

Deploy an End-to-End IoT
Application

February 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments, conditions
or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities
and liabilities of AWS to its customers are controlled by AWS agreements, and
this document is not part of, nor does it modify, any agreement between AWS
and its customers.

Contents

Step 1: Set Up the Environment 1

Create an SSH Keypair 1

Deploy the AWS CloudFormation Template 2

Confirmation: Connecting to your Instance 4

Step 2: Set Up AWS IoT 7

AWS IoT Overview 7

Create the AWS IoT Resources 7

Create an IoT Thing 8

Create an IoT Policy 10

Create an IoT Certificate 11

Configure and Run the Device Simulator 12

Create an IoT Rule and Action 12

Confirmation: View Device Messages with the AWS IoT MQTT Client 14

Step 3: Process and Visualize Streaming Data 16

Dashboard Overview 16

Create the IoT Rules and Actions 18

Test the APIs 20

Deploy the Real-Time Dashboard 21

Host a Static Website on Amazon S3 22

Step 4: Clean Up the Environment 25

Clean up IOT Resources 25

Clean up the S3 bucket 25

Delete the CloudFormation Stack 25

Additional Resources 25

Amazon Web Services – Deploy an End-to-End IoT Application

Page 1

Step 1: Set Up the Environment

Create an SSH Keypair

In this tutorial, an EC2 instance is used to simulate your IoT devices. Amazon EC2 uses
public–key cryptography to encrypt and decrypt login information. Public–key
cryptography uses a public key to encrypt a piece of data, such as a password, then the
recipient uses the private key to decrypt the data. The public and private keys are known as
a key pair.

To create your IoT environment, you will need to create an SSH keypair that will be used to
access your device simulator EC2 instance. The following steps outline creating a unique
SSH keypair to use in this lab.

1. Sign into the AWS Management Console and open the Amazon EC2 console at
https://console.aws.amazon.com/ec2.

2. In the upper-right corner of the AWS Management Console, confirm you are in the
desired AWS region. Make sure to select a region that supports AWS IoT

3. In the navigation pane on the left, under NETWORK & SECURITY, choose Key

Pairs.

https://aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2
http://docs.aws.amazon.com/general/latest/gr/rande.html#iot_region

Amazon Web Services – Deploy an End-to-End IoT Application

Page 2

4. Choose Create Key Pair.

5. Enter a name for the new key pair in dialog box, and then choose Create.

 The private key file is automatically downloaded by your browser. The base file name is
the name you specified as the name of your key pair, and the file name extension is
.pem. Save the private key file in a safe place.

 Important: This is the only chance for you to save the private key file. You'll need to
provide the name of your key pair when you launch an instance and the corresponding
private key each time you connect to the instance.

Deploy the AWS CloudFormation Template

AWS CloudFormation is a service that helps you model and set up your Amazon Web
Services resources as code so that you can spend less time managing those resources and
more time focusing on your applications that run in AWS. We have created a template
(written in JSON) that defines the AWS resources that are needed for the sample IoT
application. AWS CloudFormation then uses that template to provision and configure those
resources for you. You don't need to individually create and configure AWS resources and
figure out what's dependent on what; AWS CloudFormation handles all of that.

1. Sign in to the AWS Management Console

2. If this is a new AWS CloudFormation account, click Create New Stack. Otherwise,
click Create Stack.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://console.aws.amazon.com/cloudformation/

Amazon Web Services – Deploy an End-to-End IoT Application

Page 3

3. In the Template section, select Specify an Amazon S3 Template URL to type or
paste the following URL for the IoT Getting Started template:
https://s3.amazonaws.com/awsprojects-code/iotGettingStartedTemplate.json

4. Click Next.

5. In the Stack name field, enter a friendly name for the IoT stack. A shorter name here
will improve readability in future modules (e.g. IoTGS).

6. In the KeyName field, select the keypair you created earlier. This will "key" your EC2
instance with the appropriate public key.

7. On the Options page, leave all defaults and click Next.

8. On the Review screen, confirm the configuration, check the box that says I
acknowledge that AWS CloudFormation might create IAM resources, and
click Create.

9. The environment can take a few minutes to provision completely. You can refresh
periodically to monitor the creation of the stack. When AWS CloudFormation is
finished creating the stack, the status will show CREATE_COMPLETE.

10. Select the check box beside your stack and then click on the Outputs tab below.

https://s3.amazonaws.com/awsprojects-code/iotGettingStartedTemplate.json

Amazon Web Services – Deploy an End-to-End IoT Application

Page 4

11. Note the IpAddressEc2DeviceSimulator Value. This is the public IP address of
your IoT Device Simulator EC2 instance.

Confirmation: Connecting to your Instance

We will now confirm that we have access to the EC2 instance that will be simulating the IoT
devices. Follow the instructions for your operating system.

Mac or Linux (OpenSSH)

By default, both Mac OS X and Linux operating systems ship with an SSH client that you
can use to connect to your EC2 Linux instances. To use the SSH client with the key you
created, a few steps are required.

1. Use the following command to set the permissions of your private key file so that only
you can read it. Replace IoT-GettingStarted-Key.pem with the name of your SSH key
pair.

 $ chmod 400 IoT - GettingStarted - Key.pem

2. Use your private key when connecting to the instance. You will reference your private
key file and the default user name which is ec2-user. The format of the ssh client is as
follows: $ ssh - i IoT - GettingSta rted - Key.pem ec2 - user@<IP Address of EC2
Host>

3. Type Yes to accept the fingerprint. You should now be connected to your instance.

Windows (PuTTY)

This is a Windows-only step, because other operating systems have SSH built in. Download
and install PuTTY. The single word “putty” in Google will return a list of download sites. Be
certain that you install both PuTTY and PuTTYGen

1. Launch PuTTYGen and choose Conversions -> Import Key. Browse for the
downloaded pem file (e.g., IoT-GettingStarted-Key.pem) and import the key. The result
will look similar to this:

Amazon Web Services – Deploy an End-to-End IoT Application

Page 5

2. Save the key as the same file name with a .ppk extension. Click File -> Save as

Private Key. Ignore the dialog that asks if you want to do this without a passphrase.

3. Close PuTTYGen.

4. Open PuTTY.

5. On the left menu expand Connection -> SSH and select the Auth sub-menu. Click
Browse and select your PPK file from the previous step.

6. Select Connection and configure the keepalive to 60. This will prevent your SSH

session from timing out.

Amazon Web Services – Deploy an End-to-End IoT Application

Page 6

7. Select Session on the left. In the Host Name box, enter ec2-user@ followed by the IP
address of your Simulator EC2 instance. (e.g. ec2-user@ 50.17.175.10).

8. Click Yes to confirm the fingerprint.

Note: The SSH fingerprint will eventually show up in the System Log and you can take that
and compare it to protect against a man in the middle attack.

9. You should now be connected to your instance.

Amazon Web Services – Deploy an End-to-End IoT Application

Page 7

Step 2: Set Up AWS IoT

AWS IoT Overview

AWS IoT consists of the following components:

• Message Broker — Provides a secure mechanism for things and AWS IoT
applications to publish and receive messages from each other. You can use either the
MQTT protocol directly or MQTT over WebSockets to publish and subscribe. You can
use the HTTP REST interface to publish.

• Rules Engine — Provides message processing and integration with other AWS
services. You can use a SQL-based language to select data from message payloads,
process the data, and send the data to other services, such as Amazon S3, Amazon
DynamoDB, and AWS Lambda. You can also use the message broker to republish
messages to other subscribers.

• Thing Registry — Sometimes referred to as the Device Registry. Organizes the
resources associated with each thing. You register your things and associate up to three
custom attributes with each thing. You can also associate certificates and MQTT client
IDs with each thing to improve your ability to manage and troubleshoot your things.

• Thing Shadows Service — Provides persistent representations of your things in the
AWS cloud. You can publish updated state information to a thing shadow, and your
thing can synchronize its state when it connects. Your things can also publish their
current state to a thing shadow for use by applications or devices.

• Thing Shadow — Sometimes referred to as a device shadow. A JSON document used
to store and retrieve current state information for a thing (device, app, and so on).

• Device Gateway — Enables devices to securely and efficiently communicate with
AWS IoT. Security and Identity service—Provides shared responsibility for security in
the AWS cloud. Your things must keep their credentials safe in order to send data
securely to the message broker. The message broker and rules engine use AWS security
features to send data securely to devices or other AWS services.

Create the AWS IoT Resources

Now you will create the resources needed in the AWS IoT console. There are 4 components
that will need to be created:

• Thing – A logical representation of a device stored in IoT’s Registry. Supports
attributes, as well as Device Shadows, which can be used to store device state & define
desired state.

• Policy – Attached to Certificates to dictate was that Certificate (or rather, a Thing
using that certificate) is entitled to do on AWS IoT.

• Certificate – Things can communicate with AWS IoT via MQTT, MQTT over
WebSockets or HTTPS. MQTT is a machine-to-machine pub-sub protocol well-suited
for IoT use cases given its low overhead and low resource requirements. MQTT

https://aws.amazon.com/iot/getting-started/

Amazon Web Services – Deploy an End-to-End IoT Application

Page 8

transmission to your AWS IoT gateway is encrypted using TLS and authenticated using
certs you will create.

• Rule – Leverages AWS IoT’s Rules Engine to dictate how messages sent from Things
to AWS IoT are handled. You will configure rules that send data published to an MQTT
topic to a variety of AWS Services.

Create an IoT Thing

1. Sign in to the AWS IoT console.

2. On the left side of the console, click on Registry, then click Things.

https://console.aws.amazon.com/iot/home

Amazon Web Services – Deploy an End-to-End IoT Application

Page 9

3. If you have never used the service before, then click Register a thing. Otherwise,
Create will be in the top right corner

4. Provide a name for the Thing, and click Create thing.

5. On the Thing Detail page, click on Interact in the left side menu. Capture the Rest API
Endpoint (e.g. a2ipckzivgv00u.iot.us-west-2.amazonaws.com) listed under
HTTPS. You will need this host name to configure the Device Simulator.

Amazon Web Services – Deploy an End-to-End IoT Application

Page 10

Create an IoT Policy

1. From the AWS IoT Console, select Security, and then Policies. If you have never
used the service before, then click on Create a Policy. If you have never, used the
service before, then click. If a previous policy exists, then you will click Create on the
top right.

2. Give the Policy a Name.

3. Replace the Action with iot:*

4. For the Resource ARN, replace the statement with *.

5. The Create button should turn blue. Click it to complete the policy creation.

Amazon Web Services – Deploy an End-to-End IoT Application

Page 11

Create an IoT Certificate

While it is possible to create the device certificates in the AWS Management Console, we
have created these during the CloudFormation stack creation via a script that runs on your
EC2 device simulator instance.

1. SSH into the EC2 Instance.

2. Type ls ~/certs to view the certificates were created. You should have 3 files in the
directory

¶ certificate.pem.crt

¶ private.pem.key

¶ root-ca.pem

3. In the AWS IoT Console window, click on Security and Certificates. You should see
your certificate. Confirm that it says ACTIVE.

4. Now the certificate must be associated with Thing and Policy that were created
previously. Click on Options (…) on the top right of the certificate and click on Attach
policy.

Amazon Web Services – Deploy an End-to-End IoT Application

Page 12

5. Select the policy you just created and click Attach.

6. Repeat the process, selecting Attach a thing. Select the Thing you created earlier.

Configure and Run the Device Simulator

An example script is provided that will send messages containing current battery charge,
simulated GPS location data, as well as other telemetry data. The AWS IoT Service will
process these messages and send to the appropriate AWS services based on the rule actions
that you will configure throughout the workshop modules.

1. SSH into the EC2 instance.

2. Open the file settings.py in the editor of your choice. We will be using nano in this
example.
$ nano ~/settings.py

3. Replace the HOST_NAME with the host name REST API Endpoint of your Thing
(e.g., a2ipckzivgv00u.iot.us-east-1.amazonaws.com).

4. Save the file. In nano, press CTRL-X, Type Y to save changes, and press enter to save
the file as settings.py.

5. Start the device simulator.

 $ nohup python app.py &

Create an IoT Rule and Action

IoT Rule Actions give your devices the ability to interact with AWS services. Rules are
analyzed and actions are performed based on the MQTT topic stream. The simulated IoT
devices report current battery charge percentage which decreases over time. We will create

Amazon Web Services – Deploy an End-to-End IoT Application

Page 13

a rule action that will monitor the reported battery charge and publish a message to a new
topic when it is time to recharge. The device is subscribed to this topic and will "take action"
to recharge.

1. In the AWS IoT console, click on Rules on the left and then click Create a Rule.

2. Configure the rule as follows:

 Field Value

 Name gsRecharge

 Description leave blank

 Attribute *

 Topic Filter device/+/devicePayload

 Condition batteryCharge <=0

https://console.aws.amazon.com/iot/home

Amazon Web Services – Deploy an End-to-End IoT Application

Page 14

3. Click Add action and select Republish messages to an AWS IoT topic. Click on
Configure action.

4. In the Topic dialog box, type device/${topic(2)}/rechargeAlert.

5. Click the IAM role name dropdown box and select the role that begins with the stack
name you configured followed by AwsIotRepublishRole.

6. Click Add action.

7. Click Create rule.

Confirmation: View Device Messages with the AWS IoT

MQTT Client

Devices publish MQTT messages on topics. You can use the AWS IoT MQTT client to
subscribe to these topics to see the content of these messages. We will now use the AWS IoT
MQTT client to confirm that the IoT messages are being sent back and forth between the
devices and the AWS IoT Device Gateway.

1. In the AWS IoT console, click on Test.

2. In the Subscription topic box, type the wildcard character # and click Subscribe to

topic.

3. Click on the # symbol on the left pane under Subscriptions.

https://console.aws.amazon.com/iot/home

Amazon Web Services – Deploy an End-to-End IoT Application

Page 15

4. If the devices are successfully configured, you will see MQTT messages scrolling on the
as pictured below.

5. Now we will confirm that our Recharge Rule is configured correctly. Click on
Subscribe to a topic. In the Subscription topic box, type device/+/rechargeAlert
and click Subscribe.

6. Confirm that you are seeing messages. This may take up to 2 minutes after the Rule
Action is created.

7. Click on Dashboard on the left of the AWS IoT Console. You should see the counts of
Messages published increasing. Take a moment to review the rest of the Dashboard.

Amazon Web Services – Deploy an End-to-End IoT Application

Page 16

Step 3: Process and Visualize Streaming Data

Dashboard Overview

In this module, we will be persisting time-series data from our devices in Amazon
DynamoDB and then visualize that data with a real-time dashboard powered by a
serverless API built with Amazon API Gateway and AWS Lambda.

Amazon DynamoDB: Amazon DynamoDB is a fast and flexible NoSQL database service
for all applications that need consistent, single-digit millisecond latency at any scale. It is a
fully managed cloud database and supports both document and key-value store models.
You will create a set of AWS IoT Rule Actions to write device messages to your DynamoDB
tables.

Amazon API Gateway: Amazon API Gateway is a fully managed service that makes it
easy for developers to create, publish, maintain, monitor, and secure APIs at any scale. For
this module, your device data API has been created for you by CloudFormation, but you will
have an opportunity to interact with your API configuration.

AWS Lambda: AWS Lambda lets you run code without provisioning or managing servers.
With Lambda, you can run code for virtually any type of application or backend service - all
with zero administration. Just upload your code and Lambda takes care of everything
required to run and scale your code with high availability. For this module, the Lambda
function has already been created for you and integrated with API Gateway, but in Module
5 you will create a Lambda function of your own.

Note on architecture: In this section you'll be building a dashboard that renders
messages from your devices by pulling data from an Amazon DynamoDB table via a
serverless API. An alternative pattern for this would include subscribing the dashboard to
MQTT topics via WebSockets. This tutorial uses Amazon DynamoDB to illustrate both AWS
IoT and serverless architectures.

In this section, you will create additional IoT rule actions to send device data to Amazon
DynamoDB. There are 3 IoT devices in our setup, the devices are named: turing, hopper,
and knuth. We will also set up a static website using Amazon S3 that will serve as a real-
time dashboard allowing visualization of the device payload data. Each device sends the
following JSON Payload to the AWS IoT Gateway every 5 seconds:

{
" Items ": [
{
 " payload ":
 {
 " timeStampIso ": "2016 - 09- 10T22:35:06.732142" ,
 " batteryDischargeRate ": 1.8513595745796365 ,
 " location ": {
 " lon ": 99.13799750347447 ,

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3

Amazon Web Services – Deploy an End-to-End IoT Application

Page 17

 " lat ": 41.79078293335809
 },
 " timeStampEpoch": 1473546906732,
 " numVal": 5,
 " deviceId ": "Hopper " ,
 " batteryCharge ": 96.29728085084074
 },
 " deviceId ": "Hopper "
},
{
 " payload ":
 {
 " timeStampIso ": "2016 - 09- 10T22:35:06.732247" ,
 " batteryDischargeRate ": 1.5474383816808281 ,
 " location ": {
 " lon ": 114.608115411997 76,
 " lat ": 41.15078293335809
 },
 " timeStampEpoch": 1473546906732,
 " numVal": 10,
 " deviceId ": "Turing " ,
 " batteryCharge ": 10.248573862511861
 },
 " deviceId ": "Turing "
},
{
 " payload ":
 {
 " timeStampIso ": "2016 - 09- 10T22:35:06.732010" ,
 " batteryDischargeRate ": 1.5634519980188246 ,
 " location ": {
 " lon ": 95.74692230611322 ,
 " lat ": 46.82078293335809
 },
 " timeStampEpoch": 1473546906732,
 " numVal": 6,
 " deviceId ": "Knuth " ,
 " batteryCharge ": 90.61928801188708
 },
 " deviceId ": "Knuth "
}
] ,
" Count": 3,
" ScannedCount": 3
}

Amazon Web Services – Deploy an End-to-End IoT Application

Page 18

Create the IoT Rules and Actions

We will create a rule with two actions, to query the incoming messages and capture the
payload section. The first rule will write time series data from devices to DynamoDB table
called IoTDynamoTimeSeriesTable. The second rule will write the latest received
messages to a DynamoDB table called IoTDynamoDeviceStatusTable.

Note: The actual DynamoDB table names will be prefixed by the name you chose for your
CloudFormation stack, e.g IoTGS-DynamoTimeSeriesTable.

1. In the AWS IoT console, click on Rules on the left and then click Create.

2. Enter the following parameters. This rule includes a query statement that will capture
the payload section from the incoming messages.

 Field Value

 Name IoTToDynamo

 Description leave blank

 Attribute *

 Topic filter device/+/devicePayload

3. Click Add action.

4. Select Insert a message into a DynamoDB table and then click Configure
action.

5. Click the Table name field and select the table whose name contains
TimeSeriesTable.

https://console.aws.amazon.com/iot/home

Amazon Web Services – Deploy an End-to-End IoT Application

Page 19

6. Enter the following parameters. This action will write the payload to DynamoDB table
using the timestamp as a range key value.

 Field Value

 Hash key value ${topic(2)}

 Range key value ${timeStampEpoch}

 Role name <stack - name>- AwsIotToDynamoRole- <random- number>

7. Click Add action.

8. We will also be creating a table of connected devices using this same IoT rule that
reports the last reported value from the devices. We will create an additional action to
accomplish this. Click Add action and repeat the process with the following values.

 Field Value

 Table name <stack - name>- IoTDynamoDeviceStatusTable

 Hash key value ${topic(2)}

 Range key value leave empty

 Role name <stack - name>- AwsIotToDynamoRole- <random- number>

Amazon Web Services – Deploy an End-to-End IoT Application

Page 20

9. Click Add action.

10. Click Create rule.

Rule and actions are now configured; in the next step you'll enable the APIs that read the
DynamoDB table and return devices data in an API GET method.

Test the APIs

In this section you will test that the API works, you will use a command line to read the data
via HTTP. The API definition and the backing AWS Lambda function that support the API
were configured for you when you provisioned the CloudFormation template. In the next
section, you will "hook" the APIs into a dashboard to visualize the data in the website.

1. In Amazon API Gateway, a stage defines the path through which an API deployment is
accessible. The CloudFormation template already configured a production stage called
'prod'. In the API Gateway console click Stages and then prod, and review the current
API configuration.

https://aws.amazon.com/api-gateway/
https://console.aws.amazon.com/apigateway

Amazon Web Services – Deploy an End-to-End IoT Application

Page 21

2. Click on the link next to Invoke URL:

 You should see devices data in a JSON format, refresh the page every few seconds and
notice that data changes

3. Save the URL endpoint, you will need it in the next section.

Deploy the Real-Time Dashboard

In this section, you will visualize device data in a dashboard. The dashboard will place the
devices in a map based on Geolocation (lon,lat), Battery Charge and Battery Discharge Rate

Amazon Web Services – Deploy an End-to-End IoT Application

Page 22

will be displayed in a line chart. First, you will download the dashboard code and update
API endpoint, and then you will setup a static website on S3 to host your dashboard.

1. SSH to the EC2 instance

2. Open app.js for editing in nano. $ nano ~/dashboard/app.js.

At the top of the file set the devices_endpoint_url to the API endpoint you'd created in
the previous stage.

3. Save the file. In nano, press CTRL-X, Type Y to save changes, and press enter to save
the file.

Host a Static Website on Amazon S3

In this step, you will configure a static website on S3 bucket. To host your static website,
you configure an Amazon S3 bucket for website hosting and then upload your website
content to the bucket. The website is then available at the region-specific website endpoint
of the bucket.

1. From the AWS console, select Services and then S3.

2. The CloudFormation template already created a bucket to hold the Dashboard, the
bucket name is: <CloudFormation Template Name>-iotgss3bucket-<Random
Number>. Click on the bucket name, then click on Properties.

3. Select Permissions and Add bucket policy.

Amazon Web Services – Deploy an End-to-End IoT Application

Page 23

4. Paste the section below in the Bucket Policy Editor. Replace <bucket-name> with the
name of your S3 bucket with the The following policy enables anyone to read the
bucket (execute GET HTTP command):

 {
 "Version": "2012 - 10- 17",
 "Statement": [
 {
 "Sid": "Allow Public Access to All Objects",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<bucket - name>/*"
 }
]
}

5. Click Save.

6. Now you can enable static website hosting on the bucket, select the Static Website
Hosting and check the Enable website hosting radio box. In the Index
Document field enter index.html and click Save.

7. Your dashboard will be available on the bucket's Endpoint. Save this endpoint - you
will use it shortly.

8. Copy the dashboard code to the S3 bucket. In a terminal window, make sure you are in
the Dashboard directory. Copy the content of the directory to the S3 bucket, you will
use the AWS CLI for this. type the following command:

 aws s3 sync ~/dashboard s3://<bucket - name>

9. In a browser, paste the S3 bucket endpoint to access your dashboard.

Amazon Web Services – Deploy an End-to-End IoT Application

Page 24

Amazon Web Services – Deploy an End-to-End IoT Application

Page 25

Step 4: Clean Up the Environment
We will now delete all of the AWS resources that were used during this session.

Clean up IOT Resources

1. Sign in to the AWS IoT console.

2. Click on Rules.

3. For each rule, Click … and select Delete.

4. In the confirmation window, click Yes, continue with delete.

5. Click on Security and then Policies

6. Click … and select Delete.

7. In the confirmation window, click Yes, continue with delete.

8. Under Security, click Certificates.

9. Click … and select Delete.

10. In the confirmation window, click Yes, continue with delete.

11. Under Registry click Things.

12. Click … and select Delete.

13. In the confirmation window, click Yes, continue with delete.

Clean up the S3 bucket

1. Open the AWS S3 Console.

2. Right-click on the IoT bucket that we have been using and click Empty Bucket.

3. You will need to type the name of bucket into the confirmation window. You can cut
and paste for convenience. Click Empty Bucket.

Delete the CloudFormation Stack

1. Open the AWS CloudFormation Console.

2. Check the box next to your IoT stack.

3. Under Actions, click Delete stack and confirm. This may take up to 5 minutes to
complete.

Additional Resources
To learn more about the concepts introduced in this tutorial, refer to the following
resources:

¶ AWS IoT Documentation

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/s3
https://console.aws.amazon.com/cloudformation/home
https://aws.amazon.com/documentation/iot/

Amazon Web Services – Deploy an End-to-End IoT Application

Page 26

¶ AWS IoT Developer Resources

¶ Deep Dive on AWS IoT

¶ Anomaly detection with AWS IoT and Lambda

¶ Building a Hardware Solution for Constrained Devices

https://aws.amazon.com/iot/developer-resources/
https://www.youtube.com/watch?v=pYNbTWc9hTw
https://aws.amazon.com/blogs/iot/anomaly-detection-using-aws-iot-and-aws-lambda/
https://aws.amazon.com/blogs/iot/how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/

	Step 1: Set Up the Environment
	Create an SSH Keypair
	Deploy the AWS CloudFormation Template
	Confirmation: Connecting to your Instance
	Mac or Linux (OpenSSH)
	Windows (PuTTY)

	Step 2: Set Up AWS IoT
	AWS IoT Overview
	Create the AWS IoT Resources
	Create an IoT Thing
	Create an IoT Policy
	Create an IoT Certificate
	Configure and Run the Device Simulator
	Create an IoT Rule and Action
	Confirmation: View Device Messages with the AWS IoT MQTT Client

	Step 3: Process and Visualize Streaming Data
	Dashboard Overview
	Create the IoT Rules and Actions
	Test the APIs
	Deploy the Real-Time Dashboard
	Host a Static Website on Amazon S3

	Step 4: Clean Up the Environment
	Clean up IOT Resources
	Clean up the S3 bucket
	Delete the CloudFormation Stack

	Additional Resources

