

Building Mission-Critical
Financial Services Applications

on AWS

April 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents AWS’s current product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS’s products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. AWS’s responsibilities and liabilities to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Risk and Resiliency in Financial Services .. 2

Modern Resiliency Requirements .. 2

Principles of Resiliency ... 5

The AWS Well-Architected Framework ... 6

Shared Responsibility .. 6

Taxonomy of Application Availability ... 6

Understanding Application Failure ... 7

Automated Operations ... 8

Consistent Development and Deployment .. 9

Predictive Monitoring with Proactive Responses .. 9

AWS Cloud .. 9

AWS Infrastructure ... 10

AWS Services Design .. 11

AWS Services Scope ... 13

Design Patterns for Critical Applications... 15

Design Practices .. 15

Application Resiliency Blueprints ... 23

Operational Resilience .. 27

Design Principles.. 28

Monitoring ... 29

Automation ... 29

Application Deployment ... 30

Cost Optimization Practices ... 31

Application Testing and Certification ... 33

Conclusion ... 37

Contributors ... 38

Further Reading ... 38

AWS Documentation .. 39

AWS Presentations: Disaster Recovery .. 39

Document Revisions.. 39

Appendix A: Financial Services Applications.. 40

Appendix B: Designed-For Availability for Select AWS Services 40

Appendix C: Service Capabilities .. 44

Appendix D: Disaster Recovery Checklist .. 50

Application Readiness.. 50

Environment Readiness – DR Region ... 52

Appendix E: List of Service Level Agreements for AWS Services 55

Appendix F: Failure Modes and Effects Analysis ... 62

Application Layer FMEA .. 65

Software Stack FMEA .. 70

Infrastructure FMEA ... 75

Operations and Observability FMEA ... 77

Abstract

This whitepaper discusses the fundamental design patterns to build highly resilient

applications for financial institutions on Amazon Web Services (AWS), to meet mission-

critical application recovery requirements.

Resilient applications provide continuous service despite disruption. Events such as

natural disasters, hardware failures, and human error can interrupt the continuity of an

application or service. Financial institutions that do not design and plan for these failures

risk application downtime and data loss. This in turn can result in revenue loss, legal

and financial implications, impacts to reputation and brand, and customer

dissatisfaction.

Financial institutions rely on AWS to provide resilient infrastructure and services. Our

Financial Services customers can build their mission-critical applications using AWS

services, in order to plan for potential failures, and to meet resiliency requirements.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 1

Introduction

The technology systems of financial institutions (FIs) are complex, and highly

interconnected–to each other, and to non-financial entities. Payment processing, trading

and settlement, market data, custody and entitlement management, and financial

messaging are examples of the types of programs FIs depend on for the proper

functioning of the industry. Disruption to the systems of FIs and the vendors that support

them creates risks to financial stability across the industry. FIs are subject to regulatory

scrutiny, and this potential for disruption has resulted in stringent resiliency

requirements.

FIs, including Systemically Important Financial Institutions (SIFIs),1 must provably meet

regulatory requirements for the resiliency of their mission-critical applications. This is

true whether these systems are running in physical data centers or in a cloud

environment. As FIs move mission-critical applications to the cloud, they have sought

guidance for replicating, and improving the resiliency of, their Tier 1 systems. The

applications of FIs are grouped in tiers based on the potential impact the business

would experience if there is a disruption. Tier 1 applications are those considered vital

to the operations of an organization, such as trading and settlement, transaction

processing, and customer relationship management.

One of the tenets of good application design is to design for failure. As Amazon CTO

Werner Vogels says, “Everything fails all the time.” Human operators can make

mistakes; natural disasters can take data centers and electric grids offline; internet

connections can be disrupted; servers, switches, disks, and software can fail. If an

event disrupts an FI’s critical applications, the company may need to invoke their

disaster recovery (DR) plan. These plans involve stakeholders across the technology,

operations, and business teams working to bring the applications to life in an alternate

site–restoring service as quickly as possible.

Amazon Web Services (AWS) offers a broad set of compute, storage, database,

networks, security, content delivery, analytics, application, and deployment services,

available globally, that FIs can use to prepare for disasters by designing highly resilient

applications. The inherent application programming interface (API)-driven infrastructure

of the AWS Cloud allows FIs to automate the development, deployment, and operation

of their application infrastructure. With AWS services, application development teams

can shift the organizational response to a disaster event from reactive to automated

response and recovery from the failure.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 2

This whitepaper presents technical guidance and thought processes for FIs to build their

resilient applications and disaster recovery plans on AWS. This document can be used

as a position paper, and can be presented at the CXO or board level to prove the

viability of hosting Tier 1 applications on AWS.

Risk and Resiliency in Financial Services

The Financial Services industry is one of the most critical and heavily regulated

industries, requiring resilient applications to serve businesses and consumers across

the globe. Economies of the world, as well as individual customers, and organizations of

all sizes, are dependent on financial systems that are expected to be available even

during a disaster event.

According to the Financial Stability Board (FSB), an international standard-setting body

that coordinates with other international standard-setters, national central banks,

regulators, and finance ministries, “Risk management is a critical first line of defence in

the resilience of financial institutions. The FSB, standard-setting bodies (SSBs) and

national authorities are working to strengthen risk management practices, including

through increased regulatory and supervisory focus as well as additional guidance on

firms’ risk culture and governance practices.”2

Modern Resiliency Requirements

After the events of September 11, 2001 led to disruptions of the global financial system,

regulators began to introduce significant changes to resiliency requirements. These

regulatory changes began in the United States3 and were later adopted by the broader

Financial Services industry globally.4

In 2003, U.S. financial regulatory agencies (the Federal Reserve, the Office of the

Comptroller of the Currency [OCC], and the Securities and Exchange Commission

[SEC]) introduced a required recovery time objective of two hours for the most critical

applications.5 Then, following the 2008 global financial crisis, the FSB created the

Systemically Important Financial Institution (SIFI) Framework. This set of policies is

intended to reduce the likelihood that a SIFI will fail, and minimize the impact of SIFI

failure on the broader economy if such a failure occurred.6 The Framework’s

multipronged measures include requirements for higher capital and liquidity, recovery

and resolution regimes, intensified supervision, and stronger core financial

infrastructures.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 3

In addition to the SIFI Framework, the Basel III: international regulatory framework for

banks7 was developed after the 2008 global financial crisis. The FSB considers Basel III

to be the centerpiece set of reforms regarding resilient financial institutions. Basel III

was designed to “strengthen the regulation, supervision and risk management of

banks,” and covers bank capital adequacy, market liquidity risk, and stress testing.

Driven in part by the FSB’s SIFI Framework, the Committee on Payments and Market

Infrastructures (CPMI) and the International Organization of Securities Commissions

(IOSCO) revised international standards for financial market infrastructures in 2012, and

also introduced a two-hour recovery time objective for critical systems.8 Resiliency

continues to be an area of major regulatory focus at both international bodies, such as

the Basel Committee on Banking Supervision (which developed Basel III), and at the

national level, e.g., the Bank of England/Prudential Regulation Authority and Financial

Conduct Authority’s recent Discussion Paper, Building the UK financial sector’s

operational resilience.9

Industry-wide resiliency requirements that apply to critical applications deployed by FIs

include:

• Regulatory requirements regarding an application’s recovery time objective

(RTO) and recovery point objective (RPO) [See Figure 1]

• Banking requirements regarding business continuity planning (BCP)

• Tests and exercises conducted within institutions, within the industry, and

through public-private sector coordination.

Managing Risk

Resiliency in Financial Services is intended to manage risk. While regulatory

requirements focus on the FIs with the largest potential impact on the global economy,

all FIs regardless of size must manage the risks that come with storing and processing

financial data.

AWS conducted research among SIFIs and regulators within the global financial

system, to identify specific resiliency metrics that FIs must report to auditors and

regulators, described below. According to our research, FIs define and manage

resiliency risks based on business considerations, including:

• Financial impact: Calculated as a loss of revenue for every minute an application

is down

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 4

• Regulatory response: The potential for an adverse enforcement or fine imposed

by a regulator

• Business opportunity: The impact of losing customers due to the adverse

operating impact of application downtime

• Reputational: A long-term loss to business due to adverse press coverage

• Users impacted: The breadth of the impact to customers due to an outage

• Data loss: The risk of losing highly confidential or critical customer data during a

disaster

For Financial Services applications, risk regarding resiliency is primarily defined by the

RTO and RPO of a given business process, demonstrated in Figure 1:

Figure 1

Along with RTO and RPO, availability was highlighted as an additional metric FIs must

track and report. FIs need very high levels of availability during the business hours of

their systems. For example, in a system processing cash dispensation such as an ATM,

the business hours are 24 hours per day, every day, whereas for a trading platform

processing trades during U.S. trading hours, the necessary availability would be 12

hours per day, every Monday through Friday. Minimum results required by FIs for RTO,

RPO, and availability are presented in Table 1 below based on the tier that applies to a

given application:

Table 1

KPI Platinum or Tier 1 Gold or Tier 2 Silver or Tier 3 Bronze or Tier 4

RTO 2 hours < 8 hours 24 hours 48+ hours

RPO < 30 seconds < 4 hours 24 hours 72 hours

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 5

KPI Platinum or Tier 1 Gold or Tier 2 Silver or Tier 3 Bronze or Tier 4

Availability 99.99%+ 99.9% 98% 95%

Financial Services applications are grouped in tiers based on their significance to the

business, and the potential impact if the application experiences a disruption. Resiliency

and DR planning takes these tiers into account, and prioritizes restoring service to the

applications that can have the largest impacts regarding cost and business risks. Figure

2 below demonstrates the spectrum of recovery options, sample use cases for each tier,

cost implications, and suggested AWS implementations for these tiers. An example

classification of Financial Services applications is provided in Appendix A.

Figure 2

Given the additional cost and complexity required to maintain or restore a mission-

critical Tier 1 application during a disaster event, it is important to accurately assess the

tier classifications of applications based on substantiated business requirements. FIs

may determine that different periods of downtime are acceptable for applications in

lower tiers (e.g. Tier 3, Tier 4). Sample application classifications for the four tiers

discussed above are outlined in Appendix A.

Principles of Resiliency

Financial institutions that design, test, and deploy their systems on AWS can apply the

following principles to ensure high availability of their mission-critical applications.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 6

The AWS Well-Architected Framework

To build a highly resilient application, all aspects of the application must be considered,

from design to testing and deployment, from security to operations. The AWS Well-

Architected framework10 has been developed to help cloud architects build the most

secure, high-performing, resilient, and efficient infrastructure possible for their

applications. This white paper includes components of the AWS Well-Architected

Framework that apply to resiliency in Financial Services.

Based on five pillars—operational excellence, security, reliability, performance

efficiency, and cost optimization—the Framework provides a consistent approach for

customers and partners to evaluate architectures, and implement designs that will scale

over time. In addition, the Framework provides guidance to help implement designs that

will be secure, highly available, and resilient.

Shared Responsibility

Operating in the AWS Cloud is a shared responsibility. AWS manages security and

availability of the cloud, and customers are responsible for application security and

availability in the cloud. This means that AWS is responsible for protecting the

infrastructure that runs all of the services offered in the AWS Cloud. AWS infrastructure

is composed of the hardware, software, networking, and facilities that run AWS Cloud

services.11 The implementation, configuration, and operation of applications on AWS is

the customer’s responsibility. FIs that run applications on AWS retain control of the

security, resiliency, and availability by choosing the appropriate architecture, policies,

and configuration in the AWS Cloud.

Taxonomy of Application Availability

As explained in the reliability pillar of the AWS Well-Architected Framework, “Service

availability is commonly defined as the percentage of time that an application is

operating normally.”12 When designing an application, many organizations assume that

it must be “five nines” (99.999%) available, without appreciating the true cost to build

and operate applications at that level of availability.

Doing so requires that all networking, security, and infrastructure—from end customers

to the service application, data stores, and all other components—be built and operated

to achieve 99.999%. Adding an additional nine to the availability of an application raises

the cost of the application. Table 2 below contains the maximum downtime for

applications, depending on their availability:

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 7

Table 2

Availability Max disruption

(per year)

Max disruption

(per month)

Max disruption

(per day)

99% 3 days 15 hours 7.31 hours 14.4 minutes

99.9% 8 hours 45 minutes 43.83 minutes 1.44 minutes

99.95% 4 hours 22 minutes 21.92 minutes 43.2 seconds

99.99% 52 minutes 4.38 minutes 8.64 seconds

99.999% 5 minutes 26.3 seconds 864 milliseconds

It is important to note that in complex modern applications using service-oriented

architectures, many components of the application may continue to operate normally

even when underlying services are not available.

Understanding Application Failure

FIs must consider the issues that cause applications to fail, and understand the

probability of such an occurrence. Table 3 below lists possible sources of application

failure:

Table 3

Category Description Probability

Operator error Error caused by manual operator HIGH

Deployment

induced

Failure caused directly as a result of a software, hardware,

network, or configuration deployment. This includes both

automated and manual changes.

HIGH

Load induced Load related failures can be triggered by a change in

behavior, either of a specific caller or in the aggregate, or

by the service reaching a tipping point. Load failures can

occur in the network.

HIGH

Data induced An input or entry is accepted by the system that it can’t

process (“poison pill”)

MED

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 8

Category Description Probability

Credential

expiration

Failure caused by the expiration of a certificate or

credential.

MED

Hardware

failure

Failure of any hardware component in the system,

including in hosts, storage, network, or elsewhere.

LOW

Infrastructure Power supply or environmental condition failure has an

impact on hardware availability.

VERY

LOW

To design the most reliable systems, FIs should focus on solving for failures with the

highest probability of occurring. Planning for failures with the highest probability, utilizing

the methods outlined in this white paper and the AWS Well-Architected Framework, will

alleviate an FI’s risk of failure with lower probability items. For example, automation,

testing, and monitoring can solve for credential expiration. Achieving 99.999%

availability means planning for the potential interruptions listed in Table 3, and

automating human intervention out of processes wherever possible.

Automated Operations

FIs can reduce manual operator errors by automating processes. Performing

infrastructure operations as code applies the same engineering discipline that you use

for application code to your entire environment. Operations procedures should be

captured in runbooks, scripted, tested, and their execution automated to occur in

response to observed events when appropriate. Automating operational processes

includes activities such as:

• Deploying code

• Maintaining canaries that constantly monitor and test applications

• Performing regular automated fail-over testing to ensure that each part of an

application performs properly under these conditions

• Conducting unit-level monitoring and workflow/transaction monitoring of both

success and failure scenarios

• Alarm and log analysis

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 9

• Automatic system recovery capabilities that include both upstream and

downstream dependent service, network connection, and infrastructure between

FIs and their customers.

Consistent Development and Deployment

Configuration drift is a high probability cause of failure. One technique to reduce

deployment-induced failures is implementing Continuous Integration and Continuous

Deployment (CI/CD) pipelines across lifecycle stages. CI/CD allows application

development teams to manage and ensure consistent treatment, and automated

execution of code and configuration deployments. It’s important to ensure that the same

code that is tested is what is deployed to production and the recovery environments,

with an audit trail to validate.

Predictive Monitoring with Proactive Responses

Performing and documenting an impact analysis of a given application in performance

degradation and failure scenarios allows FIs to create predictive monitoring. Teams that

implement predictive monitoring, with corresponding proactive responses, can mitigate

additional sources of application failure. This situational awareness regarding specific

applications should be established in regards to the impact of events, operations

activities, and the workload criticality.

Workloads should be designed to emit the necessary telemetry to understand workload

health (at the component, service, and business impact level), user experience within

the application, and the achievement of business outcomes. This instrumentation will

enable the prediction and detection of events, and intervention prior to an undesired

impact.

We recommend that FIs work to minimize a workload’s Mean Time to Detection (MTTD)

in order to provide time for the recovery mechanism to respond, and to increase the

availability of your applications.

AWS Cloud

AWS provides a highly reliable, scalable, low-cost infrastructure platform in the cloud

that powers hundreds of thousands of businesses in 190 countries around the world.

Financial Services customers can use AWS services to construct highly elastic, highly

available, resilient, and scalable solutions with lower costs compared to traditional on-

premises IT. Our services are designed to tolerate system or hardware failures with

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 10

minimal customer impact. This section outlines the core components of a resilient cloud

architecture that AWS provides.

AWS Infrastructure

The AWS Global infrastructure is built around Regions and Availability Zones (AZs).

AWS Regions provide multiple, physically separated and isolated Availability Zones

which are connected with low latency, high throughput, and highly redundant

networking. These Availability Zones offer AWS customers an easier and effective way

to design and operate applications and databases, making them more highly available,

fault tolerant, and scalable than traditional single data center infrastructures or multi-

data center infrastructures. At the time of publication, the AWS Cloud spans 61

Availability Zones (AZs) within 20 geographic Regions.13

Compared to the on-premises environments utilized by global financial institutions, the

AZ and regional diversity of the AWS infrastructure greatly reduces geographic

concentration risk. AWS continues to add new Regions and AZs across the globe, to

provide resiliency to financial institutions worldwide.

AWS Regions

Each AWS Region is a separate geographic

area where cloud resources can be

instantiated. Regions are isolated from each

other, meaning that a disruption in one Region

does not result in contagion in other Regions.

This achieves the greatest possible fault

tolerance and stability. Regions are designed

to be autonomous, with dedicated copies of

services deployed in each Region. AWS

Regions are composed of two or more

Availability Zones (see Figure 3) that are

designed to be independent.

Availability Zones

Each AWS Region has multiple Availability

Zones (AZs). An Availability Zone is a

collection of one or more data centers which forms a campus. AZs are physically

separated and independent, and are built with highly redundant networking. Each AZ is

Figure 3

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 11

a distinct location within a Region that is insulated from failures in other AZs, to avoid

correlated failure scenarios due to environmental hazards like fires, floods, and

tornadoes. Each AZ has independent physical infrastructure: dedicated connections to

utility power, standalone backup power sources, independent mechanical services, and

independent network connectivity within and beyond the AZ.

Locating AZs within the same Region allows for data replication that provides

redundancy without a meaningful impact on latency—an important benefit for FIs that

need low latency to run applications. At the same time, AZs are independent in order to

ensure services remain available in the event of major incidents. Many AWS services

run autonomously within AZs; this means that if one AZ within a single Region loses

power or connectivity, the other AZs in the Region are unaffected, or in the case of a

software error, the risk of that error propagating is limited.

AWS Services Design

AWS employs multiple application design constructs with different levels of

independent, redundant components, to make services highly resilient and reliable.

Detailed best practices for designing applications for high availability in the cloud can be

found in the reliability pillar of the AWS Well-Architected Framework.14 The best

practices that AWS applies to availability include:

• Fault isolation zones

o Cell-based architecture

o Multi AZ architecture

• Micro-services architecture

• Redundant components

• Recovery-Oriented Computing (ROC)

• Distributed systems best practices, including:

o Throttling

o Retry with exponential back off

o Fail fast (load shedding)

o Use of idempotency tokens

o Constant work

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 12

o Circuit breaker

o Static stability

According to the reliability pillar of the AWS Well-Architected Framework, “within AWS,

we commonly divide services into the “data plane” and the “control plane.” The data

plane is responsible for delivering real time service while control planes are used to

configure the environment. For example, Amazon EC2 instances, Amazon RDS

databases, and Amazon DynamoDB table read/write operations are all data plane

operations. In contrast, launching new EC2 instances or RDS databases, or adding or

changing table meta-data in DynamoDB are all considered control plane operations.

While high levels of availability are important for all of these capabilities, the data planes

typically have higher availability design goals than the control planes.”

The application design components from the AWS Well-Architected Framework that are

most relevant to FIs in their resiliency and DR planning are described below.

Cell-Based Architecture

To make AWS services highly resilient at the lowest levels, to strengthen data plane

availability, AWS partitions resources and requests via a specific dimension such as a

resource ID. These partitions (which we refer to as “cells” but others call “shards” or

“stripes”) are designed to be independent and further contain faults to within a single

cell. Cells are multiple instantiations of a service that are fully isolated from each other;

these internal service structures are invisible to customers. In a cell-based architecture,

resources and requests are partitioned into cells, which are capped in size. This design

minimizes the chance that a disruption in one cell—for example, one subset of

customers—would disrupt other cells. By reducing the blast radius of a given failure

within a service based on cells, overall availability increases and continuity of service

remains. A rough analogy is a set of watertight bulkheads on a ship: enough bulkheads,

appropriately designed, can contain water in case the ship’s hull is breached and, will

allow the ship to remain afloat.

Multi-AZ Architecture

To avoid single points of failure, AWS deploys service API endpoints across multiple

AZs within a Region. The control plane of AWS service offerings is designed to be Multi-

AZ, that is, servers hosting the control plane are spread across three or more AZs within

a region.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 13

Micro-Service Architecture

At AWS, we have built our systems using a concept called micro-services. While micro-

services have several attractive qualities, the most important benefit for availability is

that micro-services are smaller and simpler. They allow FIs to differentiate the

availability required of different services, and thereby focus investments specifically to

the micro-services that have the greatest availability needs. Further deployments and

updates only impact a small portion of the overall service. This reduces the blast radius

of the updates and increases availability of the services.

AWS Services Scope

Having a full understanding of the scope and availability of AWS services will allow FIs

to best architect for reliability and availability. It is critical to understand services that

offer cross-regional replications, versus services that offer multi-AZ availability, in order

to build applications that meet the resiliency requirements of financial institutions.

AWS services scoped to a single AZ

Some services are designed to provide resources that are instantiated in a specific AZ.

These are services which provide resources tied to underlying physical entities such as

compute and storage. For example: An Amazon Elastic Compute Cloud (EC2) instance,

and its associated Elastic Block Storage (EBS), live within a single AZ. Service scope

for all AWS services is provided in Appendix C.

Regional AWS services

AWS designs services to be inherently resilient and highly available on their data and

control planes. Regional services have their resources spread across multiple AZs

within the Region. As a user you deploy these services without having affinity to any

specific AZ. For example, Amazon Simple Storage Service (Amazon S3) is designed to

provide a regional API endpoint that is highly available and spread across multiple AZs

in a region. Amazon S3 replicates data redundantly, durably, and reliably across

multiple AZs for every object you store in Amazon S3.

Global and edge-based services

AWS Edge locations are points of presence across the globe where AWS provides

specific services such as content distribution and DNS resolution. AWS has five

services at the time of publication, including Amazon Route 53 and Amazon CloudFront,

that are hosted at AWS Edge Network Locations.15 These points of presence are

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 14

outside of the AWS Regions and AZs and provide services with high levels of

availability SLA.16 For a list of published AWS SLAs please see Appendix E.

Services with cross-regional capability

One of the design principles of AWS is to provide regional isolation. AWS does not

automatically replicate customer data across multiple regions. Many AWS services offer

features to the customer to replicate their data across multiple regions. Customers can

use these features to build highly available and reliable multi-region architectures.

Examples include:

• Copy Amazon EC2 Amazon Machine Images (AMIs) between regions.17

• Copy Amazon Elastic Block Store (Amazon EBS) snapshots between regions.18

• Perform Cross-Region Replication (CRR) with Amazon S3.19

• Use engines in Amazon Relational Database Service (Amazon RDS) to support

read replicas in a different region.20

• Use Amazon Aurora MySQL to support read replicas in different regions.21

• Copy Amazon RDS database (DB) snapshots or DB cluster snapshots between

regions.22

• Use the Global Tables feature in Amazon DynamoDB to create a table with

endpoints in two or more regions.23

• Copy Amazon Neptune DB Cluster snapshots between regions.24

• Copy Amazon Redshift snapshots between regions.25

• Use Amazon Virtual Private Cloud (Amazon VPC) for inter-region VPC peering

(with limitations in comparison to intra-region VPC peering).

• Access AWS services and your VPCs in remote regions using an AWS Direct

Connect circuit.

• Manage resources in multiple regions with AWS Data Pipeline.

• Copy AWS CloudHSM backups across regions.26

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 15

Note: Appendix A of the reliability pillar of the AWS Well-Architected
Framework lists the designed-for availability of select AWS services. This
information is also included in Appendix B of this document (updated as of
the time of publication). Appendix C of this document shows how scope is
defined for select AWS services. Not all services are available in all
regions. Please refer to the AWS region table27 to ensure services used in
your architecture are available in the desired regions.

Design Patterns for Critical Applications

In this section we discuss best practices and share reference blueprints for specific

resilient application design on AWS. A supplemental checklist for resiliency and DR

planning is included in Appendix D.

Design Practices

Network Access

To enable recovery across the globe it is necessary to ensure that the network

supporting your applications is appropriately redundant, always available, and

seamlessly routed. AWS provides a global infrastructure with 20 Regions and 61

Availability Zones (at the time of publication). For application designers this is akin to

having multiple data centers across the globe where an application can be hosted.

When designing a highly resilient application, the network access to the AWS global

infrastructure should be transparent and resilient. AWS Direct Connect can be used to

provide this connectivity, and connect customer data centers to the AWS Cloud. When

connecting from their corporate data centers, financial institutions should ensure that

they have redundant independent network paths to establish connectivity. To

accomplish this, we can use the pattern in Figure 4 below as an example of a

completely redundant and highly available network connectivity design.

https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 16

As shown, the customer has two data centers which are connected to an AWS Region

via redundant paths with no overlapping single points of failure. The Amazon VPC

Virtual Private Gateway (VPG) shown in the figure is a highly redundant component,

which is implemented using multiple underlying devices. This eliminates any single

points of failure on the VPG and allows for diverse paths in the event of a point of

presence (POP) failure.

To enable the application to use multiple AWS regions, it is also important to establish

direct connections to multiple regions. Application traffic should automatically be routed

to multiple regions. FIs can accomplish this by either using multiple direct connects in

different regions, or using AWS Direct Connect Gateways to seamlessly connect their

data centers to all regions, using the AWS global network as a backbone as shown in

Figure 5 below.

Figure 4

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 17

Figure 5

When hosting applications entirely on AWS, you can achieve connectivity between

workload components in different regions by using the AWS-provided VPC In-Region

Peering28 and Inter-Region VPC Peering feature as shown in Figure 6. This pattern

should be used when the number of VPCs being connected is less than 10.

Figure 6

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 18

For a more scalable and future-proof solution where application components are

dispersed across many VPCs you should use the AWS Transit Gateway to connect the

VPCs (Figure 7).

Figure 7

For hybrid scenarios where components of an application can be running in corporate

data centers and on AWS, two options are available:

1. AWS Transit Gateway: The AWS Transit Gateway allows customers to connect

their Amazon VPCs and their on-premises networks to a single gateway. As

your number of workloads running on AWS increases, you need to be able to

scale your networks across multiple accounts and Amazon VPCs to keep up

with the growth. With AWS Transit Gateway, you only have to create and

manage a single connection from the central gateway in to each Amazon VPC,

on-premises data center, or remote office across your network. AWS Transit

Gateway acts as a hub that controls how traffic is routed among all the

connected networks, which act like spokes. This hub and spoke model simplifies

management and reduces operational costs because each network only has to

connect to the Transit Gateway and not to every other network

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 19

2. The Transit VPC Solution: The Transit VPC29 can be used to enable connectivity

between various VPC’s in different regions and customer data centers (Figure

8). You can use this to connect multiple VPCs that are geographically disparate

and/or running in separate AWS accounts, to a common VPC that serves as a

global network transit center. This network topology simplifies network

management and minimizes the number of connections that you need to set up.

Further information on global connectivity options are available on the AWS

Global Transit Network website.30

Figure 8

Of the two options presented above, the AWS Transit Gateway along with the AWS

Direct Connect Gateway is the recommended future-proof pattern for designing hybrid

connectivity.

Data Availability

Applications store data in different forms, including files on a filesystem, block storage,

in databases, and in memory caches. Making this data available in alternate regions is

key to any disaster recovery strategy. The rate of data change and the distance

between regions can constrain the RPO achievable by your application.

Therefore, when designing solutions for very high availability and resiliency, we need to

understand these constraints and the impact on RPO. If a financial institution requires

an RPO of zero, we should choose the appropriate AWS service or technology, a single

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 20

AWS Region, or consider the distance between AWS Regions, so as to minimize the

impact on performance. For example, if we choose EU-East1 and EU-West2 as our

application hosting regions, having RPO of zero would mean that each transaction

would have additional 10 milliseconds latency, while within a single AWS Region you

can achieve this with multiple AZs. This requirement would lead to choosing a design

using alternate mechanisms to achieve high performance and resiliency. We discuss

specific options to achieve this in the Application Resiliency Blueprints section below.

AWS services natively store data within a single region using multiple AZs, except for

Amazon EBS, Amazon S3 Reduced Redundancy Storage (RRS), and Amazon S3

ONEZONE_IA.31 Appendix C: Service Capabilities outlines the scoping of many of our

larger services. This gives the customer control of their data and allows them to meet

the regulatory requirements of data residency.

To enable customers to design applications which are spread over multiple regions,

AWS services provide features to enable replication to an alternate region, as discussed

above. In this case, AWS does the heavy lifting of data replication. The RPO for these

replications varies based on replication lag. Replication lag depends on various factors

such as: the size of data being copied, the distance to the target region being used, and

the rate of data change. Customers should monitor this replication lag to ensure that

they can meet the RPO objective of the application. Customer should implement

mechanisms in the application to throttle or back off to keep the application performance

within the RPO window.

Depending on the type of data in question, the rate of change, and its origin, there are

multiple options to have data copied over multiple regions. For OS images, when using

Amazon EC2 and Amazon EBS, you must initiate the copy and ensure that the

appropriate Amazon Machine Images (AMIs) are copied and available in the alternate

region. For your application data, you must initiate and ensure the EBS Snapshots of

your data volumes are configured for cross-region copy.

For static application data stored in Amazon S3 you can leverage Cross-Region

Replication (CRR),32 which allows for your data to be available elsewhere, as displayed

in Figure 9 below. CRR is a core functional piece of an FI’s data availability strategy.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 21

Figure 9

Similar to Amazon S3, Amazon Elastic File System (Amazon EFS) is another regionally

scoped storage service. Amazon EFS allows you to mount a single volume to multiple

instances, and is stored redundantly across multiple AZ’s within that single region. To

ensure high data availability, you can employ EFS File Sync33 to quickly replicate files

and their corresponding metadata to another region.

By contrast, Amazon EBS volumes are scoped to an individual AZ. For Amazon EBS

volumes attached to your compute resources, snapshotting to another region will permit

data from your local volumes to be available in another region. To ensure you have

quicker recovery points, data persistence, and expected Amazon EBS capacity, you can

replicate your EBS Snapshots to another region and then create (unattached) volumes

from them. By creating unattached volumes you block the capacity, effectively creating

a reserved allocation for storage in the alternate region.

In the event of a failure, having these volumes readily available will help reduce RTO.

For workloads which absolutely require deterministic RPOs, it is advised to build the

replication methodology into the application. There are AWS Partner Network (APN)

Partners who provide custom-built data replication technologies using point to point

systems which can provide the RPOs required. These APN Partner solutions can be

found in the AWS Marketplace, including CloudEndure Disaster Recovery,34 Attunity

Replicate,35 WANdisco Fusion,36 NetApp Cloud Sync,37 and Zerto Virtual Replication.38

For data stored in databases, Amazon RDS Read Replicas provide enhanced

performance and durability for database instances. When building database workloads

for Tier 1 Financial Services applications, you can create one or more replicas of a

given source DB instance, as demonstrated in Figure 10 below.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 22

Read replicas can be promoted when needed to

become standalone DB instances. Read replicas

are available in Amazon RDS for MySQL,

MariaDB, and PostgreSQL as well as Amazon

Aurora. It is important to note that there may be

replication latency depending on the distance of

the target region from the source region. You can

monitor the replication lag using use Amazon

CloudWatch when you implement any of these use

cases.

For data coming into AWS from outside sources

such as trade data from business partners or

market data from exchanges, you should create

data subscribers in different regions to store data

locally within the region where the subscriber is

running. This ensure that data is available in the

region where the application will be recovered.

Another important point to consider when

replicating data is to appropriately sequence the

data records so you can discretely determine

which records must be replayed, versus which are

already committed by the application. Having a

well-defined, global, record-based sequencing

methodology will greatly reduce the risk of data

loss across the systems and provide for faster

transaction reconciliation and recovery. Data reconciliation tools are often custom built

to applications, and so FIs should invest in building and maintaining these tools if they

are not already place.

Build Self-healing and Stateless Applications

When building highly resilient applications, you want to design in the ability to self-heal.

Applications should be able to monitor and recover from a common failure. Primarily

decoupling application interdependencies and removing states from application

components is used to achieve the self-healing behavior. AWS provides services such

as queuing, load balancing and autoscaling which should be used in your application

architecture. Using Elastic Load Balancing (ELB) you can decouple the client from the

servers. With this design, if a server fails, the client connection can be routed to another

working server (Figure 11).

Figure 10

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 23

Figure 11

By using the load balancer, the application has self-healed from a failure and that failure

did not propagate to the customer. In the background, we can use AWS Auto Scaling to

relaunch a server and reintegrate the server into the cluster. With this pattern we have

self-healed the capacity that is needed to serve end-users. Statelessness of compute

instances is a core part of this design practice.

Application Resiliency Blueprints

Most applications can achieve high levels of resiliency with a standard multi-AZ

pattern.39 For applications requiring even higher resiliency than offered by a single-

region pattern, this section describes patterns, or blueprints, to build Tier 1 applications

requiring five nines (99.999%) of uptime. A key necessity for applications requiring five

nines is to have the capacity available to continue processing in an alternate location

when a disaster happens. In the blueprints that follow, it is important to recognize that

there is an implicit understanding; when a resource is being used by a customer, it is

not taken away from that customer. Once an Amazon EC2 instance or Amazon EBS

volume is in use by an AWS customer, it is not re-allocated elsewhere. Therefore, the

pre-allocation of the stack provides capacity at the time of recovery.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 24

Active – Standby (Static Resiliency)

This is the traditional pattern used to

host Tier 1 applications (Figure 12). In

this pattern a complete stack is

allocated in the alternate region, but

not used until the disaster event. The

backup stack is a complete replica of

the primary application stack and is

kept in sync with the primary by

continuous data sync from primary to

secondary. This pattern can also be

implemented for applications with low

RTO and RPO requirements. This

pattern is useful for fast recovery of

applications which cannot take

advantage of native AWS features,

and requires the least amount of

changes to the application

development or deployment. This is

also called static resiliency.

Having a complete parallel stack on standby at an alternate region provides for the fast

recovery needed by the application. To achieve recovery a global traffic manager such

as Amazon Route 53 or AWS Global Accelerator can be used, which are capable of

monitoring application availability and routing the traffic based on availability. Amazon

Route 53 can monitor the health of the application endpoints and direct traffic to a

primary region. When a failure occurs in the primary region Amazon Route 53 can

automatically switch traffic to the alternate region.

This pattern provides a finite low RPO and RTO. The RPO is based on the replication

lag between the primary and standby region.

Active – Active (Distributed Resiliency)

For applications requiring zero RTO, you can use the Active-Active pattern (Figure 13

below). This resiliency blueprint is an augmentation of the Active-Standby. Here both of

the application stacks are used simultaneously to service production activity. As the

secondary stack is also active there is no failover time. In normal operation, AWS

Global Accelerator or Amazon Route 53 will split traffic 50-50 between both regions.

Figure 12

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 25

When Amazon Route 53 detects a

failure of the application in a

region, it automatically directs

100% of the traffic to the surviving

site.

In such scenarios the data

replication is critical and needs to

be handled at the application level.

Since both stacks are being used

actively, data replication will need

to happen in both directions. The

RPO is based on the replication lag

between the two sites. This pattern

is effective for applications where

separate homes can be

established for different customer

bases. Services such as Amazon

DynamoDB Global Tables Multi-

master, or Multi-region MySQL

deployment in AWS,40 can be used to achieve the replication required by the

application. You can also choose storage layer replication technology from APN

Partners such as CloudEndure Disaster Recovery, Attunity Replicate, WANdisco

Fusion, NetApp Cloud Sync, to achieve disk-based replication.

Dual Write (Parallel Resiliency)

For applications requiring zero RPO, you can use the Dual Write pattern (Figure 14

below). In this pattern, there is a shared nothing architecture where two independent

stacks are setup in different regions, and process each transaction or action in parallel.

In this pattern, 100 percent of the traffic flows to both of the regions, and the application

processes the data simultaneously. For downstream applications the output of only one

region is used at any given time. The application will need to have various safeguards to

avoid transaction duplication. You will need to implement checkpointing and run

reconciliation jobs to ensure that both sites are in sync and producing the same results.

Figure 13

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 26

The RPO of this pattern is zero as data is simultaneously written to both regions. The

RTO will depend on the time it takes to switch over the output for downstream

applications.

Figure 14

Satellite Region

In addition, for applications requiring zero RPO, and low RTO, a design pattern

consisting of three regions can also be used. Of the three regions, one region is in close

proximity to the primary region forming a satellite region (Figure 15 below). The

application infrastructure is setup in the Active-Standby pattern, with additional

infrastructure in the satellite region to provide syncronous replication. All data written to

the primary region is committed synchronously to the satellite Region. The satellite

region is used only to bunker the data and provide a sync point. From the satellite

region, data is forward synched to the secondary region (far region) asynchronously.

From an operational perspective, during normal operations, only the primary region is

active. All applications are in stopped mode at the secondary region. At the time of

disaster, you will need to monitor the replication status from the satellite region to the

secondary region. Once the replication status syncs up, you can start all applications in

the secondary region and continue operations from the secondary region. Since the

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 27

infrastructure is already in place in the secondary region, the RTO is limited to the time

it takes for the data to synchronize from the satellite region and start up the applications.

Figure 15

Operational Resilience

Even the best design requires operational excellence to ensure high availability,

mitigate downtime, and to compensate for limitations of design. The operations focus of

resiliency in the cloud is on successful implementation of change, execution of

processes, insight to operational health, insight to achievement of business outcomes,

and timely and effective responses to events impacting the application.

With mission-critical financial systems, increased fidelity of insight and timing are

required to move from responding after the fact, to predicting the event and intervening

to mitigate or avert the event prior to it causing an undesired impact. This means

applications must be designed with a high degree of awareness of user activity,

business activity, adverse conditions, and threats, to allow operations and business

teams to take them into account.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 28

Design Principles

There are six design principles41 for operational excellence in the AWS Cloud:

• Perform operations as code: In the cloud, you apply the same engineering

discipline that you use for application code to your entire environment. You

define your entire workload (applications, infrastructure, etc.) as code and

update it with code. You script your operations procedures and automate their

execution by triggering them in response to events. By performing operations as

code, you limit human error and enable consistent responses to events.

• Annotated documentation: In an on-premises environment, documentation is

created by hand, used by humans, and hard to keep in sync with the pace of

change. In the cloud, you can automate the creation of annotated documentation

after every build (or automatically annotate hand-crafted documentation).

Annotated documentation can be used by humans and systems, and can be

used as an input to your operations code.

• Make frequent, small, reversible changes: Design workloads to allow

components to be updated regularly to increase the flow of beneficial changes

into your workload. Make changes in small increments that can be reversed if

they fail to aid in the identification and resolution of issues introduced to your

environment (without affecting customers when possible). Use canary

deployments to detect errors early and lower the impact of failures.

• Refine operations procedures frequently: As you use operations procedures,

look for opportunities to improve them. As you evolve your workload, evolve your

procedures appropriately. Set up regular game days to review and validate that

all procedures are effective and that teams are familiar with them.

• Anticipate failure: Perform “pre-mortem” exercises to identify potential sources

of failure so that they can be removed or mitigated. Test your failure scenarios

and validate your understanding of their impact. Test your response procedures

to ensure they are effective and that teams are familiar with their execution. Set

up regular game days to test workload and team responses to simulated events.

• Learn from operational failures: Drive improvement through lessons learned

from all operational events and failures. Share what is learned across teams and

through the entire organization

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 29

Monitoring

High availability for the applications of FIs requires the ability to detect failures and

quickly recover from them. Applications should be configured to emit the relevant

telemetry to detect failures, and operations processes should be in place to capture and

react to the events. Amazon CloudWatch and CloudWatch dashboards provide useful

tools to capture, react to, and display application health.

FIs can use the AWS Personal Health Dashboard, which provides alerts and

remediation guidance when AWS is experiencing events that may impact your

workloads. The dashboard displays relevant and timely information to help manage

events in progress, and provides proactive notification to help plan for scheduled

activities. With Personal Health Dashboard, alerts are triggered by changes in the

health of AWS resources being used in your applications, giving you event visibility, and

guidance to help quickly diagnose and resolve issues. Enterprise support and Business

support customers have access to the AWS Health API, and use this API to integrate

existing in-house or third-party IT management tools with the information in the

Personal Health Dashboard.

Drift between primary and secondary sites can lead to failure in recovery during a

disaster event. FIs can monitor changes to application infrastructure by using AWS

CloudTrail and AWS Config. These services provide the capability to monitor activity

within your AWS account, including actions taken through the AWS Management

Console, AWS SDKs, command line tools, and other AWS services. Once detected,

you can automate the reactive action by using Amazon CloudWatch Events integration.

Amazon CloudWatch events can trigger the execution of pre-defined workflows when

events are detected.

For application-level insights you can use AWS X-Ray to monitor your application. AWS

X-Ray enables analysis of the behavior of distributed applications by providing request

tracing, exception collection, and profiling capabilities to provide insight to your

workloads. Additional recommendations regarding monitoring and alarms can be found

in the reliability pillar of the AWS Well-Architected Framework.

Automation

The benefit of cloud and infrastructure as code is the ability to build and tear down

entire environments programmatically and automatically. If architected with resiliency in

mind, a recovery environment can be stood up in minutes via AWS CloudFormation

templates or AWS Systems Manager automation (Figure 16 below). Automation is

https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 30

critical to maintaining high availability and fast recovery. AWS offers a wide breadth of

automation tools to accomplish this.

Figure 16

AWS Systems Manager can help automate complete runbooks that are used in

recovery of an application during a disaster. You can sequence a complete set of

operations to automatically execute on the detection of an event. With Systems

Manager automation documents you can manage these runbooks similar to code. You

can version them and update them along with every release of code. This helps keep

your recovery plan in sync with released code and updates to infrastructure.

Implementation of code-based management practices across your infrastructure,

applications, and operational procedures enables the high degree of version control,

testing, validation, and mitigation of human error that are necessary to limit the

introduction of errors into your environment, and reduce the RTO of the recovery.

Application Deployment

Improper code and failures in deployment are one of the most common causes of failure

in an application. For Financial Services applications, it is essential to have a well-

defined software development lifecycle, combined with automated deployment

pipelines. This reduces the risk of failures due to software deployments. The pipelines

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 31

should be carefully designed and include tests and validation to ensure that proper code

is deployed into production and recovery sites. On AWS, using infrastructure as code,

you can integrate both infrastructure changes and application changes to be tested and

validated before they reach production (Figure 17).

Figure 17

AWS Developer Tools including AWS CodeCommit, AWS CodeBuild, AWS

CodeDeploy, and AWS CodePipeline are designed to provide an integrated set of tools

which allow you to build pipelines integrating infrastructure and code deployments.

These services include best practice operations procedures such as staged

deployment, canary deployments, isolation zone deployments, and automatic roll back

which allow for the development and deployment of complex patterns for Tier 1 and

other applications.

Cost Optimization Practices

The economic model for resiliency requires a commitment from FIs to understand that

there are necessary costs to minimize the risk of downtime in the event of a business

continuity or disaster recovery event.

Designing applications for high levels of availability typically comes with increased

costs, so it’s appropriate to identify the true availability needs before embarking on

application design. As discussed above, adding an additional “nine” to an application’s

availability adds costs to an application’s total cost of ownership (TCO).

The global footprint of AWS, efficiencies from automation, and economies of scale allow

us to pass cost savings to FIs on a continuous basis.42 Additionally, we provide multiple

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 32

pricing options that help reduce TCO for AWS customers. This is achieved via volume

discounts43 and reserved instances.

Reserved Instances

Amazon EC2 Reserved Instances (RI) provide a significant discount (up to 75%)

compared to On-Demand pricing and provide a capacity reservation when used in a

specific Availability Zone. To provide the capacity guarantee that FI’s need for

regulatory requirements, customers can purchase zonal Reserved Instances (zonal RI).

These RI’s are specific to an instance type and assigned to a specific Availability Zone.

The Amazon EC2 instances bought via these RIs are guaranteed to be available to you,

irrespective of other customer demands for capacity.

• RIs are employed for a variety of use cases, including but not limited to:

• Cost savings for known steady-state workloads

• Reserved capacity for future projects

• Reserved capacity for parallel blue/green deployments

• Reserved capacity for disaster recovery/failover/continuity-of-operations

scenarios

RIs operate on a per-minute resolution, so if one instance is shut down, another

instance can take advantage of that now-available RI capacity almost immediately. In

addition, customers that purchase a large number of Amazon EC2 RIs in an AWS

region automatically receive discounted upfront fees and hourly fees for future

purchases of Standard RIs in that AWS region.44

Maximizing Return

Guaranteeing capacity in other regions can be accomplished via Reserved Instances

and specifically via zonal RIs. Critical Tier 1 applications should use zonal RIs to

guarantee capacity in their multi-region architectures.

However, since DR events and tests are infrequent, this reserved capacity may go

underutilized unless effort is made to maximize usage. Several techniques are available

to minimize the time instances are left idle, and maximize the return on investment of an

RI purchase:

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 33

Run Lower Priority Workloads on the Reserved Capacity

This is the most common way customers take advantage of idle capacity—running

lower priority workloads on this excess reserved capacity. FIs can identify lower priority

workloads that can be shut down or moved when the capacity is needed for the

originating event. Typical examples include:

• Development/Test/QA Environments

• Nodes for distributed computing workloads, such as High Performance

Computing (HPC)

• Other workloads that will not materially affect the core business if disabled

during the triggering event, such as lower priority report generation, machine

learning model training, or internal and back-office systems

• Alternative revenue or charity workloads (e.g. cryptocurrency mining)

Customers can develop runbooks, policies, and automation to disable the low priority

workloads with little to no notice, and transition that capacity to the reserving workload

when a triggering event occurs.

If corporate processes allow, FIs can consider implementing an internal market. This

means providing unused RI capacity to internal teams at a price point that minimizes

unused capacity, and can employ an auction-style pricing or airline/hotel-style pricing,

where rates are determined by time blocks reserved in advance. Tagging resources

used by different workloads can help with internal cost accounting and facilitate

adjusting team charge backs appropriately. This also can lower the TCO for applications

on AWS.

Application Testing and Certification

Operational resiliency in the cloud is a new approach for many FIs, which have

traditionally conducted IT operations on premises. Working with cloud services,

infrastructure as code, and automation, is a new way of reacting to events for many

enterprises. Technology operation teams within FIs need to develop the skills for

building and supporting highly resilient applications on AWS. AWS plans, and

encourage its customers to plan and test for failures.

A resilient system continues to operate successfully in the presence of failures. To

prepare for a real DR event, FIs can create multiple test scenarios and understand the

impact of the failure on an application. The test scenarios and plans should be based on

a careful study of the failure modes of the application and hardware. This practice is

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 34

called Failure Mode Effect Analysis (FMEA). FMEA is an industry standard [ISO]

engineering technique which estimates a risk priority number (RPN) between 1 and

1000, by ranking probability, severity, and observability on a 1-10 scale, where 1 is

good and 10 is bad, and multiplying them. A perfectly low probability, low impact, easy

to measure risk has an RPN of 1. An extremely frequent, permanently damaging,

impossible to detect risk has an RPN of 1000. By listing and rating failure modes, FIs

can see which one to focus on. After rating failure modes, FIs can record the expected

effect of a mitigation strategy, which should reduce the overall RPN, and shift the focus

to the new highest RPN, until there aren’t any high values left. In practice, the easiest

way to reduce RPN is to add observability, so users aren’t working blind.

Users can then get empirical measurements of probability, as visibility allows users to

see how often a failure occurs. An example of using failure modes is to create a failure

impact analysis, as shown in Table 4. Additional details on FMEA are provided in

Appendix F: Failure Modes and Effects Analysis

Table 4

Failure Effect Mitigation Result

Failure of an AZ Temporary capacity

reduction

Automatic failover to

secondary AZ

Temporary

performance

degradation

Total failure of

satellite region

Data replication

offline

Repair/reconfigure

replication using

alternate region

No service

interruption

Partition of network

between regions

Data replication

offline

Auto recovery when

network is available

No service

interruption

Total failure of

primary region

Service offline Failover to secondary

region

Service restored

within two hours

Application testing should also include tabletop exercises where development and

operations teams can hypothesize failure scenarios and evaluate how the applications

and the organization will react to the failure. Conducting these exercises will help FIs to

understand and create the necessary automation and recovery scripts required to

support application recovery during a DR event. The important starting points for

tabletop exercises cover foundational IT services:

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 35

• Simulating hardware failure at the Amazon EC2 instance level.

• Simulating the failure of storage – Amazon EBS or Amazon S3.

• Simulating the failure of network components such as security groups, VPC

peering, VPN connection, Direct Connect connections.

• Simulating the failure of security components such as password lockouts,

expiration of application security certificates, misconfiguration of AWS Identity

and Access Management (IAM).

After these base-level exercises are completed, you can model advanced scenarios

such as the failure of an AZ or Region, data corruption, virus infection, data leak, or

distributed denial of service (DDOS) attacks.

Having understood the failure scenarios and defined the responses of the application

and organization, FIs then need to put these results into action. This next step could

take the form of game days where development teams and operations teams practice

the failure scenarios in a non-production environment. With AWS, teams can quickly set

up a new duplicate environment for the game day, practice the scenarios. and then

completely tear down and dispose of the infrastructure. When you have parallel

environments, you can evaluate multiple scenarios. For example, what happens to the

application if you kill an application process? What happens to the application when you

apply additional load? What happens to the application if you introduce delays in

application component responses? What does the user experience look like during

these failures?

FIs can test additional scenarios such as load testing across all the applications, by

introducing load at various entry points and understanding the performance of

applications. How are the databases keeping up with the increased volume of

transactions? What are the other bottlenecks in the processing pipeline? A useful

mantra to repeat during this stage is that “a chain is only as strong as the weakest link.”

This testing model can be extended to incorporate end-user behavior, and industry

providers by conducting an industry-wide test scenario. Running mock trades across

industry systems while simultaneously testing failures will arm you with the necessary

information and operations practices to handle complex failure scenarios.

We recommend that FIs conduct tabletop and game day exercise for individual

applications as well as plan for larger groupings of applications. A common practice is to

hold continual company-wide tests. During this test, the core assumption is that the

primary data center is down and applications are failed over to an alternate location.

This is called the disaster recovery test.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 36

Chaos Engineering

Up to this point, we have discussed testing scenarios. Mostly, when we consider these

scenarios we think of single failures. Today’s applications are building on new platforms

such as web, mobile, and Internet of Things (IoT). They are built using distributed

technologies and distributed development practices. Even when each individual service

within a distributed system is functioning properly, the interactions between those

services can cause unpredictable outcomes. How would your application behave if

there were multiple failures?

A new method of testing enabled by the cloud is emerging, called “Chaos Engineering,”

to specifically address the uncertainty of distributed systems at scale. As defined on the

Principles of Chaos Engineering website,45 “Chaos Engineering can be thought of as

the facilitation of experiments to uncover systemic weaknesses.” These experiments,

according to the Chaos Engineering website, follow the principles of:

Building a hypothesis around steady state behavior

Focus on the measurable output of a system, rather than internal attributes of the

system. Measurements of that output over a short period of time constitute a proxy for

the system’s steady state. The overall system’s throughput, error rates, latency

percentiles, etc. could all be metrics of interest representing steady state behavior. By

focusing on systemic behavior patterns during experiments, Chaos Engineering verifies

that the system works, rather than simply validating how it works.

Applying variations to simulate real world events

Chaos variables reflect real-world events. Prioritize events either by potential impact or

estimated frequency. Consider events that correspond to hardware failures like servers

dying, software failures like malformed responses, and non-failure events like a spike in

traffic or a scaling event. Any event capable of disrupting steady state is a potential

variable in a Chaos experiment.

Run experiments in production

Systems behave differently depending on environment and traffic patterns. Since the

behavior of utilization can change at any time, sampling real traffic is the only way to

reliably capture the request path. To guarantee both authenticity of the way in which the

system is exercised, and relevance to the current deployed system, Chaos Engineering

strongly prefers to experiment directly on production traffic.

https://principlesofchaos.org/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 37

Automate the experiments to run continuously

Running experiments manually is labor-intensive and ultimately unsustainable. With

automated experiments that run continuously, Chaos Engineering builds automation

into the system to drive both orchestration and analysis.

Minimize blast radius of failures

Experimenting in production has the potential to cause unnecessary customer pain.

While experimenting ensure the fallout from experiments are minimized and contained.

Mastering the appropriate skills through testing brings applications in control over the

infrastructure, versus the application being heavily dependent on expensive

infrastructure or complex operations. With learnings and automation in place, a financial

institution can strive to run applications independently in any region. To test this, we

recommend that customers create procedures and automation to migrate all

applications to another region without any customer visible impact. A good example of

this practice is demonstrated by the steps Netflix46 has taken for region evacuation.

Conclusion

AWS presents an opportunity for higher levels of resiliency, better security, and more

cost-effective operations for the applications of Financial Institutions. The global

payment system and its endpoints can become more secure, trading and settlement

can become faster and simpler to regulate, dormant DR systems can become active

processing capacity, and the data systems that fuel the industry can become more

globally available.

AWS is designed to enable many variations for architecting resilient systems. This

paper highlights best practices and provides recommendations. Designing for failure is

the foundational lens through which the architecture of critical systems are viewed. And

FIs can work with an AWS Solutions Architect to collaboratively validate the resiliency of

their application using the AWS Well-Architected Framework.

AWS provides solutions, ranging from backup and restore to fault tolerant, multi-site

deployments, that FIs can architect as part of their resiliency plans. AWS provides fine-

grained control and building blocks to create the appropriate DR solution in the cloud,

given an FI’s unique resiliency requirements, recovery objectives (RTO and RPO), and

budget. AWS services are available across the globe and include mechanisms to

reserve capacity. This is a key advantage for resiliency, where significant infrastructure

is needed quickly in the event of a disaster. With AWS, FIs can build highly resilient

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 38

applications while taking advantage of flexible, cost-effective infrastructure solutions.

Financial Institutions that build mission-critical applications on AWS can employ these

solutions to shift from a reactive approach to disaster events, to an automated, prepared

approach where FIs maintain high levels of resiliency.

Contributors

The following individuals contributed to this document:

• Pawan Agnihotri, Senior Manager Solutions Architecture, Amazon Web

Services, Financial Services

• Adrian Cockcroft, VP Cloud Architecture Strategy, Amazon Web Services

Additional contributors:

• Shuja Sohrawardy, Solutions Delivery Manager, Amazon Web Services.

Financial Services

• Peter Voshall, VP/Distinguished Engineer, Amazon Web Services

• Rodney Lester, Principle Solutions Architect, Well Architected Framework

Resiliency Pillar

• Tim Griesbach, Manager, Public Sector Solutions Architecture, Amazon Web

Services

• Harsha Nippani, Public Sector Solutions Architect, Amazon Web Services

• Ashish Palekar, Director of Product Management, Elastic Block Store, Amazon

Web Services

• Tony Petrossian, GM DynamoDB, Amazon Web Services

• Dave Brown, VP EC2 Networking, Amazon Web Services

• Emily Smykal, Manager, Financial Services Content, Amazon Web Services

• Robert Kissell, Senior Manager, Solutions Architecture, Amazon Web Services

Further Reading

For additional information, see the following AWS resources:

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 39

AWS Documentation

• AWS Well-Architected Framework

• Reliability Pillar of the AWS Well-Architected Framework

• AWS Technical Whitepapers

• AWS Documentation

AWS Presentations: Disaster Recovery

• AWS re:Invent 2017: Disaster Recovery with AWS: Tiered Approaches to

Balance Cost (ENT322)

• AWS re:Invent 2015 | (STG304) Deploying a Disaster Recovery Site on AWS

• Netflix: Multi-Regional Resiliency and Amazon Route 53

• The Secret to a Highly Resilient AWS Environment

• AWS re:Invent 2017: How to Design a Multi-Region Active-Active Architecture

(ARC319)

• AWS re:Invent 2017: Building Resilient, Multi-Region Serverless Applications

(SRV313)

• AWS re:Invent 2018: How AWS Minimizes the Blast Radius of Failures (ARC338

• AWS re:Invent 2018: Architecture Patterns for Multi-Region Active-Active

Applications (ARC209-R2)

• AWS re:Invent 2018: Breaking Containers: Chaos Engineering for Modern

Applications on AWS (CON310)

Document Revisions

Date Description

October 2018 First draft for confidential review

April 2019 Public Release

https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
https://d0.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf
https://aws.amazon.com/whitepapers/
https://aws.amazon.com/documentation/
https://www.youtube.com/watch?v=a7EMou07hRc
https://www.youtube.com/watch?v=a7EMou07hRc
https://www.youtube.com/watch?v=bXrGUlgbl-s
https://www.youtube.com/watch?v=WDDkLOT8SCk
https://www.youtube.com/watch?v=G3Ufd_W0Nng
https://www.youtube.com/watch?v=RMrfzR4zyM4
https://www.youtube.com/watch?v=RMrfzR4zyM4
https://www.youtube.com/watch?v=nk81aI70bKc
https://www.youtube.com/watch?v=nk81aI70bKc
https://www.youtube.com/watch?v=swQbA4zub20
https://www.youtube.com/watch?v=2e29I3dA8o4
https://www.youtube.com/watch?v=2e29I3dA8o4
https://www.youtube.com/watch?v=B1nUzbuVEUs
https://www.youtube.com/watch?v=B1nUzbuVEUs

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 40

Appendix A: Financial Services Applications

Examples of Financial Services applications in various tiers:

Table 5

Platinum or Tier 1 Gold or Tier 2 Silver or Tier 3 Bronze or Tier 4

Settlement

Applications

Risk systems Public website Intranet

Clearing

Applications

Compliance systems Middle office

platforms

Back office platforms

Payment

Applications

Email /

Communications

ERP Cold storage

Exchange/Trading

Platforms

 CRM Internal websites

Appendix B: Designed-For Availability for Select

AWS Services

Below, we provide the availability that select AWS services were designed to achieve,

from the reliability pillar of the AWS Well-Architected, as of the time of publication of this

document. For the most up to date availability figures, readers should consult the

reliability pillar. These values do not represent a Service Level Agreement or guarantee,

but rather provide insight to the design goals of each service. In certain cases, we

differentiate portions of the service where there’s a meaningful difference in the

availability design goal.

This list is not comprehensive for all AWS services, and we expect to periodically

update with information about additional services. Amazon CloudFront, Amazon

Route53, and the Identity & Access Management Control Plane provide global service,

and the component availability goal is stated accordingly. Other services provide

services within an AWS Region and the availability goal is stated accordingly. Many

services provide independence between AZs; in these cases we provide the availability

design goal for a single AZ, and when any two (or more) AZs are used.

https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 41

Note: The numbers in the table below do not refer to durability (long term
retention of data); they are availability numbers (access to data or
functions).

Table 6

Service Component Availability Design Goal

Amazon API Gateway Control Plane 99.950%

 Data Plane 99.990%

Amazon Aurora Control Plane 99.950%

 Single AZ Data Plane 99.950%

 Multi AZ Data Plane 99.990%

AWS CloudFormation Service 99.950%

Amazon CloudFront Control Plane 99.900%

 Data Plane (content delivery) 99.990%

Amazon CloudSearch Control Plane 99.950%

 Data Plane 99.950%

Amazon CloudWatch CW Metrics (service) 99.990%

 CW Events (service) 99.990%

 CW Logs (service) 99.950%

AWS Data Pipeline Service 99.990%

Amazon DynamoDB Service (standard) 99.990%

 Service (Global Tables) 99.999%

Amazon EC2 Control Plane 99.950%

 Single AZ Data Plane 99.950%

 Multi AZ Data Plane 99.990%

Amazon ElastiCache Service 99.990%

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 42

Service Component Availability Design Goal

Amazon Elastic Block

Store

Control Plane 99.950%

 Data Plane (volume

availability)

99.999%

Amazon Elasticsearch Control Plane 99.950%

 Data Plane 99.950%

Amazon EMR Control Plane 99.950%

Amazon Glacier Service 99.900%

AWS Glue Service 99.990%

Amazon Kinesis Streams Service 99.990%

Amazon RDS Control Plane 99.950%

 Single AZ Data Plane 99.950%

 Multi AZ Data Plane 99.990%

Amazon Rekognition Service 99.980%

Amazon Redshift Control Plane 99.950%

 Data Plane 99.950%

Amazon Route53 Control Plane 99.950%

 Data Plane (query

resolution)

100.000%

Amazon SageMaker Data Plane (Model Hosting) 99.990%

 Control Plane 99.950%

Amazon S3 Service (Standard) 99.990%

AWS Auto Scaling Control Plane 99.900%

 Data Plane 99.990%

AWS Batch Control Plane 99.900%

 Data Plane 99.950%

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 43

Service Component Availability Design Goal

AWS CloudHSM Control Plane 99.900%

 Single AZ Data Plane 99.900%

 Multi AZ Data Plane 99.990%

AWS CloudTrail Control Plane (config) 99.900%

 Data Plane (data events) 99.990%

 Data Plane (management

events)

99.999%

AWS Config Service 99.950%

AWS Direct Connect Control Plane 99.900%

 Single Location Data Plane 99.900%

 Multi Location Data Plane 99.990%

AWS Elastic File Store Control Plane 99.950%

 Data Plane 99.990%

AWS Identity & Access

Management

Control Plane 99.900%

 Data Plane (authentication) 99.995%

AWS Lambda Function Invocation 99.950%

AWS Shield Control Plane 99.500%

 Data Plane (detection) 99.000%

 Data Plane (mitigation) 99.900%

AWS Storage Gateway Control Plane 99.950%

 Data Plane 99.950%

AWS X-Ray Control Plane (console) 99.900%

 Data Plane 99.950%

EC2 Container Service Control Plane 99.900%

 EC2 Container Registry 99.990%

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 44

Service Component Availability Design Goal

 EC2 Container Service 99.990%

Elastic Load Balancing Control Plane 99.950%

 Data Plane 99.990%

Key Management System

(KMS)

Control Plane 99.990%

 Data Plane 99.995%

Appendix C: Service Capabilities

Table 7

Service Area AWS Service Name Service

Scope

Capacity

Reservation

CRR

support?

Database

 RDS MySQL Regional Yes (Reserved

Instances)

Yes

 RDS MariaDB Regional Yes (Reserved

Instances)

Yes

 RDS PostgreSQL Regional Yes (Reserved

Instances)

Yes

 RDS Oracle Regional Yes (Reserved

Instances)

Yes

 RDS SQL Server Regional Yes (Reserved

Instances)

Yes

 Aurora MySQL Regional Yes (Reserved

Instances)

Yes

 Aurora PostgreSQL Regional Yes (Reserved

Instances)

 Redshift Regional Yes (Reserved

Instances)

Yes

(snapshot)

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 45

Service Area AWS Service Name Service

Scope

Capacity

Reservation

CRR

support?

 DynamoDB Regional Yes (Reserved

Instances)

Yes

 Neptune Regional Yes (Reserved

Instances)

Yes

 ElastiCache Regional Yes (Reserved

Instances)

Yes

(snapshot)

 DocumentDB Regional

Compute and

components

 EC2 (Resource

Identifiers)

Regional

 EC2 (EIP) Regional

 EC2 Auto Scaling Regional

 EC2 (Security

Groups)

Regional

 EC2 (Elastic Load

Balancers)

Regional

 EC2 (Placement

Group)

Availability

Zone

 EC2 (Instances) Availability

Zone

Yes (Reserved

Instances)

 EC2 (EBS Volumes) Availability

Zone

 EC2 (EBS snapshots Regional

 Oracle on EC2 Yes (Reserved

Instances)

Yes

(manual)

 EC2 AMIs Regional Yes

 Elastic Beanstalk Regional Yes (Reserved

Instances)

Yes

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 46

Service Area AWS Service Name Service

Scope

Capacity

Reservation

CRR

support?

 ECS Regional Yes (Reserved

Instances)

 EKS Regional Yes (Reserved

Instances)

 Fargate Regional Yes (Reserved

Instances)

 Lambda Regional

 Batch Regional

 ECR Regional

 ELB Regional

Storage

 EBS Volumes Availability

Zone

 Yes

 S3 Regional Yes

 EFS Regional Yes

 Storage Gateway Regional Yes

 FSx Regional

 AWS Backup Regional

Networking &

Content

Delivery

 VPC Regional

 VPC (Security

Groups, Endpoints)

Regional

 VPC (Subnets) Availability

Zone

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 47

Service Area AWS Service Name Service

Scope

Capacity

Reservation

CRR

support?

 VPC (inter-region

peering)

Regional Yes

 Route 53 (DNS) Global Yes

 Direct Connect

Gateway

 Yes

 CloudFront Global

 Storage Gateway Regional

 API Gateway Regional

 Direct Connect Regional

 Cloud Map Regional

 Global Accelerator Global

Management &

Governance

 CloudFormation Regional Yes

 CloudWatch Regional

 CloudWatch Events Regional

 CloudWatch Logs Regional

 CloudTrail Regional

 Config Regional

 Service Catalog Regional

 Systems Manager Regional

 Control Tower Regional

 OpsWorks Regional

 Auto Scaling Regional

Application

Integration

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 48

Service Area AWS Service Name Service

Scope

Capacity

Reservation

CRR

support?

 Simple Queue

Services (SQS)

Regional

 Simple Notification

Service (SNS)

Regional

 Simple Queue

Services (SQS)

Regional

 Amazon MQ Regional

Security,

Identity &

Compliance

 IAM (Users, Groups,

Roles, Accounts)

Global

(except

China)

 Yes

 IAM (Key pairs) Regional

 Organizations Global

 KMS Regional

 GuardDuty Regional

 WAF & Shield Regional

 Secrets Manager Regional

 Certificate Manager Regional

 Cognito Regional

 Directory Service Regional

 AD Connector Regional

 Inspector Regional

Migration &

Transfer

 Migration Hub Regional

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 49

Service Area AWS Service Name Service

Scope

Capacity

Reservation

CRR

support?

 Application Discovery

Service

Regional

 Database Migration

Service

Regional

 Server Migration

Service

Regional

 Transfer for SFTP Regional

 Snowball Regional

Analytics

 Athena Regional

 EMR Regional

 ElasticSearch Regional

 Kinesis Regional

 QuickSight Regional

 Glue Regional

 CloudSearch Regional

Developer

Tools

 CodeCommit Regional

 CodeBuild Regional

 CodeDeploy Regional

 CodePipeline Regional

 Cloud9 Regional

 CodeStart Regional

Machine

Learning

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 50

Service Area AWS Service Name Service

Scope

Capacity

Reservation

CRR

support?

 SageMaker Regional

 Comprehend Regional

 Lex Regional

 Polly Regional

 Rekognition Regional

 Transcribe Regional

 Translate Regional

 Forecast Regional

 Textract Regional

Appendix D: Disaster Recovery Checklist

The checklist below is a suggested guide for FIs that are building resiliency and DR

plans in the AWS cloud:

Application Readiness

Dependencies

 Have all upstream/downstream dependencies, applications, repositories/databases

been identified?

 Have the teams responsible for those entities been engaged, and interfaces for the

target region been identified?

 Has the move back been considered/planned? How will data written to former read-

replicas now be synced back to the original region primary source? Will any

instances in the target environment need to be spun down for cost considerations?

Configuration

 How will any upstream or downstream application initiating communication know to

contact the target location instance instead?

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 51

 Does the application examine metadata to determine in which region is it currently

running, and access resources appropriately?

 Does the application programmatically use appropriate local endpoints depending

upon location for these services?

✓ Amazon S3 (Application data, application configuration, and all

bootstrap/startup/user data scripts)

✓ Directory Connectors

✓ Amazon SES Endpoints

✓ Amazon SQS

✓ Amazon SNS

✓ AWS Lambda

✓ Amazon API Gateway

✓ Elements Endpoints

✓ Amazon Elasticsearch domains

✓ Interfaces for upstream/downstream dependencies

 If using DNS for service discovery:

✓ Have DNS caching issues (such as permanent caching within the Java JVM)

been addressed?

✓ Are DNS TTL Settings set appropriately?

 Is automation (such as Amazon Route 53 health checks) or are manual runbooks in

place to redirect user or system usage to the target environment? The following

services may need considered:

✓ AWS Lambda event triggers

✓ Amazon Route 53 DNS

✓ Amazon S3

✓ Amazon RDS

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 52

✓ Amazon DynamoDB

✓ Amazon EFS volumes

Some services, such as Amazon RDS, Amazon S3, and Amazon EFS, may need

additional work to promote former read-replicas to write access as well.

Environment Readiness – DR Region

Configuration/Automation

 Since the source region and the target region have a differing number of availability

zones (US-East-1 has five; US-West-2 has three), has the target region architecture

been adjusted to account for this?

 Are all service limits configured identical in the DR Region, such as the number of

M4/C4 Amazon EC2 instance limits, EBS Volume limits, etc.?

 Have all Amazon Auto Scaling, AWS Cloud Formation Templates, or user

generated/third party scripts been adjusted for the new AMI IDs for the target

region?

 Have all services had their features and configurations set up identically? For

example, have Amazon DynamoDB indexes been configured identically, and do all

Amazon Kinesis streams have the same number of shards configured?

 Have region-based services (such as Amazon SQS or AWS Lambda) been

duplicated in the target environment?

 AWS is working on matching service and API limits between regions. Has a process

been put in place to ensure all future increases ask for both regions to keep them in

parity?

Compute

 Are all Amazon EC2/RDS instances needed in the target environment reserved so

they will be available when needed?

 Have all needed startup data/bootstrap scripts been replicated to the target

environment?

 Are appropriate SSH keys available in both regions?

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 53

 Is Auto Scaling configured for all environments in the target region?

 Are all Amazon EC2 AMIs patched and synced with the DR Region?

 Have the known hosts file for SSH been synced and updated on all systems?

 Are OS-level UIDs matched across both regions? (This may be an issue with

replicating between two hosts that do not share a common user database.)

Network

 Is the target environment already in place, or are AWS CloudFormation templates

prepared for creating the target environment when needed?

 Are all needed load balancers (elastic/network/application) created or templated in

the target region?

 Has provisioned capacity been enabled for ELBs to ensure capacity when needed?

 Are NACLs and Security Groups configured identically for both regions?

 Are the VPC IDs, Security Group IDs, Subnet IDs, etc. appropriately configured in

automation scripts such as AWS CloudFormation, Auto Scaling Launch

Configurations, etc.

 Have all IP address space configurations, such as firewall rules or licenses, been

matched across both regions, including with third parties? This may be an issue with

communication with third parties such as Concur, Bloomberg, or Journal & Library

services as they often restrict access and/or licensing based upon source IP.

Storage

 Are Amazon EBS performance characteristics, such as provisioned IOPs, confirmed

identical?

 Are replications configured for all needed services? Areas for consideration include:

✓ Amazon S3 buckets

✓ Amazon EFS shares

✓ Directories

 Are all backup/snapshots of data volumes used for failover done in a way that

ensures a consistent state, such as quiescing a database before the snapshot?

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 54

 Are replications configured for all needed services? Areas for consideration include:

✓ Databases (Amazon RDS, Amazon DynamoDB, Amazon ElastiCache,

Amazon Redshift, or self-managed)

Security & Logging

 Are all TLS/SSL certificates verified and validated in the DR Region? Are needed

certificate authentication chains also available?

 Are all needed secret stores (such as those used for control administrator or DB

access) available in the DR regions?

 Is the same Amazon CloudWatch/AWS CloudTrail logging enabled in the target

region? Have dashboards been configured the same across both regions?

 Do all services have logging enabled in the target environment? Examples for

consideration include:

✓ Amazon S3

✓ Elastic Load Balancing

✓ Amazon RDS (event plus any special engine logging options)

✓ Amazon CloudWatch logs

 Are all needed Active Directory replication or connectors also available in the target

region?

 While IAM policies are global, ensure all rules and conditions with region, IP

address, or timeframe limits configured are adjusted to also apply to the target

region.

 If using a separate account in the target region, have all needed IAM roles and

permissions been created in the separate account? Have all upstream or

downstream dependencies also adjusted their IAM roles and policies?

 Are all management integrations, such as SIEM, Datadog, etc., in place on the

target environment?

Is encryption key management done appropriately across both regions? Are all

customer master keys available in both regions, or are multi-region CMK masters in

use?

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 55

Appendix E: List of Service Level Agreements

for AWS Services

This list is accurate as of April 11, 2019. Please visit the AWS Service Level

Agreements public website47 for the most up to date information. Users should review

the specific SLA link for exact details of each SLA.

Table 8

Service Name SLA* (see

SLA URL)

SLA Last

Update

SLA URL for Details

Alexa for Business 99.9% March 19,

2019

https://aws.amazon.com/ale

xaforbusiness/sla/

Amazon API Gateway 99.95% March 20,

2019

https://aws.amazon.com/api-

gateway/sla/

Amazon AppStream 2.0 99.9% March 14,

2019

https://aws.amazon.com/app

stream2/amazon-appstream-

2-0-service-level-agreement/

Amazon Athena 99.9% March 14,

2019

https://aws.amazon.com/ath

ena/sla/

Amazon Aurora 99.99% March 21,

2019

https://aws.amazon.com/rds/

aurora/sla/

Amazon Chime 99.9% March 19,

2019

https://aws.amazon.com/chi

me/sla/

Amazon Cloud Directory 99.9% March 14,

2019

https://aws.amazon.com/clo

ud-directory/sla/

Amazon CloudFront 99.9% March 14,

2019

https://aws.amazon.com/clo

udfront/sla/

Amazon CloudSearch 99.9% March 20,

2019

https://aws.amazon.com/clo

udsearch/sla/

Amazon CloudWatch 99.9% March 19,

2019

https://aws.amazon.com/clo

udwatch/sla/

Amazon Cognito 99.9% March 6,

2019

https://aws.amazon.com/cog

nito/sla/

https://aws.amazon.com/legal/service-level-agreements/
https://aws.amazon.com/legal/service-level-agreements/
https://aws.amazon.com/alexaforbusiness/sla/
https://aws.amazon.com/alexaforbusiness/sla/
https://aws.amazon.com/api-gateway/sla/
https://aws.amazon.com/api-gateway/sla/
https://aws.amazon.com/appstream2/amazon-appstream-2-0-service-level-agreement/
https://aws.amazon.com/appstream2/amazon-appstream-2-0-service-level-agreement/
https://aws.amazon.com/appstream2/amazon-appstream-2-0-service-level-agreement/
https://aws.amazon.com/athena/sla/
https://aws.amazon.com/athena/sla/
https://aws.amazon.com/rds/aurora/sla/
https://aws.amazon.com/rds/aurora/sla/
https://aws.amazon.com/chime/sla/
https://aws.amazon.com/chime/sla/
https://aws.amazon.com/cloud-directory/sla/
https://aws.amazon.com/cloud-directory/sla/
https://aws.amazon.com/cloudfront/sla/
https://aws.amazon.com/cloudfront/sla/
https://aws.amazon.com/cloudsearch/sla/
https://aws.amazon.com/cloudsearch/sla/
https://aws.amazon.com/cloudwatch/sla/
https://aws.amazon.com/cloudwatch/sla/
https://aws.amazon.com/cognito/sla/
https://aws.amazon.com/cognito/sla/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 56

Service Name SLA* (see

SLA URL)

SLA Last

Update

SLA URL for Details

Amazon Compute 99.99% March 19,

2019

https://aws.amazon.com/co

mpute/sla/

Amazon Connect 99.99% March 21,

2019

https://aws.amazon.com/con

nect/sla/

Amazon Database Migration 99.9% March 6,

2019

https://aws.amazon.com/dm

s/sla/

Amazon DocumentDB (with

MongoDB compatibility)

99.9% March 20,

2019

https://aws.amazon.com/doc

umentdb/sla/

Amazon DynamoDB Global

Tables

99.999% March 14,

2019

https://aws.amazon.com/dyn

amodb/sla/

Amazon DynamoDB

Standard

99.99% March 14,

2019

https://aws.amazon.com/dyn

amodb/sla/

Amazon EC2 99.99% March 19,

2019

https://aws.amazon.com/co

mpute/sla/

Amazon EFS 99.9% March 19,

2019

https://aws.amazon.com/efs/

sla/

Amazon EKS 99.9% March 19,

2019

https://aws.amazon.com/eks

/sla/

Amazon Elastic Block Store

(Amazon EBS)

99.99% March 19,

2019

https://aws.amazon.com/co

mpute/sla/

Amazon Elastic Container

Registry

99.9% March 15,

2019

https://aws.amazon.com/ecr/

sla/

Amazon Elastic Container

Service (Amazon ECS)

99.99% March 19,

2019

https://aws.amazon.com/co

mpute/sla/

Amazon Elastic Load

Balancing

99.99% March 13,

2019

https://aws.amazon.com/ela

sticloadbalancing/sla/

Amazon Elastic Transcoder 99.9% March 13,

2019

https://aws.amazon.com/ela

stictranscoder/sla/

Amazon ElastiCache 99.9% March 20,

2019

https://aws.amazon.com/ela

sticache/sla/

https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/connect/sla/
https://aws.amazon.com/connect/sla/
https://aws.amazon.com/dms/sla/
https://aws.amazon.com/dms/sla/
https://aws.amazon.com/documentdb/sla/
https://aws.amazon.com/documentdb/sla/
https://aws.amazon.com/dynamodb/sla/
https://aws.amazon.com/dynamodb/sla/
https://aws.amazon.com/dynamodb/sla/
https://aws.amazon.com/dynamodb/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/efs/sla/
https://aws.amazon.com/efs/sla/
https://aws.amazon.com/eks/sla/
https://aws.amazon.com/eks/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/ecr/sla/
https://aws.amazon.com/ecr/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/elasticloadbalancing/sla/
https://aws.amazon.com/elasticloadbalancing/sla/
https://aws.amazon.com/elastictranscoder/sla/
https://aws.amazon.com/elastictranscoder/sla/
https://aws.amazon.com/elasticache/sla/
https://aws.amazon.com/elasticache/sla/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 57

Service Name SLA* (see

SLA URL)

SLA Last

Update

SLA URL for Details

Amazon Elasticsearch

Service

99.9% March 20,

2019

https://aws.amazon.com/ela

sticsearch-service/sla/

Amazon EMR 99.9% March 12,

2019

https://aws.amazon.com/emr

/sla/

Amazon Fargate for

Amazon ECS (Amazon

Fargate)

99.99% March 19,

2019

https://aws.amazon.com/co

mpute/sla/

Amazon FSx 99.9% March 15,

2019

https://aws.amazon.com/fsx/

sla/

Amazon GuardDuty 99.9% March 13,

2019

https://aws.amazon.com/gua

rdduty/sla/

Amazon Inspector 99.9% March 16,

2019

https://aws.amazon.com/ins

pector/sla/

Amazon Kinesis Data

Firehose

99.9% March 20,

2019

https://aws.amazon.com/kin

esis/data-firehose/sla/

Amazon Kinesis Data

Streams

99.9% March 20,

2019

https://aws.amazon.com/kin

esis/data-streams/sla/

Amazon Kinesis Video

Streams

99.9% March 20,

2019

https://aws.amazon.com/kin

esis/video-streams/sla/

Amazon Lightsail Instance

and Block Storage

99.99% March 15,

2019

https://aws.amazon.com/ligh

tsail/sla-lightsail-instances-

and-block-storage/

Amazon Lightsail Managed

Databases

99.95% March 15,

2019

https://aws.amazon.com/ligh

tsail/sla-lightsail-managed-

databases/

Amazon Machine Learning

Language

99.9% March 14,

2019

https://aws.amazon.com/ma

chine-learning/language/sla/

Amazon Macie 99.9% March 15,

2019

https://aws.amazon.com/ma

cie/sla/

Amazon Messaging (SQS,

SNS)

99.9% March 19,

2019

https://aws.amazon.com/me

ssaging/sla/

https://aws.amazon.com/elasticsearch-service/sla/
https://aws.amazon.com/elasticsearch-service/sla/
https://aws.amazon.com/emr/sla/
https://aws.amazon.com/emr/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/fsx/sla/
https://aws.amazon.com/fsx/sla/
https://aws.amazon.com/guardduty/sla/
https://aws.amazon.com/guardduty/sla/
https://aws.amazon.com/inspector/sla/
https://aws.amazon.com/inspector/sla/
https://aws.amazon.com/kinesis/data-firehose/sla/
https://aws.amazon.com/kinesis/data-firehose/sla/
https://aws.amazon.com/kinesis/data-streams/sla/
https://aws.amazon.com/kinesis/data-streams/sla/
https://aws.amazon.com/kinesis/video-streams/sla/
https://aws.amazon.com/kinesis/video-streams/sla/
https://aws.amazon.com/lightsail/sla-lightsail-instances-and-block-storage/
https://aws.amazon.com/lightsail/sla-lightsail-instances-and-block-storage/
https://aws.amazon.com/lightsail/sla-lightsail-instances-and-block-storage/
https://aws.amazon.com/lightsail/sla-lightsail-managed-databases/
https://aws.amazon.com/lightsail/sla-lightsail-managed-databases/
https://aws.amazon.com/lightsail/sla-lightsail-managed-databases/
https://aws.amazon.com/machine-learning/language/sla/
https://aws.amazon.com/machine-learning/language/sla/
https://aws.amazon.com/macie/sla/
https://aws.amazon.com/macie/sla/
https://aws.amazon.com/messaging/sla/
https://aws.amazon.com/messaging/sla/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 58

Service Name SLA* (see

SLA URL)

SLA Last

Update

SLA URL for Details

Amazon MQ 99.9% March 19,

2019

https://aws.amazon.com/am

azon-mq/sla/

Amazon Neptune 99.9% March 8,

2019

https://aws.amazon.com/nep

tune/sla/

Amazon QuickSight 99.9% March 19,

2019

https://aws.amazon.com/qui

cksight/sla/

Amazon RDS 99.95% March 21,

2019

https://aws.amazon.com/rds/

sla/

Amazon Redshift 99.9% March 19,

2019

https://aws.amazon.com/red

shift/sla/

Amazon Rekognition 99.9% March 20,

2019

https://aws.amazon.com/rek

ognition/sla/

Amazon Route 53 100.0% November

21, 2018

https://aws.amazon.com/rout

e53/sla/

Amazon S3 99.9% March 20,

2019

https://aws.amazon.com/s3/

sla/

Amazon SageMaker 99.95% March 20,

2019

https://aws.amazon.com/sag

emaker/sla/

Amazon Simple Workflow 99.9% March 19,

2019

https://aws.amazon.com/swf/

sla/

Amazon SimpleDB 99.9% March 21,

2019

https://aws.amazon.com/sim

pledb/sla/

Amazon Storage Gateway 99.9% March 15,

2019

https://aws.amazon.com/tran

sfer/sla/

Amazon User Engagement

(Pinpoint, SES)

99.9% March 18,

2019

https://aws.amazon.com/pin

point/sla/

Amazon VPC NAT Gateway 99.9% March 14,

2019

https://aws.amazon.com/vpc

/sla/

Amazon WorkDocs 99.9% March 14,

2019

https://aws.amazon.com/wor

kdocs/sla/

https://aws.amazon.com/amazon-mq/sla/
https://aws.amazon.com/amazon-mq/sla/
https://aws.amazon.com/neptune/sla/
https://aws.amazon.com/neptune/sla/
https://aws.amazon.com/quicksight/sla/
https://aws.amazon.com/quicksight/sla/
https://aws.amazon.com/rds/sla/
https://aws.amazon.com/rds/sla/
https://aws.amazon.com/redshift/sla/
https://aws.amazon.com/redshift/sla/
https://aws.amazon.com/rekognition/sla/
https://aws.amazon.com/rekognition/sla/
https://aws.amazon.com/route53/sla/
https://aws.amazon.com/route53/sla/
https://aws.amazon.com/s3/sla/
https://aws.amazon.com/s3/sla/
https://aws.amazon.com/sagemaker/sla/
https://aws.amazon.com/sagemaker/sla/
https://aws.amazon.com/swf/sla/
https://aws.amazon.com/swf/sla/
https://aws.amazon.com/simpledb/sla/
https://aws.amazon.com/simpledb/sla/
https://aws.amazon.com/transfer/sla/
https://aws.amazon.com/transfer/sla/
https://aws.amazon.com/pinpoint/sla/
https://aws.amazon.com/pinpoint/sla/
https://aws.amazon.com/vpc/sla/
https://aws.amazon.com/vpc/sla/
https://aws.amazon.com/workdocs/sla/
https://aws.amazon.com/workdocs/sla/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 59

Service Name SLA* (see

SLA URL)

SLA Last

Update

SLA URL for Details

Amazon WorkLink 99.9% March 19,

2019

https://aws.amazon.com/wor

klink/amazon-worklink-

service-level-agreement/

Amazon WorkMail 99.9% March 19,

2019

https://aws.amazon.com/wor

kmail/amazon-workmail-

service-level-agreement/

Amazon WorkSpaces 99.9% March 19,

2019

https://aws.amazon.com/wor

kspaces/sla/

AWS Amplify Console 99.95% March 19,

2019

https://aws.amazon.com/am

plify/console/sla/

AWS AppSync 99.95% March 19,

2019

https://aws.amazon.com/app

sync/sla/

AWS Backup 99.9% March 18,

2019

https://aws.amazon.com/bac

kup/sla/

AWS Budgets 99.9% March 8,

2019

https://aws.amazon.com/aws

-cost-management/aws-

budgets/sla/

AWS Certificate Manager

Private Certificate Authority

99.9% March 15,

2019

https://aws.amazon.com/cert

ificate-manager/private-

certificate-authority/sla/

AWS Client VPN 99.9% March 13,

2019

https://aws.amazon.com/vpn

/client-vpn-sla/

AWS Cloud Map 99.9% March 12,

2019

https://aws.amazon.com/clo

ud-map/sla/

AWS CloudHSM 99.95% March 6,

2019

https://aws.amazon.com/clo

udhsm/sla/

AWS CloudTrail 99.9% March 18,

2019

https://aws.amazon.com/clo

udtrail/sla/

AWS CodeBuild 99.9% March 14,

2019

https://aws.amazon.com/cod

ebuild/sla/

AWS CodeCommit 99.9% March 14,

2019

https://aws.amazon.com/cod

ecommit/sla/

https://aws.amazon.com/worklink/amazon-worklink-service-level-agreement/
https://aws.amazon.com/worklink/amazon-worklink-service-level-agreement/
https://aws.amazon.com/worklink/amazon-worklink-service-level-agreement/
https://aws.amazon.com/workmail/amazon-workmail-service-level-agreement/
https://aws.amazon.com/workmail/amazon-workmail-service-level-agreement/
https://aws.amazon.com/workmail/amazon-workmail-service-level-agreement/
https://aws.amazon.com/workspaces/sla/
https://aws.amazon.com/workspaces/sla/
https://aws.amazon.com/amplify/console/sla/
https://aws.amazon.com/amplify/console/sla/
https://aws.amazon.com/appsync/sla/
https://aws.amazon.com/appsync/sla/
https://aws.amazon.com/backup/sla/
https://aws.amazon.com/backup/sla/
https://aws.amazon.com/aws-cost-management/aws-budgets/sla/
https://aws.amazon.com/aws-cost-management/aws-budgets/sla/
https://aws.amazon.com/aws-cost-management/aws-budgets/sla/
https://aws.amazon.com/certificate-manager/private-certificate-authority/sla/
https://aws.amazon.com/certificate-manager/private-certificate-authority/sla/
https://aws.amazon.com/certificate-manager/private-certificate-authority/sla/
https://aws.amazon.com/vpn/client-vpn-sla/
https://aws.amazon.com/vpn/client-vpn-sla/
https://aws.amazon.com/cloud-map/sla/
https://aws.amazon.com/cloud-map/sla/
https://aws.amazon.com/cloudhsm/sla/
https://aws.amazon.com/cloudhsm/sla/
https://aws.amazon.com/cloudtrail/sla/
https://aws.amazon.com/cloudtrail/sla/
https://aws.amazon.com/codebuild/sla/
https://aws.amazon.com/codebuild/sla/
https://aws.amazon.com/codecommit/sla/
https://aws.amazon.com/codecommit/sla/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 60

Service Name SLA* (see

SLA URL)

SLA Last

Update

SLA URL for Details

AWS CodeDeploy 99.9% March 14,

2019

https://aws.amazon.com/cod

edeploy/sla/

AWS CodePipeline 99.9% March 21,

2019

https://aws.amazon.com/cod

epipeline/sla/

AWS Config 99.9% March 12,

2019

https://aws.amazon.com/con

fig/sla/

AWS Cost Explorer API 99.9% March 8,

2019

https://aws.amazon.com/aws

-cost-management/aws-

cost-explorer/sla/

AWS Data Pipeline 99.9% March 19,

2019

https://aws.amazon.com/dat

apipeline/sla/

AWS DataSync 99.9% March 15,

2019

https://aws.amazon.com/tran

sfer/sla/

AWS Device Farm 99.9% March 19,

2019

https://aws.amazon.com/dev

ice-farm/sla/

AWS Direct Connect 99.99% March 20,

2019

https://aws.amazon.com/dire

ctconnect/sla/

AWS Directory Service 99.9% March 6,

2019

https://aws.amazon.com/dire

ctoryservice/sla/

AWS Elemental

MediaConnect

99.9% March 13,

2019

https://aws.amazon.com/me

diaconnect/sla/

AWS Elemental

MediaConvert

99.9% March 13,

2019

https://aws.amazon.com/me

diaconvert/sla/

AWS Elemental MediaLive 99.9% March 13,

2019

https://aws.amazon.com/me

dialive/sla/

AWS Elemental

MediaPackage

99.9% March 13,

2019

https://aws.amazon.com/me

diapackage/sla/

AWS Elemental MediaStore 99.9% March 13,

2019

https://aws.amazon.com/me

diastore/sla/

AWS Elemental MediaTailor 99.9% March 13,

2019

https://aws.amazon.com/me

diatailor/sla/

https://aws.amazon.com/codedeploy/sla/
https://aws.amazon.com/codedeploy/sla/
https://aws.amazon.com/codepipeline/sla/
https://aws.amazon.com/codepipeline/sla/
https://aws.amazon.com/config/sla/
https://aws.amazon.com/config/sla/
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/sla/
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/sla/
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/sla/
https://aws.amazon.com/datapipeline/sla/
https://aws.amazon.com/datapipeline/sla/
https://aws.amazon.com/transfer/sla/
https://aws.amazon.com/transfer/sla/
https://aws.amazon.com/device-farm/sla/
https://aws.amazon.com/device-farm/sla/
https://aws.amazon.com/directconnect/sla/
https://aws.amazon.com/directconnect/sla/
https://aws.amazon.com/directoryservice/sla/
https://aws.amazon.com/directoryservice/sla/
https://aws.amazon.com/mediaconnect/sla/
https://aws.amazon.com/mediaconnect/sla/
https://aws.amazon.com/mediaconvert/sla/
https://aws.amazon.com/mediaconvert/sla/
https://aws.amazon.com/medialive/sla/
https://aws.amazon.com/medialive/sla/
https://aws.amazon.com/mediapackage/sla/
https://aws.amazon.com/mediapackage/sla/
https://aws.amazon.com/mediastore/sla/
https://aws.amazon.com/mediastore/sla/
https://aws.amazon.com/mediatailor/sla/
https://aws.amazon.com/mediatailor/sla/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 61

Service Name SLA* (see

SLA URL)

SLA Last

Update

SLA URL for Details

AWS Firewall Manager 99.9% March 6,

2019

https://aws.amazon.com/fire

wall-manager/sla/

AWS GameLift 99.9% March 15,

2019

https://aws.amazon.com/ga

melift/sla/

AWS Global Accelerator 99.99% March 14,

2019

https://aws.amazon.com/glo

bal-accelerator/sla/

AWS Glue 99.9% March 20,

2019

https://aws.amazon.com/glu

e/sla/

AWS Hybrid Storage and

Data Transfer

99.9% March 15,

2019

https://aws.amazon.com/tran

sfer/sla/

AWS IoT 1-Click 99.9% March 14,

2019

https://aws.amazon.com/iot-

1-click/sla/

AWS IoT Analytics 99.9% March 19,

2019

https://aws.amazon.com/iot-

analytics/sla/

AWS IoT Core 99.9% March 19,

2019

https://aws.amazon.com/iot-

core/sla/

AWS IoT Device Defender 99.9% March 19,

2019

https://aws.amazon.com/iot-

device-defender/sla/

AWS IoT Device

Management

99.9% March 19,

2019

https://aws.amazon.com/iot-

device-management/sla/

AWS IoT Device

Management

99.9% March 19,

2019

https://aws.amazon.com/iot-

device-management/sla/

AWS IoT Greengrass 99.9% March 19,

2019

https://aws.amazon.com/gre

engrass/sla/

AWS Key Management

Service

99.9% March 6,

2019

https://aws.amazon.com/km

s/sla/

AWS Lambda 99.95% March 19,

2019

https://aws.amazon.com/lam

bda/sla/

AWS OpsWorks 99.9% March 7,

2019

https://aws.amazon.com/ops

works/sla/

https://aws.amazon.com/firewall-manager/sla/
https://aws.amazon.com/firewall-manager/sla/
https://aws.amazon.com/gamelift/sla/
https://aws.amazon.com/gamelift/sla/
https://aws.amazon.com/global-accelerator/sla/
https://aws.amazon.com/global-accelerator/sla/
https://aws.amazon.com/glue/sla/
https://aws.amazon.com/glue/sla/
https://aws.amazon.com/transfer/sla/
https://aws.amazon.com/transfer/sla/
https://aws.amazon.com/iot-1-click/sla/
https://aws.amazon.com/iot-1-click/sla/
https://aws.amazon.com/iot-analytics/sla/
https://aws.amazon.com/iot-analytics/sla/
https://aws.amazon.com/iot-core/sla/
https://aws.amazon.com/iot-core/sla/
https://aws.amazon.com/iot-device-defender/sla/
https://aws.amazon.com/iot-device-defender/sla/
https://aws.amazon.com/iot-device-management/sla/
https://aws.amazon.com/iot-device-management/sla/
https://aws.amazon.com/iot-device-management/sla/
https://aws.amazon.com/iot-device-management/sla/
https://aws.amazon.com/greengrass/sla/
https://aws.amazon.com/greengrass/sla/
https://aws.amazon.com/kms/sla/
https://aws.amazon.com/kms/sla/
https://aws.amazon.com/lambda/sla/
https://aws.amazon.com/lambda/sla/
https://aws.amazon.com/opsworks/sla/
https://aws.amazon.com/opsworks/sla/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 62

Service Name SLA* (see

SLA URL)

SLA Last

Update

SLA URL for Details

AWS PrivateLink 99.9% March 20,

2019

https://aws.amazon.com/priv

atelink/sla/

AWS RoboMaker 99.9% March 14,

2019

https://aws.amazon.com/rob

omaker/sla/

AWS Secrets Manager 99.9% March 6,

2019

https://aws.amazon.com/sec

rets-manager/sla/

AWS Security Hub 99.9% March 20,

2019

https://aws.amazon.com/sec

urity-hub/sla/

AWS Service Catalog 99.9% March 14,

2019

https://aws.amazon.com/ser

vicecatalog/sla/

AWS Shield Advanced See SLA

URL

March 6,

2019

https://aws.amazon.com/shi

eld/sla/

AWS Site-to-Site VPN 99.95% March 13,

2019

https://aws.amazon.com/vpn

/site-to-site-vpn-sla/

AWS Step Functions 99.9% March 19,

2019

https://aws.amazon.com/ste

p-functions/sla/

AWS Systems Manager 99.9% March 6,

2019

https://aws.amazon.com/syst

ems-manager/sla/

AWS Transfer for SFTP 99.9% March 15,

2019

https://aws.amazon.com/tran

sfer/sla/

AWS Transit Gateway 99.95% March 14,

2019

https://aws.amazon.com/tran

sit-gateway/sla/

AWS WAF 99.95% March 6,

2019

https://aws.amazon.com/waf

/sla/

Appendix F: Failure Modes and Effects Analysis

The Failure Modes and Effects Analysis (FMEA) spreadsheet below is used to capture

and prioritize risks based on severity, probability and detectability where each is rated

on a 1 to 10 scale. A standard model for each follows, including suggested rankings

https://aws.amazon.com/privatelink/sla/
https://aws.amazon.com/privatelink/sla/
https://aws.amazon.com/robomaker/sla/
https://aws.amazon.com/robomaker/sla/
https://aws.amazon.com/secrets-manager/sla/
https://aws.amazon.com/secrets-manager/sla/
https://aws.amazon.com/security-hub/sla/
https://aws.amazon.com/security-hub/sla/
https://aws.amazon.com/servicecatalog/sla/
https://aws.amazon.com/servicecatalog/sla/
https://aws.amazon.com/shield/sla/
https://aws.amazon.com/shield/sla/
https://aws.amazon.com/vpn/site-to-site-vpn-sla/
https://aws.amazon.com/vpn/site-to-site-vpn-sla/
https://aws.amazon.com/step-functions/sla/
https://aws.amazon.com/step-functions/sla/
https://aws.amazon.com/systems-manager/sla/
https://aws.amazon.com/systems-manager/sla/
https://aws.amazon.com/transfer/sla/
https://aws.amazon.com/transfer/sla/
https://aws.amazon.com/transit-gateway/sla/
https://aws.amazon.com/transit-gateway/sla/
https://aws.amazon.com/waf/sla/
https://aws.amazon.com/waf/sla/

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 63

Severity starts with several high levels that destroy things, in other words, irreversible

failures like death or incapacitation of a person, destruction of machinery, flood, or fire in

a data center. The subsequent levels are temporary incapacitation, recoverable with

degradation of performance, and finally ratings of minor or no effect.

Table 9

Effect Severity of effect Ranking

Hazardous without

warning

Very high severity ranking when a potential failure mode

affects safe system operation without warning

10

Hazardous with

warning

Very high severity ranking when a potential failure mode

affects safe system operation with warning

9

Very High System inoperable with destructive failure without

compromising safety

8

High System inoperable with equipment damage 7

Moderate System inoperable with minor damage 6

Low System inoperable without damage 5

Very Low System operable with significant degradation of

performance

4

Minor System operable with some degradation of performance 3

Very Minor System operable with minimal interference 2

None No effect 1

For probability, we use an exponential scale, from almost inevitable and repeated

observed failures down through occasional failures and failures that haven’t been seen

in practice. The probabilities are estimates during the design phase, but should be

measured in real life when a system is operating, and the risk updated based on what is

seen in practice.

Table 10

Probability of Failure Failure Probability Ranking

Very High: Failure is almost inevitable >1 in 2 10

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 64

Probability of Failure Failure Probability Ranking

 1 in 3 9

High: Repeated failures

1 in 8 8

1 in 20 7

Moderate: Occasional failures

1 in 80 6

1 in 400 5

1 in 2,000 4

Low: Relatively few failures

1 in 15,000 3

1 in 150,000 2

Remote: Failure is unlikely <1 in 1,500,000 1

Detectability is focused on design control, metrics that track behavior of the system, and

alerting rules that can initiate an incident to investigate a fault. If there is no way to

detect the failure, it gets a high score. If we have a robust and well-tested alert for the

issue and a clear incident handling process in place, it gets the lowest score.

Table 11

Detection Likelihood of Detection by Design Control Ranking

Absolute

Uncertainty

Design control cannot detect potential cause/mechanism

and subsequent failure mode

10

Very Remote Very remote chance the design control will detect

potential cause/mechanism and subsequent failure mode

9

Remote Remote chance the design control will detect potential

cause/mechanism and subsequent failure mode

8

Very Low Very low chance the design control will detect potential

cause/mechanism and subsequent failure mode

7

Low Low chance the design control will detect potential

cause/mechanism and subsequent failure mode

6

Moderate Moderate chance the design control will detect potential

cause/mechanism and subsequent failure mode

5

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 65

Detection Likelihood of Detection by Design Control Ranking

Moderately High Moderately High chance the design control will detect

potential cause/mechanism and subsequent failure mode

4

High High chance the design control will detect potential

cause/mechanism and subsequent failure mode

3

Very High Very high chance the design control will detect potential

cause/mechanism and subsequent failure mode

2

Almost Certain Design control will detect potential cause/mechanism and

subsequent failure mode

1

The spreadsheet is organized into sections, listing failure modes for each function.

There is also a recommended action, listing who is responsible and when, actions taken

and the updated severity, occurrence, and detectability that lead to a planned reduction

in the RPN. The rows are shown split below for readability. The only formula needed is

RPN=Sev*Prob*Det.

Item /
Function

Potential
Failure
Mode(s)

Potential
Effect(s)
of Failure

Sev

Potential
Cause(s)/
Mechanism(s) of
Failure

Prob
Current
Design
Controls

Det RPN

 Action
Results

Recommended
Action(s)

Responsibility & Target
Completion Date

Actions
Taken

New
Sev

New
Occ

New
Det

New
RPN

Application Layer FMEA

The first FMEA models the application layer, assuming it is implementing a web page or

network accessed API. Each step in the access protocol is modelled as a possible

failure mode, starting with authentication, then the access itself. This is followed by

common code related failure modes. For a specific application team, these should be

discussed, prioritized, and have additional failure modes added.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 66

Table 12

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(

s) of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

Authenticati

on

Client can't

authenticat

e

Can't

connect

applicati

on

5 Certificate

timeout,

version

mismatch,

account not

setup,

credential

changed

3 Log and alert

on

authentication

failures

3 45

Slow or

unreliable

authenticati

on

Slow

start for

applicati

on

4 Auth service

overloaded,

high error and

retry rate

3 Log and alert

on high

authentication

latency and

errors

4 48

 0

Client

Request to

API

Endpoint

Service

unknown,

address un-

resolvable

Delay

while

discover

y or DNS

times

out, slow

fallback

response

5 DNS

configuration

error, denial

of service

attack, or

provider

failure

1 Customer

eventually

complains via

call center

1

0

50 Dual

redundant

DNS, fallback

to local

cache,

hardcoded IP

addresses.

Endpoint

monitoring

and alerts

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 67

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(

s) of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

Service

unreachabl

e, request

undeliverab

le

Fast fail,

no

response

4 Network route

down or no

service

instances

running

1 Autoscaler

maintains a

number of

healthy

instances

1 4 Endpoint

monitoring

and alerts

Service

reachable,

request

undeliverab

le

Connect

timeout,

slow fail,

no

response

4 Service

frozen/not

accepting

connection

1 Retry request

on different

instance.

Healthcheck

failure

instances

removed. Log

and alert.

2 8

Request

delivered,

no

response -

stall

Applicati

on

request

timeout,

slow fail,

no

response

4 Broken

service code,

overloaded

CPU or slow

dependencies

1 Retry request

on different

instance.

Healthcheck

failure

instances

removed. Log

and alert.

2 8

Response

undeliverab

le

Applicati

on

request

timeout,

slow fail,

no

response

4 Network

return route

failure,

dropped

packets

1 Retry request

on different

instance.

Healthcheck

failure

instances

removed. Log

and alert.

2 8

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 68

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(

s) of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

 Response

received in

time but

empty or

unintelligibl

e

Fast fail,

no

response

3 Version

mismatch or

exception in

service code

2 Retry request

on different

instance.

Healthcheck

failure

instances

removed. Log

and alert.

2 12

 Request

delivered,

response

delayed

beyond

spec

Degrade

d

response

arrives

too late,

slow

fallback

response

6 Service

overloaded or

GC hit,

dependent

services

responding

slowly

2 Retry request

on different

instance.

Healthcheck

failure

instances

removed. Log

and alert.

2 24

 Request

delivered,

degraded

response

delivered in

time

Degrade

d timely

response

2 Service

overloaded or

GC hit,

dependent

services

responding

slowly

2 Log and alert

on high

service

latency and

errors

2 8

Time

Bombs

Internal

application

counter

wraparound

 Test long

running

operations of

code base

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 69

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(

s) of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

Memory

leak

 Monitor

process sizes

and garbage

collection

intervals over

time

Date

Bombs

Leap year,

leap

second,

epoch wrap

around,

"Y2K"

 Test across

date

boundaries

Content

Bombs

Incoming

data that

crashes the

app

 Fuzz the input

with

generated

random and

structured

data to show

it doesn't

crash.

Configuratio

n Errors

Configurati

on file

syntax

errors or

incorrect

values

 Canary test

deployments

incrementally.

Chaos

testing.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 70

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(

s) of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

Versioning

Errors

Incompatibl

e interface

versions

 Canary test

deployments

incrementally

Retry

Storms

Too many

retries, too

large

timeout

values

 Chaos testing

applications

under stress

Excessive

Logging

Cascading

overload

 Chaos testing

applications

under stress

Software Stack FMEA

The software stack starts along the same lines, with authentication and a request

response sequence. However, the more specific failure modes relate to the control

planes for services hosted in cloud regions. In general, a good way to avoid customer-

visible issues caused by control plane failure modes is to pre-allocate network,

compute, and database structures wherever possible. The cost of failure should be

weighed against the cost of mitigation.

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 71

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(s)

of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

Authenticati

on to cloud

services

Client can't

authenticat

e

Can't

connect

applicati

on

5 Certificate

timeout,

version

mismatch,

account not

setup,

credential

changed

3 Log and alert

on

authentication

failures

3 45

Slow or

unreliable

authenticati

on

Slow

start for

applicati

on

4 Auth service

overloaded,

high error and

retry rate

3 Log and alert

on high

authentication

latency and

errors

4 48

 0

Client

request to

cloud

service

endpoint

Service

unknown,

address un-

resolvable

Delay

while

discover

y or DNS

times

out, slow

fallback

response

5 DNS

configuration

error, denial of

service attack,

or provider

failure

1 0

Service

unreachabl

e, request

undeliverab

le

Fast fail,

no

response

4 Network route

down or no

service

instances

running

1 0

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 72

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(s)

of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

Service

reachable,

request

undeliverab

le

Connect

timeout,

slow fail,

no

response

4 Service

frozen/not

accepting

connection

1 0

Request

delivered,

no

response -

stall

Applicati

on

request

timeout,

slow fail,

no

response

4 Broken service

code,

overloaded

CPU or slow

dependencies

1 0

Response

undeliverab

le

Applicati

on

request

timeout,

slow fail,

no

response

4 Network return

route failure,

dropped

packets

1 0

Response

received in

time but

empty or

unintelligibl

e

Fast fail,

no

response

3 Version

mismatch or

exception in

service code

2 0

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 73

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(s)

of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

Request

delivered,

response

delayed

beyond

spec

Degrade

d

response

arrives

too late,

slow

fallback

response

6 Service

overloaded or

GC hit,

dependent

services

responding

slowly

2 0

Request

delivered,

degraded

response

delivered in

time

Degrade

d timely

response

2 Service

overloaded or

GC hit,

dependent

services

responding

slowly

2 0

EC2 Control

Plane

Instance

request

refused,

direct or via

autoscaler

Capacity

limited or

control

plane

failure

 Limit reached,

or Insufficient

Capacity

Exception

 Service call

for increased

limit. Try a

different

instance

type, different

zone, or

different

region

Instance

created but

fails to start

Bad

instance

hardware

 0 Retry via

autoscaler

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 74

Item /

Function

Potential

Failure

Mode(s)

Potentia

l

Effect(s)

of

Failure

S

E

V

Potential

Cause(s)/

Mechanism(s)

of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommend

ed

Action(s)

Instance

slow to start

EC2

Network

Control

Plane

Configurati

on request

refused

Capacity

limited or

control

plane

failure

 Limit reached,

or Insufficient

Capacity

Exception

 Service call

for increased

limit. Try a

different

zone, or

different

region

Network

creation

started but

operation

fails

 0 Pre-allocate

all network

structures in

all regions

Database

Control

Plane

(DynamoDB

or Aurora)

Configurati

on request

refused

 0 Service call

for increased

limit. Try a

different

zone, or

different

region

Database

table

creation

started but

operation

fails

 0 Pre-allocate

all database

tables in all

regions

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 75

Infrastructure FMEA

Service-specific control plane outages are part of the software stack FMEA. If a data

center building is destroyed by fire or flood, this is a different kind of failure compared to

a temporary power outage or cooling system failure, and that’s also different from losing

connectivity to a building where all the systems are still running, but isolated. In practice,

we can expect individual machines to fail randomly with very low probability, groups of

similar machines to fail in a correlated way due to bad batches of components and

firmware bugs, and extremely rare availability zone-scoped events caused by weather,

earthquake, fire, and flood.

Table 13

Item /

Function

Potential

Failure

Mode(s)

Potential

Effect(s)

of Failure

S

E

V

Potential

Cause(s)/

Mechanism(s

) of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommende

d

Action(s)

Availability

Zone

Durability

Permanent

destruction

of zone

Total data

loss in

zone

8 Fire or flood

inside building

or destruction

of data center

building

2 Cross zone

synchronous

replication to

over 10Km

away

1 16 Ensure that

system can

run on two out

of three zones

Temporary

loss of

zone

Loss of

compute

capacity

and non-

durable

state in

zone

5 Power or

cooling

outage

causes reboot

of part or all of

a data center

building

3 Cross zone

synchronous

replication to

over 10Km

away

1 15 Ensure that

system can

run on two out

of three zones

 0

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 76

Item /

Function

Potential

Failure

Mode(s)

Potential

Effect(s)

of Failure

S

E

V

Potential

Cause(s)/

Mechanism(s

) of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommende

d

Action(s)

Region

Connectivit

y

Address

un-

resolvable

Delay

while DNS

times out,

slow

fallback

response

5 DNS

configuration

error, denial of

service attack,

or provider

failure

1 0 Dual

redundant

DNS, fallback

to local cache,

hardcoded IP

addresses.

Endpoint

monitoring and

alerts

Unreachab

le, request

undelivera

ble

Fast fail,

no

response

4 Network route

down

1 0 Failover to

secondary

region

Request

undelivera

ble

Connect

timeout,

slow fail,

no

response

4 Router

frozen/not

accepting

connection

1 0 Failover to

secondary

region

Request

delivered,

no

response -

stall

Applicatio

n request

timeout,

slow fail,

no

response

4 Broken router,

overloaded

network or

slow

dependencies

1 0 Failover to

secondary

region

Response

undelivera

ble

Applicatio

n request

timeout,

slow fail,

4 Network

return route

failure,

dropped

packets

1 0 Failover to

secondary

region

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 77

Item /

Function

Potential

Failure

Mode(s)

Potential

Effect(s)

of Failure

S

E

V

Potential

Cause(s)/

Mechanism(s

) of Failure

P

R

O

B

Current

Design

Controls

D

E

T

RPN Recommende

d

Action(s)

no

response

Response

received in

time but

empty or

unintelligibl

e

Fast fail,

no

response

3 Network

response

failure

2 0 Failover to

secondary

region

Request

delivered,

response

delayed

beyond

spec

Degraded

response

arrives too

late, slow

fallback

response

6 Network

overloaded

dependent

services

responding

slowly

2 0 Failover to

secondary

region

Request

delivered,

degraded

response

delivered

in time

Degraded

timely

response

2 Service

overloaded,

dependent

services

responding

slowly

2 0 Alert operators

Operations and Observability FMEA

Misleading and confusing monitoring systems can cause failures to be magnified rather

than mitigated. It is imperative that monitoring be centralized to provide overall health of

the system. Operations rely upon monitoring to take the corresponding action (based

upon runbooks and other scenario-based drill exercises). Failure of monitoring or

monitoring systems can exacerbate any problem. Using AWS native monitoring tools

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 78

such as CloudWatch and CloudWatch Logs (using custom metrics), and having a

monitoring strategy (e.g. agent-based monitoring vs. centralized monitoring systems)

can help mitigate the impact.

Table 14

Item /

Function

Potential

Failure

Mode(s)

Potential

Effect(s)

of Failure

SEV Potential

Cause(s) /

Mechanism(s) of

Failure

PROB Current

Design

Controls

DET RPN

Authentication Monitoring

agent can't

authenticate

Can't monitor

application

5 Certificate

timeout, version

mismatch,

account not setup,

credential

changed

3 Log and alert

on

authentication

failures

3 45

Monitoring

tool end user

operator can't

authenticate

Can't monitor

system,

increased

MTTR

5 Certificate

timeout, version

mismatch,

account not setup,

credential

changed

3 Log and alert

on

authentication

failures

3 45

Slow or

unreliable

authentication

Errors and

delays in

observability

and alerts

4 Auth service

overloaded, high

error and retry

rate

3 Log and alert

on high

authentication

latency and

errors

4 48

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 79

1 http://www.fsb.org/work-of-the-fsb/policy-development/systematically-important-financial-

institutions-sifis/

SIFIs are defined by the Financial Stability Board (FSB) as “financial institutions whose distress

or disorderly failure, because of their size, complexity and systemic interconnectedness, would

cause significant disruption to the wider financial system and economic activity.”

2 http://www.fsb.org/work-of-the-fsb/policy-development/building-resilience-of-financial-

institutions/

3 https://www.newyorkfed.org/medialibrary/media/banking/circulars/11522.pdf

Additional authorities have introduced their own resiliency policies. Under the auspices of the

Federal Financial Institution Examination Council (FFIEC), U.S. banking agencies expect FIs

to conduct due diligence and oversee the ability of their third-party providers to provide

continuity of service through (a) contractual terms, (b) monitoring mechanisms, and (c) if

warranted by the level and criticality of services provided, BCP testing with third parties. The

FFIEC BCP guidelines also cover, among other things, data center recovery models (e.g.,

active-active), capacity planning, and cyber resilience. The FFIEC states that “[i]t is incumbent

on financial institutions and third-party service providers to identify and prepare for potentially-

significant disruptive events, including those that may have a low probability of occurring but

would have a high impact on the institution.”

Additionally, financial institutions across the industry that perform critical economic functions

through payments, clearing, and settlement conduct institution-specific, annual tests of their

business continuity plans, including both application- and data center-level testing. Industry-

wide, approximately 172 organizations (including securities firms, banks, exchanges, and

market utilities) also participate in the annual Securities Industry and Financial Markets

Association (SIFMA) Industry Business Continuity Test . In the SIFMA Test, participants

activate their backup sites to transmit and confirm dummy orders to markets, conduct test

payments transactions, and receive and verify market data.

And FIs participate in additional table-top exercises and facilitated discussions, to prepare for

different scenarios, including with U.S. regulatory agencies through the U.S. Treasury

Department’s Hamilton cybersecurity exercise series.

4 http://www.fsb.org/what-we-do/policy-development/building-resilience-of-financial-institutions/,

https://www.bis.org/cpmi/publ/d146.pdf

Notes

http://www.fsb.org/work-of-the-fsb/policy-development/systematically-important-financial-institutions-sifis/
http://www.fsb.org/work-of-the-fsb/policy-development/systematically-important-financial-institutions-sifis/
http://www.fsb.org/work-of-the-fsb/policy-development/building-resilience-of-financial-institutions/
http://www.fsb.org/work-of-the-fsb/policy-development/building-resilience-of-financial-institutions/
https://www.newyorkfed.org/medialibrary/media/banking/circulars/11522.pdf
http://www.fsb.org/what-we-do/policy-development/building-resilience-of-financial-institutions/
https://www.bis.org/cpmi/publ/d146.pdf

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 80

5 https://www.sec.gov/divisions/marketreg/lessonslearned.htm, https://www.occ.treas.gov/news-

issuances/bulletins/2003/OCC2003-14a.pdf

6 http://www.fsb.org/work-of-the-fsb/policy-development/systematically-important-financial-

institutions-sifis/

7 https://www.bis.org/bcbs/basel3.htm

8 https://www.bis.org/cpmi/publ/d101a.pdf

9 https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/discussion-

paper/2018/dp118.pdf

10 https://aws.amazon.com/architecture/well-architected/

11 https://aws.amazon.com/compliance/shared-responsibility-model/

12 https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

13 https://aws.amazon.com/about-aws/global-infrastructure/

14 https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

15 https://aws.amazon.com/about-aws/global-infrastructure/

16 https://aws.amazon.com/route53/sla/

17 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html

18 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-copy-snapshot.html

19 https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html

20 https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html

21 https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replication.html

22 https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

23 https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html

24 https://docs.aws.amazon.com/neptune/latest/userguide/API_CopyDBClusterSnapshot.html

25 https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-snapshots.html

26 https://docs.aws.amazon.com/cloudhsm/latest/userguide/copy-backup-to-region.html

27 https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

28 https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

https://www.sec.gov/divisions/marketreg/lessonslearned.htm
https://www.occ.treas.gov/news-issuances/bulletins/2003/OCC2003-14a.pdf
https://www.occ.treas.gov/news-issuances/bulletins/2003/OCC2003-14a.pdf
http://www.fsb.org/work-of-the-fsb/policy-development/systematically-important-financial-institutions-sifis/
http://www.fsb.org/work-of-the-fsb/policy-development/systematically-important-financial-institutions-sifis/
https://www.bis.org/bcbs/basel3.htm
https://www.bis.org/cpmi/publ/d101a.pdf
https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/discussion-paper/2018/dp118.pdf
https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/discussion-paper/2018/dp118.pdf
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf
https://aws.amazon.com/about-aws/global-infrastructure/
https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/route53/sla/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-copy-snapshot.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/neptune/latest/userguide/API_CopyDBClusterSnapshot.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-snapshots.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/copy-backup-to-region.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

Amazon Web Services Building Mission-Critical Financial Services Applications on AWS

 Page 81

29 https://docs.aws.amazon.com/aws-technical-content/latest/aws-vpc-connectivity-

options/transit-vpc.html

30 https://aws.amazon.com/answers/networking/aws-global-transit-network/

31 https://aws.amazon.com/s3/reduced-redundancy/

32 https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html

33 https://docs.aws.amazon.com/efs/latest/ug/gs-step-four-sync-files.html

34 https://aws.amazon.com/marketplace/pp/B073V2KBXM?qid=1537469325453

35 https://aws.amazon.com/marketplace/pp/B00K3ALGT6?qid=1537469471064

36 https://aws.amazon.com/marketplace/pp/B06VV22NYN?qid=1537469471064

37 https://aws.amazon.com/marketplace/pp/B01LZV5DUJ?qid=1537469619748

38 https://www.zerto.com/solutions/use-cases/complete-bcdr-solution-business-continuity-

disaster-recovery/

39 https://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_Applications.pdf

40 https://www.youtube.com/watch?v=FkzW1UCc7B4

41 https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

42 https://aws.amazon.com/economics/

43 https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/useconsolidatedbilling-

discounts.html

44 https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/

45 https://principlesofchaos.org/

46 https://medium.com/netflix-techblog/project-nimble-region-evacuation-reimagined-

d0d0568254d4

47 https://aws.amazon.com/legal/service-level-agreements/

https://docs.aws.amazon.com/aws-technical-content/latest/aws-vpc-connectivity-options/transit-vpc.html
https://docs.aws.amazon.com/aws-technical-content/latest/aws-vpc-connectivity-options/transit-vpc.html
https://aws.amazon.com/answers/networking/aws-global-transit-network/
https://aws.amazon.com/s3/reduced-redundancy/
https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.aws.amazon.com/efs/latest/ug/gs-step-four-sync-files.html
https://aws.amazon.com/marketplace/pp/B073V2KBXM?qid=1537469325453
https://aws.amazon.com/marketplace/pp/B00K3ALGT6?qid=1537469471064
https://aws.amazon.com/marketplace/pp/B06VV22NYN?qid=1537469471064
https://aws.amazon.com/marketplace/pp/B01LZV5DUJ?qid=1537469619748
https://www.zerto.com/solutions/use-cases/complete-bcdr-solution-business-continuity-disaster-recovery/
https://www.zerto.com/solutions/use-cases/complete-bcdr-solution-business-continuity-disaster-recovery/
https://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_Applications.pdf
https://www.youtube.com/watch?v=FkzW1UCc7B4
https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
https://aws.amazon.com/economics/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/useconsolidatedbilling-discounts.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/useconsolidatedbilling-discounts.html
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://principlesofchaos.org/
https://medium.com/netflix-techblog/project-nimble-region-evacuation-reimagined-d0d0568254d4
https://medium.com/netflix-techblog/project-nimble-region-evacuation-reimagined-d0d0568254d4
https://aws.amazon.com/legal/service-level-agreements/

	Introduction
	Risk and Resiliency in Financial Services
	Modern Resiliency Requirements
	Managing Risk

	Principles of Resiliency
	The AWS Well-Architected Framework
	Shared Responsibility
	Taxonomy of Application Availability
	Understanding Application Failure
	Automated Operations
	Consistent Development and Deployment
	Predictive Monitoring with Proactive Responses

	AWS Cloud
	AWS Infrastructure
	AWS Regions
	Availability Zones

	AWS Services Design
	Cell-Based Architecture
	Multi-AZ Architecture
	Micro-Service Architecture

	AWS Services Scope
	AWS services scoped to a single AZ
	Regional AWS services
	Global and edge-based services
	Services with cross-regional capability

	Design Patterns for Critical Applications
	Design Practices
	Network Access
	Data Availability
	Build Self-healing and Stateless Applications

	Application Resiliency Blueprints
	Active – Standby (Static Resiliency)
	Active – Active (Distributed Resiliency)
	Dual Write (Parallel Resiliency)
	Satellite Region

	Operational Resilience
	Design Principles
	Monitoring
	Automation
	Application Deployment
	Cost Optimization Practices
	Reserved Instances
	Maximizing Return
	Run Lower Priority Workloads on the Reserved Capacity

	Application Testing and Certification
	Chaos Engineering
	Building a hypothesis around steady state behavior
	Applying variations to simulate real world events
	Run experiments in production
	Automate the experiments to run continuously
	Minimize blast radius of failures

	Conclusion
	Contributors
	Further Reading
	AWS Documentation
	AWS Presentations: Disaster Recovery

	Document Revisions
	Appendix A: Financial Services Applications
	Appendix B: Designed-For Availability for Select AWS Services
	Appendix C: Service Capabilities
	Appendix D: Disaster Recovery Checklist
	Application Readiness
	Dependencies
	Configuration

	Environment Readiness – DR Region
	Configuration/Automation
	Compute
	Network
	Storage
	Security & Logging

	Appendix E: List of Service Level Agreements for AWS Services
	Appendix F: Failure Modes and Effects Analysis
	Application Layer FMEA
	Software Stack FMEA
	Infrastructure FMEA
	Operations and Observability FMEA

