Eseye AnyNet Secure™
AWS SIM Specification Sheet

Business benefits

- Reduced risk on IoT deployments
- Reduced total cost of ownership
- No manual password entry
- No onsite configuration
- No release of security keys to 3rd parties
- No need for call centre provision

- Remote lifetime management
- 440 MNOs = secure connectivity in over 160 countries
- Simple, secure access to the AWS cloud
- Single bill verses multiple MNO contracts
- Increased management control

Key enabling features

- Secure, automated, remote provisioning of IoT devices to the AWS IoT Cloud
- Identifies, catalogues and connects IoT devices to the cloud or enterprise platform
- Activates, provisions, authenticates, and certifies the IoT device
- Full suite of security features, including IMEI locking and bespoke firewall
- Secure networking prevents information leakage to unapproved locations
- Provides real-time SIM location based services

- Network agnostic managed global cellular connectivity with worldwide network coverage and access to more than 440 Mobile networks in more than 160 countries
- Multiple ‘over the air’ reprogrammable IMSIs
- Flexible integration - embedded or standard card form-factors
- Ingests data from the IoT device to the cloud
- Full data capture and analysis available with Eseye Services
- Real-time billing alerts and cost management

Visit AWS Marketplace to learn more about Eseye AnyNet Secure.

“We can now offer a solution capable of connecting networks using a single AnyNet SIM... reducing our costs by 25% while delivering a superior solution and customer experience.” PHILIPS HEALTHCARE
How it works

1. The factory connects to the cloud or enterprise console. Set-up of the secure digital identity begins.
2. The factory triggers the creation of a certificate and policy. The cloud electronically sends a unique certificate and a request to provision the SIM to Eseye.
3. Eseye then sends the certificate to the AnyNet Secure SIM as it is fired up and tested in the factory.
4. The device is provisioned, certified and secured by the device manufacturer... and away it goes...
5. When with the end user and first switched on, the device communicates with the cloud. The cloud recognises the device and a new policy and certificate is created.
6. The certificate is then delivered, via Eseye, over the air into the device’s SIM.
7. The IoT cloud connection is securely established and application data starts flowing.
Specifications

SIM Type
• Standard 2FF, 3FF card or MFF2 embedded
• 4FF Nano cards & specs available upon request

MFF2 Operation

<table>
<thead>
<tr>
<th>MFF2 EMBEDDED SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
</tr>
<tr>
<td>Temperature Humidity Bias (THB)</td>
</tr>
<tr>
<td>Storage temp</td>
</tr>
<tr>
<td>Vibration Variable Frequency (VVF)</td>
</tr>
</tbody>
</table>

MFF2 Power
• Supply Voltage Range: 1.62 V to 3.3 V

MFF2 Package Dimensions
• Weight: 0.17g

Provisioning & Management
• AWS IoT Management Console
• Eseye SIAM Portal (account required)
• API Available

Features
• SMS/MMS/USSD/CSD
• ICCID Barcode

Security
• Private APN
• Side Channel Attack Detection: (SPA, DPA)
• Encrypted storage: code, keys and data
• APN firewall
• Blocking available on IMEI, Location, Country and Services
• Flexible feature enablement/dis-enablement

Memory & Data Storage
• Non Volatile Memory (NVM): 64 kB
• Write/Erase Time (max.): 2.3 ms
• Data Retention Time (min.): over 10 years at -40 to +85°C
• High stress memory (HSM) supports >2M E/W cycles per file

SIM PIN Definitions

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIM CARD (2FF/3FF)</th>
<th>EMBEDDED SIM (MFF2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>RST</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>CLK</td>
<td>I/O</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>VPP</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>I/O</td>
<td>CLK</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>RST</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>VDD</td>
</tr>
</tbody>
</table>

Conforming to the JEDEC specification, ideal for automated soldering as part of manufacturing package thickness shall not exceed 1.0mm. An index marker will be visible on the exposed metal heat feature located at the terminal 1 corner. The topside terminal 1 shall be indicated by a marked feature. The exposed metal heat feature (exposed die pad) of the package is either electrically connected internally to ground or it is not electrically connected within the package. The electrical handling of the JEDEC terminals shall be as defined in ETSI TS 102 221.

Order Information

• Available to order via email to secure@eseye.com
• Minimum Order Quantity: Please speak to us for 2FF / 3FF and 1000 SIMs MFF2
• Lead time: we aim to process all 2FF / 3FF SIM Card orders on the day of order (if ordered before 3PM GMT)
• Please note, these specifications may be subject to change without prior notice

<table>
<thead>
<tr>
<th>Name</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnyNet Secure 2FF/3FF</td>
<td>ES4613</td>
</tr>
<tr>
<td>AnyNet Secure MFF2</td>
<td>ES4623</td>
</tr>
</tbody>
</table>

Visit AWS Marketplace to learn more about Eseye AnyNet Secure.