prone. It 

takes days to build a Docker container due to software dependencies and version 

compatibility issues. Further, it requires specialized skills to optimize the Docker 

container image to scale and distribute machine learning jobs across a cluster of 

instances. The process is repeated as a new version of software or driver becomes 

available. 

With AWS Deep Learning Containers (AWS DL Containers), AWS has extended the 

DIY offering for advanced ML practitioners and provided the Docker container images 

for deep learning that are preconfigured with frameworks such as TensorFlow and 

Apache MXNet. AWS takes care of the undifferentiated heavy lifting that is involved in 

building and optimizing Docker containers for deep learning. AWS DL Containers are 

tightly integrated with Amazon Elastic Container Service (Amazon ECS) and Amazon 

Elastic Kubernetes Service (Amazon EKS). You can deploy AWS DL Containers on 

Amazon ECS and Amazon EKS in a single click and use it to scale and accelerate your 

machine learning jobs on multiple frameworks. Amazon ECS and Amazon EKS handle 

all the container orchestration required to deploy and scale the AWS DL Containers on 

clusters of virtual machines. Today, AWS DL Containers are available for TensorFlow 

and Apace MXNet.  

The container images are available for both CPUs and GPUs, for Python 2.7 and 3.6, 

with Horovod support for distributed training on TensorFlow for Inference and Training. 

https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 20 

AWS DL Containers are available in AWS Marketplace or from within the Amazon ECS 

console. 

AWS DL Containers version 2.0 for TensorFlow Docker images have been tested with 

Amazon SageMaker, Amazon EC2, Amazon ECS, and Amazon EKS. One Docker 

image can be used across multiple platforms on AWS. 

Networking 

Enhanced Networking 

Enhanced networking uses single root I/O virtualization (SR-IOV) to provide high-

performance networking capabilities on supported instance types. SR-IOV is a method 

of device virtualization that provides higher I/O performance and lower CPU utilization 

when compared to traditional virtualized network interfaces. Enhanced networking 

provides higher bandwidth, higher packet per second (PPS) performance, and 

consistently lower inter-instance latencies. Most of the instance types that are used in 

deep learning support an Elastic Network Adapter (ENA) for enhanced networking.  

The ENA was designed to work well with modern processors, such as those found on 

C5, M5, P3, and X1 instances. Because these processors feature a large number of 

virtual CPUs (128 for X1), efficient use of shared resources like the network adapter is 

important. While delivering high throughput and great packet per second (PPS) 

performance, ENA minimizes the load on the host processor in several ways and also 

does a better job of distributing the packet processing workload across multiple vCPUs. 

Here are some of the features that enable this improved performance: 

• Checksum Generation – ENA handles IPv4 header checksum generation and 

TCP/UDP partial checksum generation in hardware. 

• Multi-Queue Device Interface – ENA uses multiple transmit and receive 

queues to reduce internal overhead and to improve scalability. The presence of 

multiple queues simplifies and accelerates the process of mapping incoming and 

outgoing packets to a particular vCPU. 

• Receive-Side Steering – ENA can direct incoming packets to the proper vCPU 

for processing. This technique reduces bottlenecks and increases cache 

efficacy. 

All of these features are designed to keep as much of the workload off of the processor 

as possible and to create a short, efficient path between the network packets and the 

vCPU that is generating or processing them. 

https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/marketplace
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 21 

Placement Groups 

A placement group is an AWS solution to reduce latency between Amazon EC2 

instances. It is a mechanism to group instances running in the same Availability Zone to 

be placed as close as possible to reduce latency and improve throughput. 

Elastic Fabric Adapter 

Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that 

enables customers to run high performance computing (HPC) applications requiring 

high levels of inter-instance communications, like deep learning at scale on AWS. It 

uses a custom-built operating system bypass technique to enhance the performance of 

inter-instance communications, which is critical to scaling HPC applications. With EFA, 

HPC applications using popular HPC technologies like Message Passing Interface 

(MPI) can scale to thousands of CPU cores. EFA supports open standard libfabric APIs, 

so applications that use a supported MPI library can be migrated to AWS with little or no 

modification. EFA is available as an optional EC2 networking feature that you can 

enable on C5n.18xl and P3dn.24xl instances at no additional cost. 

You can use Open MPI 3.1.3 (or later) or NCCL (2.3.8 or later) plus the OFI driver for 

NCCL.  

The instances can use EFA to communicate within a VPC subnet, and the security 

group must have ingress and egress rules that allow all traffic within the security group 

to flow. Each instance can have a single EFA, which can be attached when an instance 

is started or while it is stopped. 

Amazon Elastic Inference 

Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to 

Amazon EC2 and Amazon SageMaker instances to reduce the cost of running deep 

learning inference by up to 75%. Currently, Amazon Elastic Inference supports 

TensorFlow, Apache MXNet, and ONNX models, with more frameworks coming soon. 

To use any other deep learning framework, export your model by using ONNX, and then 

import your model into MXNet. You can then use your model with Amazon Elastic 

Inference as an MXNet model. 

Amazon Elastic Inference is designed to be used with AWS enhanced versions of 

TensorFlow serving or Apache MXNet. These enhanced versions of the frameworks are 

automatically built into containers when you use the Amazon SageMaker Python SDK, 

or you can download them as binary files and import them into your own Docker 

containers. 

https://aws.amazon.com/ec2/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://aws.amazon.com/ec2/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://www.open-mpi.org/
https://developer.nvidia.com/nccl
https://github.com/aws/aws-ofi-nccl
https://github.com/aws/aws-ofi-nccl
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/ec2/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/machine-learning/elastic-inference/
https://onnx.ai/
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/sagemaker/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 22 

Typically, you don't need to create a custom container unless your model is complex 

and requires extensions to a framework that the Amazon SageMaker pre-built 

containers do not support.  

Amazon Elastic Inference accelerators are network-attached devices that work along 

with Amazon EC2 instances in your endpoint to accelerate your inference calls. When 

your model is deployed as an endpoint, ML frameworks use a combination of the 

Amazon EC2 instance and accelerator resources to execute inference calls.  

To use Amazon Elastic Inference in a hosted endpoint, you can use any of the 

following, depending on your needs.  

• Amazon SageMaker Python SDK TensorFlow - if you want to use TensorFlow 

and you don't need to build a custom container.  

• Amazon SageMaker Python SDK MXNet - if you want to use MXNet and you 

don't need to build a custom container.  

• The Amazon SageMaker SDK for Python (Boto 3) - if you need to build a custom 

container. 

Typically, you don't need to create a custom container unless your model is complex 

and requires extensions to a framework that the Amazon SageMaker pre-built 

containers do not support.  

The following Amazon Elastic Inference accelerator types are available. You can 

configure your endpoints or notebook instances with any Amazon Elastic Inference 

accelerator type. 

Table 3: Elastic Inference accelerator types2 

Accelerator Type 

F32 Throughput 

(TFLOPS) 

F16 Throughput 

(TFLOPS) 

Memory 

(GB) 

ml.eia1.medium 1 8 1 

ml.eia1.large 2 16 2 

ml.eia1.xlarge 4 32 4 

 

Consider the following factors when choosing an accelerator type for a hosted model:  

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/machine-learning/elastic-inference/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 23 

• Models, input tensors and batch sizes influence the amount of accelerator 

memory you need. Start with an accelerator type that provides at least as much 

memory as the file size of your trained model.  

• Demands on CPU compute resources, GPU-based acceleration, and CPU 

memory vary significantly between different kinds of deep learning models. The 

latency and throughput requirements of the application also determine the 

amount of compute and acceleration you need. Thoroughly test different 

configurations of instance types and Amazon Elastic Inference accelerator sizes 

to make sure you choose the configuration that best fits the performance needs 

of your application.  

Solutions 

Amazon SageMaker Ground Truth for Data Labeling 

Relative to other forms of machine learning, supervised learning continues to dominate 

the machine learning space. Feeding more data into the model training cycle continues 

to improve machine learning model performance. However, building a training dataset 

with accurate labels is a challenging and cost prohibitive task. 

Amazon SageMaker Ground Truth helps in the first step of the machine learning 

process when data is collected and labeled. Amazon SageMaker Ground Truth 

combines automated data labeling techniques based on active learning with 

crowdsourced data labeling processes using Mechanical Turk. You can use active 

learning to identify attributes that must be learned and then use crowdsourced 

workforce to perform the labeling. Active learning is a methodology that can sometimes 

significantly reduce the amount of labeled data required to train a model. It does this by 

prioritizing the labeling work for the experts. 

Active learning model looks at unlabeled data and calculates answers ranked by 

confidence. Next, the model compares its least confident scores against the labeled 

data. Last, the model tweaks itself so that if it sees the same data again, it is be more 

likely to calculate the correct answer. 

Besides active learning capability and access to Mechanical Turk workforce, Amazon 

SageMaker Ground Truth helps you with label management and workflow management. 

Optionally, you also set up private and hybrid workforces for the labeling task. 

https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/groundtruth/
https://www.mturk.com/
https://www.mturk.com/
https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/groundtruth/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 24 

Amazon SageMaker Neo for Model Optimization 

Once you have a trained model, you may want to deploy it in the cloud, at the edge, or 

on mobile devices. The request for inference has to travel through the client HTTP 

stack, over the network, through the web server and application server stack to finally 

make it to the inference endpoint. Considering the latency introduced by all of the above 

layers, there is a small fraction of time left to compute the inference and serve it back to 

the client before it starts impacting the user experience. Therefore, it is always desirable 

to get maximum performance out of the inference endpoint. 

Improving the performance of an inference endpoint is a complex problem. First, the 

computation graph of the model is a compute-intensive task. Second, optimizing 

machine learning models for inference requires tuning for specific hardware and 

software configuration on which the model is deployed. For optimal performance, you 

must know the hardware architecture, instruction set, memory access patterns, and 

input data shapes, among other factors. 

In the case of traditional software, compilers and profilers handle the tuning. In the case 

of deep learning model deployment, it becomes a manual trial and error process. 

Amazon SageMaker Neo can help you eliminate time and effort required to tune the 

model for specific software and hardware configuration by automatically optimizing 

TensorFlow, Apache MXNet, PyTorch, ONNX, and XGBoost models for deployment on 

ARM, Intel, and NVIDIA processors. This list of supported deep learning frameworks, 

model formats, and chipsets will continue to grow in the future. 

Amazon SageMaker Neo consists of a compiler and a runtime. First, Amazon 

SageMaker Neo APIs read models and parse it into a standard format. It converts the 

framework-specific functions and operations into a framework-agnostic intermediate 

representation. Next, it performs a series of optimization on the model graph. Then, it 

generates binary code for the optimized operations. Amazon SageMaker Neo also 

provides a lean runtime for each target platform and source framework that is used to 

load and execute the compiled model. Last, Amazon SageMaker Neo is also available 

as open source code as the Neo-AI project under the Apache Software License, 

enabling you to customize the software for different devices and applications. 

https://aws.amazon.com/sagemaker/neo/
https://onnx.ai/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://github.com/neo-ai/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 25 

Code, Data, and Model Versioning 

Version Code with Git 

The training, preprocessing, and inference scripts are the smallest components of the 

overall deep learning stack. In addition to the above scripts, you can also script your 

deep learning pipeline for model retraining and model deployment using services such 

as AWS Step Functions. Together, all the above scripts can be version controlled using 

any Git-based repository or using AWS CodeCommit, a fully managed source control 

service that hosts secure Git-based repositories. 

Version Data in Amazon S3 

In deep learning, the copy of the data that was used to retrain a model is important to 

explain and troubleshoot the bias and the drift in the model. You can use Amazon S3 to 

version your training data. Create a new Amazon S3 object or new version of Amazon 

S3 object for every new or updated training dataset. You can use the naming 

convention of the Amazon S3 object or use object tags to track training dataset 

versions. Optionally, you can push dataset S3 object location and data metadata in an 

Amazon DynamoDB table and index the table to make it searchable for data discovery. 

Version Model in Amazon S3 

Training a model is costly and time consuming. It is important to persist the model to 

compare the performance and accuracy of new variants of the model. You can assume 

trained model as a special data file that can be persisted in Amazon S3 as a data file 

with version control enabled. Amazon S3 allows you to tag and version data files of any 

type. 

Automation of Deep Learning Process for 

Retrain and Redeploy 

After you demonstrate a functional prototype, it is time to put the model in production 

and create an endpoint for serving prediction using the trained model. During the 

prototyping, all the steps to build, train, and deploy are performed manually in the 

Jupyter notebook. However, deployment in production requires precision, consistency, 

and reliability. Manual interventions in the production pipeline often lead to human 

errors that can lead to downtime. You can address human errors by automating all the 

https://aws.amazon.com/step-functions/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 26 

steps involved in retraining and redeployment. Discussed below are the solutions and 

services that can be used to automate your deep learning production pipeline on AWS. 

AWS Step Functions for Amazon SageMaker 

AWS Step Functions allows you to orchestrate multiple steps in the ML workflow to 

allow for seamless model deployment in the production. AWS Step Functions translates 

your workflow into a state machine diagram that is easy to understand, easy to explain 

to others, and easy to change. You can monitor each step of execution as it happens. 

Today, Amazon SageMaker supports two different patterns for service integration: 

• Call an Amazon SageMaker instance and let AWS Step Functions progress to 

the next state immediately after it receives an HTTP response.  

• Call an Amazon SageMaker instance and have AWS Step Functions wait for a 

job to complete. 

Apache Airflow for Amazon SageMaker 

Apache Airflow is an open source alternative platform that enables you to 

programmatically author, schedule, and monitor workflows. Using Apache Airflow, you 

can build a workflow for Amazon SageMaker training, hyperparameter tuning, batch 

transform and endpoint deployment. You can use any Amazon SageMaker deep 

learning framework or Amazon SageMaker algorithms to perform these operations in 

Airflow. 

You can build a Amazon SageMaker workflow using Airflow SageMaker operators or 

using Airflow Python Operator.  

You can also use Turbine, an open-source AWS CloudFormation template, to create an 

Airflow resource stack on AWS.  

Kubeflow Pipelines on Kubernetes 

If you are a DIY customer not using Amazon SageMaker and are leveraging your 

current investment in Kubernetes on AWS, you can use Kubeflow Pipelines. Kubeflow 

Pipelines is a platform for building and deploying portable, scalable machine learning 

(ML) workflows based on Docker containers. A pipeline is a description of an ML 

workflow, including all of the components in the workflow and how they combine in the 

form of a graph. This is popular tool that is used by practitioners using Kubernetes for 

build, train, and deploy. It has native integrations with Kubernetes. 

https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/step-functions/
https://airflow.apache.org/index.html
https://airflow.apache.org/index.html
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://sagemaker.readthedocs.io/en/stable/using_workflow.html#using-airflow-sagemaker-operators
https://sagemaker.readthedocs.io/en/stable/using_workflow.html#using-airflow-python-operator
https://github.com/villasv/aws-airflow-stack
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/sagemaker/
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 27 

There are also AWS pipeline components for Kubeflow that integrate with Amazon 

SageMaker and other AWS services used for data cleaning and transformation, such as 

Amazon EMR and Amazon Athena. This approach is for customers who want a unified 

control plane (unifying their microservices architecture with their AI/ML service releases) 

but also want to leverage different AWS services, such as Amazon EKS, Amazon FSx 

for Lustre, and Amazon SageMaker that are best fit for job and can help with the 

undifferentiated heavy lifting. 

Patterns for Deep Learning at Scale 

In this section, we describe different solutions and patterns that you can use to scale out 

deep learning adoption in your organization. The options include fully managed, DIY 

using AWS services, or a hybrid approach. You can also extend these options using 

other AWS services to build a custom environment. 

Options for Deep Learning on AWS 

In this section, we discuss both fully managed and DIY platform as a solution 

approaches for deep learning on AWS. AWS offers multiple options that cover the full 

spectrum of solutions for deep learning depending on different levels of shared 

responsibility between AWS and the customer, as shown in the following figure.  

 

Figure 6: Deep learning solutions on Shared Responsibility Model spectrum 

The left side of the spectrum is Amazon SageMaker, fully managed service for deep 

learning, event-based, and provides a single-click build, train, deploy experience. On 

the right side of spectrum is a fully customized deep learning solution that is self-

managed, manual and involves multiple steps to build, train, and deploy. In between 

these options is a partially managed solution where you can simplify infrastructure 

management by using managed services, such as Amazon EKS and you can deploy 

self-managed Kubeflow for deep learning workflow. 

https://github.com/kubeflow/pipelines/tree/master/components/aws
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/emr/
https://aws.amazon.com/athena/
https://aws.amazon.com/eks/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/eks/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 28 

To provide more information on the differences between self-managed and custom DIY 

solutions, let’s walk through operational and steps involved in one-time setup of deep 

learning environment. 

For a DIY setup, you must manage the following operational issues to keep the deep 

learning environment available for deep learning engineers and scientists: 

• Driver installation 

• Update coordination 

• Network breakdowns 

• Unscheduled reboots 

• Power outages 

• Equipment failure 

• Response issues 

• Disk space shortage 

• Cable problems 

• Server not reachable via VPN 

• Unsecured physical perimeter of server 

In the case of AWS managed services, such as Amazon SageMaker, the chances of 

operational issues are minimized because all of the AWS managed services are fault-

tolerant and highly available by design. 

For example, in a custom DIY setup, where you build a deep learning environment from 

scratch on Amazon EC2, you must perform the following tasks to run distributed training 

using TensorFlow and Horovod to generate value. These tasks include one-time 

software installation and ongoing job scheduling tasks. 

1. SSH, Login to Head Node 

2. Install MPI 

3. Install Anaconda, Python 3 

4. Create a Virtual Environment 

5. Install Intel Optimized TensorFlow with MKL 

6. Install Horovod for Distributed Training 

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/ec2/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 29 

7. Create SLURM Job Script (SLURM is an open source scheduling software for 

HPC jobs) 

8. Submit SLURM Job 

9. Obtain Insights 

In the case of AWS managed services, such as Amazon SageMaker, all of the above 

steps are automated and triggered with single click in the AWS Management Console, 

single API call, single CLI command, or event based. 

Let’s dive deeper into each solution to review the components and value of each 

solution. 

Fully Managed Solution - Use Amazon SageMaker 

If you are looking for a solution to scale deep learning across your organization, 

Amazon SageMaker offers an end-to-end solution to support the different steps involved 

in a deep learning process. Not only does Amazon SageMaker provide native support in 

the form of a fully managed service, but it also provides flexibility to customize deep 

learning stacks to take advantage of most recent innovation in drivers and frameworks. 

The simplicity and flexibility that Amazon SageMaker offers meets the needs of 

advanced deep learning engineers and deep learning scientists working at the 

framework level as well as data scientists and developers contributing to deep learning 

project with minimal background in deep learning. 

The following chart shows how different Amazon SageMaker components fit into the 

deep learning landscape to provide an end-to-end deep learning process. 

 

Figure 7: Amazon SageMaker solution for deep learning 

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 30 

Amazon SageMaker completely abstracts the infrastructure creation and termination 

tasks required for deep learning build, train and deploy environment. As a part of the 

infrastructure, it also handles the installation of common drivers such as NCCL, CUDA, 

and CUDNN; installation of common data processing libraries; and installation of 

common frameworks used for deep learning today. The notebook, training, and 

inference environment creation is made available as an API call, CLI command, 

Amazon SageMaker SDK, or as an option in the AWS Management Console. Amazon 

SageMaker allows you to automate a sequence of tasks into an automated workflow for 

an ML pipeline, such as retraining and redeploying new variants of a model with 

consistency. 

Amazon SageMaker simplifies common deep learning tasks, such as data labeling, 

hyperparameter tuning, real time and batch inference. The simplification of these tasks 

allows you to accelerate and scale deep learning adoption within an organization 

without losing control. The standard sets of tools that are fully managed allows better 

collaboration and improved time to market for deep learning projects.  

Amazon SageMaker also provides a single platform to both deep learning engineers 

and scientists and DevOps professionals in an organization to allow for a clean 

handshake between model authors who design algorithms and train models on data 

and DevOps team who are responsible for model deployment and monitoring. 

Amazon SageMaker provides pre-built container images for most of the popular 

framework. You can extend the exiting Amazon SageMaker container images or build 

your own. Advanced deep learning engineers and scientists working at the framework 

level may want to try a custom DL framework such as TensorFlow (TF) to try a custom 

operator to accelerate deep learning training for a specific use case or may want to run 

two TF process on a single instance for improved performance. Amazon SageMaker 

allows you to configure and customize the environment using script mode and bring 

your own container mode. The script mode allows you to bring your custom script (such 

as a TF script) and run it on pre-built TF AWS DL containers. Bring your own container 

allows maximum flexibility and control as you can build the container from scratch with 

your custom TF build and run it on Amazon SageMaker. 

DIY Partially Managed Solution: Use Kubernetes with Kubeflow on 
AWS 

This pattern applies to customers who have decided to standardize on Kubernetes as 

an infrastructure layer and would like to leverage their existing investment in Kubernetes 

to run deep learning training and inference jobs. This setup introduces a lot of 

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/sagemaker/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 31 

undifferentiated heavy lifting and operational complexity to manage Kubernetes. 

Managing the Kubernetes control plane can be difficult. However, there is an 

opportunity to offload the management of Kubernetes master to AWS by using Amazon 

EKS, a managed service for Kubernetes, to simplify the Kubernetes control plane 

management. 

It is important to note that Amazon EKS Kubernetes cluster is a persistent cluster. 

However, customers can manage the policy to scale-out and scale-in on-demand to 

provide sufficient resources to complete the training and inference jobs 

successfully. The training jobs rely on the underlying Kubernetes cluster for 

infrastructure and consume resources from it. If more compute capacity is required, you 

must add more worker nodes to the Kubernetes cluster to meet capacity requirement. 

You can leverage node level autoscaler (Kubernetes add-ons) to scale (in/out) GPU 

nodes. 

For inference endpoint scaling, you can use horizontal pod scaling at the Kubernetes 

level. You can also deploy additional software, such as TensorBoard, for training 

visualization as a sidecar pattern on pods. A Kubernetes pod is a group of containers 

that are deployed together on the same host. 

A Kubernetes cluster provides the infrastructure layer for running deep learning training 

and inference in the container environment. However, you must deploy and manage 

more components to make this environment easy to use for deep learning projects. 

You can use Kubeflow which provides a unified API platform that is tightly integrated 

with Kubernetes and allows deep learning engineers and scientists to build, train, and 

deploy on Kubernetes. Kubeflow is not an AWS managed service. Kubeflow is a 

Kubernetes add-on package that you must self-deploy and self-manage on Amazon 

EKS or Kubernetes on AWS. 

Initially, Kubernetes and Kubeflow had support for TensorFlow only. However, it is 

expanding its support to other frameworks such as MXNet, PyTorch, and Chainer. It is 

also important to note that the community frequently updates Kubeflow and you may 

have to make frequent changes to your scripts to keep up with the latest version of the 

Kubeflow. 

For the storage layer, you can choose Amazon S3, Amazon EFS, or Amazon FSx for 

Lustre (hydrated from data from Amazon S3). For deep learning and the highest level of 

performance, AWS recommends Amazon FSx for Lustre with hydration of data from 

Amazon S3. However, depending on the number of nodes used for distributed training, 

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/s3/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 32 

you can also choose to use Amazon S3 and Amazon EFS. With Amazon S3 and 

Amazon EFS, performance is not as high as Amazon FSx for Lustre. 

 

Figure 8: Amazon EKS and self-managed Kubeflow DL layers and DL process mapping 

https://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/fsx/lustre/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 33 

 

Figure 9: Amazon EKS with self-managed Kubeflow conceptual diagram3 

 

Figure 10: Amazon EKS with Amazon FSx for Lustre hydrated from Amazon S3 



Archived

Amazon Web Services Deep Learning on AWS 

 Page 34 

You can use Amazon SageMaker components with this stack for tasks such as data 

labeling and model optimization. You can use Amazon SageMaker for an end-to-end 

deep learning workflow or in parts. With Kubernetes and Kubeflow stack, you can still 

use Amazon SageMaker Ground Truth for data labeling and annotation and Amazon 

SageMaker Neo for model optimization. 

Additional Considerations for DIY Solution 

Amazon EKS is a managed service that is not specifically tuned and optimized for deep 

learning. Kubeflow is not a managed service offered by AWS. You must fine tune and 

optimize the Amazon EKS and Kubeflow stack for deep learning by implementing best 

practices. For more information, see Best Practices for Optimizing Distributed Deep 

Learning Performance on Amazon EKS on the AWS Open Source Blog. 

Optionally, you can also use Amazon EKS Deep Learning Benchmark Utility, which is 

an automated tool for machine learning benchmarking on Kubernetes clusters. 

Optionally, you can also use AWS Deep Learning Containers (AWS DL Containers), 

which are a set of Docker images for training and serving models in TensorFlow and 

MXNet on EKS. AWS DL Containers provide optimized environments with TensorFlow 

and MXNet, NVIDIA CUDA (for GPU instances), and Intel MKL (for CPU instances) 

libraries. AWS DL Containers are available in the Amazon Elastic Container Registry 

(Amazon ECR). 

There are numerous initiatives to allow more native integration between Kubeflow and 

the AWS platform for deep learning. For the complete list of native integration between 

Kubeflow and AWS, see Kubeflow on AWS Features.  

DIY Self-Managed Solution: Use Amazon EC2 

There are organizations and deep learning engineers and scientists who may not adopt 

container strategy for build, train, and deploy, nor have the required skills to operate in a 

containerized environment. Or, deep learning engineers and scientists may want to use 

the latest drivers and libraries from the research community and may not have guidance 

for installation on a containerized environment. The installation and integration for this 

new software may not be available or easy.  

In this type of scenario, you can set up a custom DIY cluster on top of Amazon EC2 to 

develop and scale your experiment. 

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/blogs/opensource/optimizing-distributed-deep-learning-performance-amazon-eks/
https://aws.amazon.com/blogs/opensource/optimizing-distributed-deep-learning-performance-amazon-eks/
https://aws.amazon.com/blogs/opensource/
https://github.com/aws-samples/aws-eks-deep-learning-benchmark
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/ecr/
https://www.kubeflow.org/docs/aws/features/
https://aws.amazon.com/ec2/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 35 

Although you have the option to set up everything from scratch, you may want to use 

some tools and services described below to make the installation easy and to 

accelerate your training on AWS. 

Customers can use the Deep Learning AMI that comes with GPU drivers installed and 

most of the popular framework and libraries installed. Customers have full control of this 

environment and can easily customize it to their needs. It is also easy to switch between 

CUDA driver versions. 

For storage, customers can use Amazon S3, Amazon EFS, or Amazon FSx for Lustre 

as a data storage layer for the training environment. In choosing among Amazon FSx 

for Lustre, Amazon S3, and Amazon EFS, you are making a tradeoff between price and 

performance. 

This pattern is useful for one-off projects that may have niche requirements. However, 

don't consider it as an alternative for a deep learning platform for the enterprise. You 

can clearly see the gaps in the following figure. 

 

Figure 11: Amazon EC2 with DL AMI DL layers and ML process mapping 

If you want to scale your experiment on a large dataset on multiple nodes in a custom 

environment using Amazon EC2, you can use tools such as AWS Parallel Cluster to 

help you set up the cluster. AWS Parallel Cluster is an open source cluster 

management tool that makes it easy for scientists, researchers, and IT administrators to 

deploy and manage High Performance Computing (HPC) clusters in the AWS Cloud. 

https://docs.aws.amazon.com/dlami/latest/devguide/gs.html
https://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/ec2/
https://aws.amazon.com/about-aws/whats-new/2018/11/AWSParallelCluster/
https://aws.amazon.com/about-aws/whats-new/2018/11/AWSParallelCluster/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 36 

With AWS Parallel Cluster, many AWS Cloud native products are used to launch a 

cluster environment that should be familiar to those running HPC workloads.  

You can use a job scheduler such as SLURM to schedule your training jobs on cluster. 

The following figure shows how this set up appears when used with Amazon EFS as the 

storage tier. If you want to further improve the performance of cluster, you can use 

Amazon P3dn Instances, with Elastic Network Adapter (ENA) and Amazon FSx for 

Lustre hydrated from Amazon S3. 

 

Figure 12: SLURM Architecture using Amazon EC2 and Amazon EFS 

Advanced Use Cases: Use Amazon SageMaker with 

Other AWS Services 

You may have an advanced use case where you must leverage other AWS services to 

extend the capabilities of the Amazon SageMaker provided deep learning solutions. In 

https://aws.amazon.com/about-aws/whats-new/2018/11/AWSParallelCluster/
https://slurm.schedmd.com/overview.html
https://aws.amazon.com/efs/
https://aws.amazon.com/about-aws/whats-new/2018/12/introducing-amazon-ec2-p3dn-instances-our-most-powerful-gpu-instance-yet/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking-ena.html
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/s3/
https://aws.amazon.com/sagemaker/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 37 

this section, we review some advanced use cases using Amazon SageMaker and other 

AWS services. 

Orchestrate Your End-to-End Machine Learning Pipeline using AWS 
Step Functions 

AWS Step Functions allow you to build resilient serverless workflows. In AWS Step 

Functions, a workflow is implemented as a finite state machine. The states can be a 

task, a choice, a branch of logic, a set of parallel tasks, an error handler, and so on. The 

workflow is implemented as a Directed Acyclic Graph (DAG) and uses GoTo logic. AWS 

Step Functions also allows you to throw an exception and do error handling to make the 

flow more robust. 

In AWS Step Functions, the task states do most of the heavy lifting. There are two types 

of task states: Activity task and Lambda task. In Activity tasks, worker requests work 

from AWS Step Functions, then takes the work and returns the results. The Lambda 

task is a synchronous call to an AWS Lambda function from AWS Step Functions. The 

Lambda task has a maximum timeout of 15 minutes as defined by the max execution 

duration of the Lambda function. AWS Step Functions also allows you to insert human 

actions such as approval and rejection into the state machine. The actions can be used 

in the workflow to approve or deny the model push into the production environment. 

Using all of the capabilities of AWS Step Functions, you can build a complex end-to-end 

deep learning workflow. You can trigger the workflow when the new data arrives in 

Amazon S3, start the training job, and deploy the newly trained model. You can make 

the workflow more robust and transparent by adding notifications and error handling to 

it. The following workflow diagram is a sample representation of an end-to-end deep 

learning workflow implemented using AWS Step Functions for retraining and 

redeployment. 

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/s3/
https://aws.amazon.com/step-functions/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 38 

 

Figure 13: Workflow for retraining and redeployment 

Orchestrate Your Hyperscale Deep Learning jobs using AWS Batch 
with Amazon SageMaker as Backend in Multiple AWS Regions 

Some customers have use cases that requires training on a very large dataset where 

data must remain local within the sovereign boundaries of the region in which it was 

generated either due to cost, performance, or regulatory concerns. This data could be 

the 4K video data of an autonomous vehicle generated locally or campaign data 

generated locally, transferred locally to nearest AWS Regions, and labeled within the 

same Region. You can use Amazon SageMaker to train your model locally in the same 

region. Optionally, you can launch multiple Amazon SageMaker training jobs to train 

parallelly in each Region. You can use AWS Batch to orchestrate and monitor multiple 

jobs running on Amazon SageMaker in multiple AWS Regions from a central region. 

This event-driven architecture triggers the training job as data is uploaded from the on-

premises environment to nearest AWS Region. 

You can generate data coming into Amazon S3 into a relation table in one central place. 

The central table keeps the index of all the data files sourced from different campaigns 

running in different geographic locations. From this central table, you can issue a query 

to generate an AWS Batch array job. AWS Batch array jobs are submitted just like 

regular jobs. However, you specify an array size (between 2 and 10,000) to define how 

many child jobs should run in the array. If you submit a job with an array size of 1,000, a 

single job runs and spawns 1,000 child jobs. The array job is a reference or pointer to 

the parent job to manage all the child jobs. This feature allows you to submit large 

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/batch/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/s3/
https://aws.amazon.com/batch/
https://aws.amazon.com/batch/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 39 

workloads with a single query. For this setup, you build two Docker images: one for 

Amazon SageMaker training and the other for orchestrating training in multiple Regions 

using Amazon SageMaker APIs. The orchestrator image run by AWS Batch has the 

logic to spawn multiple child jobs in different AWS Regions with different parameters, 

but it will be using the same job configuration in all four Regions. 

 

Figure 14: Reference architecture to orchestrate Amazon SageMaker jobs in multiple Regions 

Use Amazon S3 and Amazon DynamoDB to Build a Feature Store for 
Batch and Real-Time Inference and Training 

Many organizations that want to be a data-centric company or may already be one are 

either in the process of building a data lake solution or may already have a data lake 

solution to democratize their data for analytics and AI/ML. 

Data lake creation is a critical step in the machine learning process because your entire 

organization’s data is managed and shared from a single repository. However, the 

question that arises is how deep learning engineers and scientists, who are not data 

engineers, can easily acquire new features to solve new problems. How do deep 

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/batch/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 40 

learning engineers and scientists extract meaningful features from the mountain of data 

sitting in a data lake? It takes time and a different set of skills to build a dataset of 

features from a data lake for use in deep learning. 

A feature is a measurable property of phenomena under observation. It could be a raw 

word, pixel, sensor value, row in a data store, field in a CSV file, an aggregate (min, 

max, sum, mean), or a derived representation (embedding or cluster). 

A feature pipeline is shown in the following diagram. You can imagine the amount of 

work that is required to build a feature set using such a complex pipeline. Based on the 

anecdotal evidence derived from customer conversations, feature engineering can 

consume 25% or more of the time spent on a deep learning project. 

 

Figure 15: Example feature pipeline 

As with most of the technology solutions, there are two ways to solve this problem: 

develop a technique to automate feature engineering or reuse the existing feature and 

models. Although the research on automated feature engineering is making progress, 

the interest and patterns around feature reuse have begun to surface in few 

organizations. The concept of the feature store is getting attention and traction. It is still 



Archived

Amazon Web Services Deep Learning on AWS 

 Page 41 

early stage, and there are few open source initiatives and few third-party ISV vendors 

who have solutions targeted around this new idea. 

In simple terms, a feature store is a curated repository of deep learning features that 

can be reused across different projects to train, evaluate and infer deep learning 

models. 

The fundamental difference between a deep learning feature store and other stores 

(such as a data warehouse) is that features are the primary entity in the deep learning 

feature store. 

You can develop a simple feature store using AWS services and continue to iterate and 

refine it over time. Following capabilities are required to support a feature store. 

• Reuse: Use the existing feature store pipeline developed by data engineers to 

recompute and cache features in a feature store.  

• Store: Store the metadata of features such as a description, documentation, and 

statistical measures of features in the feature store.  

• Discover: Make the metadata searchable through an API to ML practitioners. 

• Govern: Add a data management layer on top of the feature store for 

governance and access control. 

• Consume: Allow ML practitioners to query and consume features using an API 

to export the features for training or real-time inference. 

The feature store can bring down the cost of ML project significantly. Savings are direct 

result of reuse of the curated feature set by subsequent projects. Besides cost, reusing 

a feature store can help you with faster time to delivery as ML practitioners are working 

on a curated list of features and not working on a heap of data in a data lake. The 

feature store provides an abstraction between your role as a data engineer and ML 

practitioner. The feature store also allows you to ensure consistency in training and 

inference. The following figure shows the relationship graph between cost of an ML 

project and feature reuse. As shown, the cost of the project drops as more and more 

features are reused from the feature store.     



Archived

Amazon Web Services Deep Learning on AWS 

 Page 42 

 

Figure 16: Cost of ML project vs. feature reuse 

You can use Amazon S3 as source of truth for the feature store. You can version and 

govern your feature store using controls provided by Amazon S3.You can use Amazon 

S3 as storage layer for Amazon SageMaker training and Amazon SageMaker Batch 

Transform jobs. For low latency online inference, you can copy the feature dataset into 

Amazon DynamoDB and use it for inference. If you want to make features discoverable 

and searchable, you can push feature metadata to Amazon DynamoDB and make the 

metadata searchable using Amazon Elastic Search. 

The following figure shows the reference architecture for feature store. 

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-batch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-batch.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticsearch-service/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 43 

 

Figure 17: Feature store reference architecture on AWS 

The following figure shows how the data lake, data warehouse, and feature store are 

positioned relative to each other at the enterprise level. 

 

Figure 18: Conceptual composite view of data lake, data warehouse, and feature store 



Archived

Amazon Web Services Deep Learning on AWS 

 Page 44 

AWS Guidance 

In this guide, we described the deep learning stack and the deep learning process. We 

discussed AWS services that can be used to address the deep and broad needs of 

deep learning engineers and scientists. We also described design patterns that deep 

learning engineers and scientists can leverage to adopt and scale deep learning in their 

organization. We discussed features that are available out of the box and are ready to 

use in Amazon SageMaker, a fully managed service for machine learning. We also 

discussed cases where you would want to build deep learning environments on your 

own using other AWS services such as Amazon EC2 and Amazon EKS. With AWS, you 

get the flexibility to choose the approach that works best for you. 

Below are some of the popular scenarios in which customers are leveraging different 

options offered by the AWS AI/ML stack.  

If you are a start-up, you want to spend less on buying high-performance GPU compute 

and managing the infrastructure. Most likely, you have a small team of developers and 

data scientists and your focus would be to roll out new deep learning capabilities with 

small teams. Amazon SageMaker is an ideal choice for you. 

If you are working as a research scientist in an organization developing a new product 

feature, using deep learning capabilities, you may need more autonomy, more isolation, 

and more control. It is possible your organization may not have a directive or a policy to 

use a standard platform for deep learning. You can continue to use Amazon EC2 with 

AWS DL AMI as your deep learning desktop, but you may also want to consider 

Amazon SageMaker for training with automatic hyperparameter tuning to scale 

experiments. 

If you are a product team working to keep your deep learning model performing well 

under changing customer preferences, you can implement an end-to-end automated 

deep learning pipeline to retrain and deploy your models using AWS Step Functions 

and Amazon SageMaker. 

If you are the technology leader in your organization who has been tasked to accelerate 

deep learning adoption in the organization, you can use Amazon SageMaker as a fully 

managed service for building, training, and deploying deep learning models in your 

organization. Amazon SageMaker allows you to achieve more with smaller deep 

learning teams. The fully managed service helps keep operations lean, eliminates 

compute infrastructure waste, improves productivity of deep learning engineers and 

scientists, allows cost efficient experimentation, and a shorter time to market.   

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/ec2/
https://aws.amazon.com/eks/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/ec2/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 45 

If you belong to an organization that has decided to standardize infrastructure on 

Kubernetes, you can use Amazon EKS as an infrastructure layer. You can add open 

source components such as Kubeflow to simplify build, train, and deployment of deep 

learning models on Amazon EKS. Amazon EKS is a persistent cluster. The cluster can 

scale-in and scale-out. However, it is a general-purpose compute platform that requires 

tuning to make it efficient and performant for deep learning jobs. It requires advanced 

expertise and skills to manage and operate it. Optionally, with Kubernetes and Kubeflow 

stack, you can use Amazon SageMaker Ground Truth for data labeling and annotation 

and Amazon SageMaker Neo for model optimization. 

Conclusion 

This guide provided you with a comprehensive overview of all the technology building 

blocks, solution and patterns used when deploying deep learning on AWS. Additionally, 

we also highlighted some advanced use cases that may be of interest to you. We 

understand that research in deep learning is advancing fast and the tools used in deep 

learning domain are constantly changing and evolving.  

The current state of options offered by the AWS landscape, ranging from fully managed 

to DIY, cover both the definitive and exploratory requirements of most deep learning 

projects. However, it is possible that you encounter a use case or a requirement that 

may require deeper engagement and conversations to address special requirements of 

your projects. For these special requirements or for clarification on content published in 

this guide, reach out to your respective AWS account teams. 

Contributors 

Contributors to this document include: 

• Vikrant Kahlir, Solutions Architect, Strategic Accounts 

• Christian Williams, Machine Learning Specialist, AWS Solutions Architecture 

• Amr Ragab, HPC Global Consultant, AWS Professional Services 

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/neo/


Archived

Amazon Web Services Deep Learning on AWS 

 Page 46 

Further Reading 

For additional information, see: 

• AWS Whitepapers & Guides page 

• Machine Learning on AWS 

• AWS Machine Learning Blog 

• AWS Machine Learning Training 

1 Yuji Roh, Geon Heo, Steven Euijong Whang, “A Survey on Data Collection for 

Machine Learning: a Big Data - AI Integration Perspective,” (November 2018): 3, 

https://arxiv.org/pdf/1811.03402.pdf  

2 For pricing information, see Model Deployment on the Amazon SageMaker Pricing 

page. 

3 https://aws.amazon.com/blogs/opensource/kubeflow-amazon-eks/ 

4 http://wiki.lustre.org/Introduction_to_Lustre 

 

Notes 

https://aws.amazon.com/whitepapers/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/blogs/machine-learning/
https://aws.amazon.com/training/learning-paths/machine-learning/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/blogs/opensource/kubeflow-amazon-eks/
http://wiki.lustre.org/Introduction_to_Lustre

	Overview
	Deep Learning Landscape
	Using this Guide

	Deep Learning Process for Build, Train, and Deploy
	Step 1. Collect Data
	Data Preprocessing

	Step 2. Choose and Optimize Your Algorithm
	Deep Learning Network Architecture
	Deep Learning Algorithms

	Step 3. Set up and Manage the Environment for Training
	Step 4. Train, Retrain, and Tune the Models
	Step 5. Deploy Models in Production
	Step 6. Scale and Manage the Production Environment

	Challenges with Deep Learning Projects
	Software Management
	Performance Optimization
	Collaborative Development
	Infrastructure Management
	Scalability

	Highly Optimized AWS Technology Building Blocks for Deep Learning
	Storage
	Amazon Simple Storage Service (Amazon S3)
	Amazon FSx for Lustre
	Amazon Elastic File System (Amazon EFS)

	Compute
	Amazon EC2 P3 Instances
	AWS Inferentia
	Amazon EC2 G4

	Software
	AWS Deep Learning AMIs
	AWS Deep Learning Containers

	Networking
	Enhanced Networking
	Placement Groups
	Elastic Fabric Adapter
	Amazon Elastic Inference

	Solutions
	Amazon SageMaker Ground Truth for Data Labeling
	Amazon SageMaker Neo for Model Optimization


	Code, Data, and Model Versioning
	Version Code with Git
	Version Data in Amazon S3
	Version Model in Amazon S3

	Automation of Deep Learning Process for Retrain and Redeploy
	AWS Step Functions for Amazon SageMaker
	Apache Airflow for Amazon SageMaker
	Kubeflow Pipelines on Kubernetes

	Patterns for Deep Learning at Scale
	Options for Deep Learning on AWS
	Fully Managed Solution - Use Amazon SageMaker
	DIY Partially Managed Solution: Use Kubernetes with Kubeflow on AWS
	Additional Considerations for DIY Solution

	DIY Self-Managed Solution: Use Amazon EC2

	Advanced Use Cases: Use Amazon SageMaker with Other AWS Services
	Orchestrate Your End-to-End Machine Learning Pipeline using AWS Step Functions
	Orchestrate Your Hyperscale Deep Learning jobs using AWS Batch with Amazon SageMaker as Backend in Multiple AWS Regions
	Use Amazon S3 and Amazon DynamoDB to Build a Feature Store for Batch and Real-Time Inference and Training


	AWS Guidance
	Conclusion
	Contributors
	Further Reading



