
Amazon Managed 
Blockchain (AMB)

Ethereum Developer Guide



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Amazon Managed Blockchain (AMB): Ethereum Developer Guide
Copyright © 2023 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not 
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or 
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may 
or may not be affiliated with, connected to, or sponsored by Amazon.



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Table of Contents
What is Amazon Managed Blockchain (AMB) Access Ethereum ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key concepts .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Considerations and limitations for Amazon Managed Blockchain (AMB) Access Ethereum ..... . . . . . . . . . . . . . . . . 2
Setting up .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Sign up for AWS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Create an IAM user with appropriate permissions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Working with nodes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Creating a node .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Viewing node details ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Deleting a node .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Using token based access .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Creating an Accessor token for token based access .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Viewing an Accessor token details ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Deleting an Accessor token .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Using the Ethereum APIs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Supported JSON-RPC methods .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Examples using the JSON-RPC API ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Supported Consensus API methods .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Examples making Consensus API calls ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Security ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Data Protection .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Encryption in transit ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Authentication and access control ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Identity and Access Management .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Tagging resources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Create and add tags for AMB Access Ethereum resources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Tag naming and usage conventions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Working with tags .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CloudTrail logs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Managed Blockchain information in CloudTrail .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Understanding log file entries ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Using CloudTrail to track Ethereum calls ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Document history .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

What is Amazon Managed 
Blockchain (AMB) Access Ethereum

Amazon Managed Blockchain (AMB) Access provides you with public blockchain nodes for Ethereum and 
Bitcoin, and you can also create private blockchain networks with the Hyperledger Fabric framework. 
Choose from various methods to engage with public blockchains, including fully managed, single-
tenant (dedicated), and serverless multi-tenant API operations to public blockchain nodes. For use cases 
where access controls are important, you can choose from fully managed private blockchain networks. 
Standardized API operations give you instant scalability on a fully managed, resilient infrastructure, so 
you can build blockchain applications.

AMB Access gives you two distinct types of blockchain infrastructure services: multi-tenant blockchain 
network access API operations and dedicated blockchain nodes and networks. With dedicated blockchain 
infrastructure, you can create and use public Ethereum blockchain nodes and private Hyperledger Fabric 
blockchain networks for your own use. Multi-tenant, API-based offerings, however, such as AMB Access 
Bitcoin, are composed of a fleet of Bitcoin nodes behind an API layer where the underlying blockchain 
node infrastructure is shared among customers.

Ethereum is a decentralized and programmable blockchain network on which users around the world 
can transact, collaborate, and build applications. The Ethereum virtual machine (EVM) helps developers 
create powerful and composable decentralized applications (dApps) in the form of smart contracts. Use 
Amazon Managed Blockchain (AMB) Access Ethereum to build Ethereum dApps on Mainnet and select 
testnets with Ethereum full nodes using the go-ethereum (Geth) execution client and the Lighthouse 
consensus client. You can use your dedicated (single-tenant) Ethereum node(s) to invoke the Ethereum 
JSON-RPC APIs for both the Execution and Consensus layers to build and test smart contracts, perform 
fungible or non-fungible token (NFT) transactions, or query data from the Ethereum blockchain.

Important
Ethereum Mainnet has merged with the Beacon chain's proof-of-stake system. Ethereum nodes 
on Amazon Managed Blockchain (AMB) support this change and require no further action on 
your part. For more information on using the Consensus API to query the Beacon chain, see
Supported Consensus API methods (p. 33). For more information on the merge, see The 
Merge topic on the Ethereum website.

This guide covers the how to create and manage Ethereum blockchain resources using Amazon Managed 
Blockchain (AMB) Access Ethereum. For information about working with AMB Access Hyperledger Fabric, 
see Amazon Managed Blockchain (AMB) Hyperledger Fabric Developer Guide.

1

https://ethereum.org/en/upgrades/merge/
https://ethereum.org/en/upgrades/merge/
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Considerations and limitations for Amazon 
Managed Blockchain (AMB) Access Ethereum

Key concepts: Amazon Managed 
Blockchain (AMB) Access Ethereum

Note
This guide assumes that you're familiar with the concepts that are essential to Ethereum. These 
concepts include nodes, dapps, transactions, gas, Ether, and others. Before you deploy a node 
using AMB Access Ethereum and develop dapps, we recommend that you review the Ethereum 
Development Documentation and Mastering Ethereum.

You can use Amazon Managed Blockchain (AMB) Access Ethereum to quickly provision Ethereum nodes
and join them to the public Ethereum mainnet or popular public testnets. Ethereum nodes on a network 
collectively store an Ethereum blockchain state, verify transactions, and participate in consensus to 
change a blockchain state.

You can use an Ethereum node to develop and use decentralized applications (dapps) that interact with 
an Ethereum blockchain. The "backend" of a dapp is a smart contract that runs in a decentralized way 
across all the nodes that are joined to an Ethereum network. Anyone that joined to the network can 
develop and deploy a smart contract that adds functionality.

The "frontend" of a dapp can use Ethereum API operations and libraries, specifically the JSON-RPC API or 
the Consensus API, to interact with the Ethereum network. You can use these APIs to communicate with 
Ethereum node in Amazon Managed Blockchain (AMB). These APIs allow the dapp to read data and write 
transactions. You can use the JSON-RPC API to query the smart contract data and submit transactions 
to an Ethereum node on the AMB Access. You can use the Consensus API to query the Beacon chain and 
its configuration. You can also use Consensus API to get the health of nodes on the Goerli and Ropsten 
testnets and on Mainnet.

With Ethereum APIs in AMB Access, your "frontend" dapp can use an HTTP or WebSocket (JSON-RPC 
API only) connection to make API calls. Only users in the AWS account that owns the node can make API 
calls. Calls over HTTP and WebSocket connections are authenticated by using the Signature Version 4 
signing process.

Important
Amazon Managed Blockchain (AMB) helps you provision Ethereum nodes. You are responsible 
for creating, maintaining, and using of your Ethereum Accounts. You are also responsible for the 
contents of your Ethereum Accounts. This includes, but is not limited to, Ether (ETH) and smart 
contracts. AWS is not responsible for any of your smart contracts tested, compiled, deployed or 
called using Ethereum nodes in Amazon Managed Blockchain (AMB).

Considerations and limitations for Amazon 
Managed Blockchain (AMB) Access Ethereum

When you use Amazon Managed Blockchain (AMB) Access Ethereum to host a node on an Ethereum 
network, consider the following.

• Supported networks

Ethereum has a public mainnet and several public testnets used for development, testing, and proof of 
concept. AMB Access supports the following public networks. Private networks aren't supported.
• Mainnet – The proof-of-stake network of the primary public Ethereum blockchain. Transactions on 

Mainnet have actual value (that is, they incur real costs) and are recorded on the distributed ledger.

2

https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/
https://cypherpunks-core.github.io/ethereumbook/01what-is.html
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Considerations and limitations for Amazon 
Managed Blockchain (AMB) Access Ethereum

• Görli (Goerli) – A public cross-client, proof-of-stake network. Ether on this network has no real 
monetary value. This network is the recommended testnet to use. This network supports the JSON-
RPC and Consensus API operations.

• Ropsten – A public proof-of-stake read-only testnet. Ether on this network has no real monetary 
value. You cannot provision new nodes on Ropsten as of February 28th, 2023. The Ethereum 
foundation ceased support of Ropsten on December 31st, 2022..

• Rinkeby – A public proof-of-authority read-only testnet for Go Ethereum (Geth) clients. Ether on this 
network has no real monetary value. This network will be shut down soon.

• Staking not supported

Ethereum nodes that are created using AMB Access don't support staking.
• Different endpoints for WebSockets and HTTP

AMB Access Ethereum supports the Ethereum API over HTTP and WebSocket (JSON-RPC API only). 
Each Ethereum node in AMB Access hosts different endpoints for HTTP and WebSocket connections.

• JSON-RPC batch requests aren't supported

Ethereum nodes that are created using AMB Access don't support JSON-RPC batch requests.
• Payload quotas for API calls

WebSocket calls have a 512 KB payload quota. Some calls might exceed this quota and cause a 
"message response is too large" error. For this reason, we recommend you use HTTP for these requests 
instead of WebSocket connections. If your HTTP response is larger than 5.9 MB, you will get an 
error. To correct this, you must set both compression headers as Accept: application/gzip and
Accept-Encoding: gzip. The compressed response your client then receives contains the following 
headers:  Content-Type: application/json and Content-Encoding: gzip.

• Signature Version 4 signing of API calls

Ethereum API calls to an Ethereum node in Amazon Managed Blockchain (AMB) can be authenticated 
by using the Signature Version 4 (SigV4) signing process. This means that only authorized IAM 
principals in the AWS account that created the node can interact with it using the Ethereum APIs. AWS 
credentials (an access key ID and secret access key) must be provided with the call.

Important
Never embed client credentials in user-facing applications. To expose an Ethereum node in 
AMB Access to anonymous users visiting from trusted web domains, you can set up a separate 
endpoint in Amazon API Gateway backed by a Lambda function that forwards requests to 
your node that uses the proper IAM credentials.

• Support for Token Based Access

You can also use Accessor tokens to make Ethereum API calls to an Ethereum node as a convenient 
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN
from one of the Accessor tokens that you create as a query parameter with the call.

Important
• If you prioritize security and auditability over convenience, use the SigV4 signing process 

instead.
• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based access. 

However, if you choose to use both protocols, then any security benefits that are provided 
by using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.
• Only raw transactions are supported

AMB Access only supports the use of the eth_sendRawTransaction method to submit transactions 
that update the Ethereum blockchain state. Before transactions can be sent, you must create and 
sign transactions using Ethereum private keys outside AMB Access. In other words, you can't use AMB 

3

https://twitter.com/etherscan/status/1569311894279958531
https://blog.ethereum.org/2022/11/30/ropsten-shutdown-announcement
https://twitter.com/etherscan/status/1569311894279958531
https://blog.ethereum.org/2022/06/21/testnet-deprecation
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Considerations and limitations for Amazon 
Managed Blockchain (AMB) Access Ethereum

Access as an Ethereum wallet. You must generate and store Ethereum transactions and private keys 
externally.

• Node limit per account

AMB Access supports a maximum of 50 Ethereum nodes for each account.

4



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Sign up for AWS

Setting up for AMB Access Ethereum

Sign up for AWS
When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all 
AWS services, including Amazon Managed Blockchain (AMB). You're charged only for the services that 
you use.

With AMB Access Ethereum, you pay for the node, the storage that you use, and the number of requests 
between the node and the network.

If you have an AWS account already, move on to the next step. If you don't have an AWS account, use the 
following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the 
phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user has access 
to all AWS services and resources in the account. As a security best practice, assign administrative 
access to an administrative user, and use only the root user to perform tasks that require root user 
access.

Create an IAM user with appropriate permissions
To create and work with Ethereum resources in AMB Access, you need an AWS Identity and Access 
Management (IAM) principal (user or group) with permissions that allow necessary AMB Access actions 
on those resources. Example actions include creating or deleting nodes.

An IAM principal is also required to make Ethereum API calls. Ethereum API calls to an Ethereum node 
in Amazon Managed Blockchain (AMB) can be authenticated by using the Signature Version 4 (SigV4) 
signing process. This means that only authorized IAM principals in the AWS account that created the 
node can interact with it using the Ethereum APIs. AWS credentials (an access key ID and secret access 
key) must be provided with the call.

For information about how to create an IAM user, see Creating an IAM user in your AWS account. For 
more information about how to attach a permissions policy to a user, see Changing permissions for an 
IAM user. For an example of a permissions policy that you can use to give a user permission to work with 
AMB Access Ethereum resources, see Performing all available actions for AMB Access Ethereum (p. 56).

5

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Creating a node

Working with Ethereum nodes using 
AMB Access

You can use AMB Access Ethereum to create nodes and join them to Ethereum public networks. A node is 
a computer that connects to a blockchain network. A blockchain network consists of multiple parties (or 
peers) that are connected to each other in a decentralized way. When you use AMB Access Ethereum, you 
pay for the nodes, the storage that you use, and the requests that are made between the nodes and the 
network.

Creating a node
When you create an Ethereum node, you select the network that the node joins and the configuration 
details such as the instance type and the Ethereum node type. When you create an Ethereum 
node in Amazon Managed Blockchain (AMB), a full Geth node on the selected Ethereum network is 
created. The IAM principal (user or group) that you use must have permissions to create nodes and 
view node information. For more information, see Performing all available actions for AMB Access 
Ethereum (p. 56).

When you create an Ethereum node, select the following characteristics:

• Blockchain network – Amazon Managed Blockchain (AMB) supports the following public Ethereum 
networks:
• Mainnet – The proof-of-stake network of the primary public Ethereum blockchain. Transactions on 

Mainnet have actual value (that is, they incur real costs) and are recorded on the distributed ledger.
• Görli (Goerli) – A public cross-client, proof-of-stake network. Ether on this network has no real 

monetary value. This network is the recommended testnet to use. This network supports the JSON-
RPC and Consensus API operations.

• Ropsten – A public proof-of-stake read-only testnet. Ether on this network has no real monetary 
value. You cannot provision new nodes on Ropsten as of February 28th, 2023. The Ethereum 
foundation ceased support of Ropsten on December 31st, 2022..

• Rinkeby – A public proof-of-authority read-only testnet for Go Ethereum (Geth) clients. Ether on this 
network has no real monetary value. This network will be shut down soon.

• Blockchain instance type – This determines the computational and memory capacity allocated to 
this node for the blockchain workload. If you anticipate a more demanding workload for each node, 
you can choose more CPU and RAM. For example, your nodes might need to process a higher rate of 
transactions. Different instance types are subject to different pricing.

Note
For optimal performance and minimal degradation, we recommend the  bc.t3.xlarge (or 
larger) instance size.

• Ethereum node type – The only node type that's currently supported is Full node (Geth). The node 
uses the Geth execution client and the Lighthouse consensus client.For more information about 
node types, see  Node Types in the Ethereum developer documentation. For more information on
Execution clients such as Geth, see Execution clients in the Ethereum developer documentation. For 
more information on Consensus clients such as Lighthouse, see Consensus clients in the Ethereum 
developer documentation.

• Availability Zone – You can select the Availability Zone to launch the Ethereum node in. You can 
distribute nodes across different Availability Zones. This way, you can design your blockchain 
application for resiliency. For more information, see Regions and Availability Zones in the Amazon EC2 
User Guide for Linux Instances.

6

https://twitter.com/etherscan/status/1569311894279958531
https://blog.ethereum.org/2022/11/30/ropsten-shutdown-announcement
https://twitter.com/etherscan/status/1569311894279958531
https://blog.ethereum.org/2022/06/21/testnet-deprecation
https://ethereum.org/en/developers/docs/nodes-and-clients/#node-types
https://ethereum.org/en/developers/docs/nodes-and-clients/#execution-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#consensus-clients
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Viewing node details

After you create the node, the Node details page displays the endpoints that you can use to make 
Ethereum API calls from code on a client. There are separate endpoints for HTTP connections and 
WebSocket connections. For more information about sending API calls to an Ethereum node in Amazon 
Managed Blockchain (AMB) to interact with smart contracts, see Using the Ethereum APIs with Amazon 
Managed Blockchain (AMB) (p. 15).

To create an Ethereum node using the AWS Management 
Console
1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. Choose Join public network.

3. Select the Blockchain network for the node to join according to the preceding guidelines.

4. Select the Blockchain instance type suitable for your application. If your nodes need to process a 
higher rate of transactions more efficiently, choose an instance type with more CPU and RAM.

5. Select the Ethereum node type, choose Full node (Geth).

6. Select Availability zone such as us-east-1.

7. Choose Create node.

Amazon Managed Blockchain (AMB) Access Ethereum provisions and configures the node for you. 
The length of this process depends on many variables. It might take a few minutes for nodes on 
testnets, and up to an hour or more for nodes on mainnet.

To create an Ethereum node using the AWS CLI

The following example shows how to use the create-node command. Replace the value of --
network-id, InstanceType, and AvailabilityZone as appropriate.

aws managedblockchain create-node \ 
  --node-configuration '{"InstanceType":"bc.t3.xlarge","AvailabilityZone":"us-east-1a"}' \ 
  --network-id n-ethereum-goerli

Ethereum public networks have the following network IDs:

• n-ethereum-mainnet

• n-ethereum-goerli

• n-ethereum-ropsten

• n-ethereum-rinkeby

The command returns the node ID, as shown in the following snippet.

{ 
    "NodeId": "nd-RG3GM4U7HFFHHHGJHHU7UNPCLU"
}

Viewing node details
After you create a node, you can view administrative properties for each node that your AWS account 
owns. For example, you can view the endpoints to use for Ethereum API calls on HTTP and WebSocket 

7

https://console.aws.amazon.com/managedblockchain/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Viewing node details

(JSON-RPC API only) connections, the node status, and important performance metrics for the node. The 
IAM principal (user or group) that you use must have permissions to list and get node information. For 
more information, see ??? (p. 54).

Information such as the AMB Access instance type, Availability Zone, and creation date, is available for 
the node. The following properties are also available:

• Status

• Creating

AMB Access is provisioning and configuring the AMB Access instance for the node. The amount of 
time that it takes to create a node depends on many factors. Nodes on testnets typically take a few 
minutes to create. Nodes on mainnet might take an hour or longer to create.

• Available

The node is running and available on the network.

• Unhealthy

AMB Access detected a problem and is automatically replacing the blockchain instance that the 
node runs on. Nodes in an unhealthy state typically return to an available state in approximately five 
minutes.

• Failed

The node has an issue that caused AMB Access to add it to the deny list on the network. This usually 
indicates that the node reached its memory or storage capacity. As a first step, we recommend that 
you delete the instance and provision an instance type with more capability.

• Create Failed

The node couldn't be created with the AMB Access instance type and the Availability Zone specified. 
We recommend trying another availability zone, a different instance type, or both.

• Deleting

The node is being deleted.

• Deleted

The node is now deleted. For possible reasons, see the previous item.

• Endpoints

Endpoints are used to make Ethereum API calls to the node. When AMB Access creates the node, it 
assigns unique endpoints. Nodes support connections over HTTP and WebSockets (JSON-RPC API 
only). You use a different endpoint for each connection. For more information, see Using the Ethereum 
APIs with Amazon Managed Blockchain (AMB) (p. 15).

To view Ethereum node information using the AWS 
Management Console
1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. If the console doesn't open to the Networks list, choose Networks from the navigation pane.

3. Choose the Name of the Ethereum network that the node belongs to from the list.

4. On the network details page, under Nodes, choose the Node ID.

5. The following example shows how the node details page displays key properties and metrics for the 
node.

8

https://console.aws.amazon.com/managedblockchain/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Viewing node details

To view Ethereum node information using the AWS CLI
The following example shows how to use the get-node command to view Ethereum node information. 
Replace the value of --network-id and --node-id as appropriate.

aws managedblockchain get-node \ 
  --network-id n-ethereum-goerli \ 
  --node-id nd-RG3GM4U7HFFHHHGJHHU7UNPCLU

The command returns the following output that includes the node's HttpEndpoint,
WebSocketEndpoint, and other key properties.

{ 
    "Node": { 
        "NetworkId": "n-ethereum-goerli", 
        "Id": "nd-RG3GM4U7HFFHHHGJHHU7UNPCLU", 
        "InstanceType": "bc.t3.xlarge", 
        "AvailabilityZone": "us-east-1a", 
        "FrameworkAttributes": { 
            "Ethereum": { 
                "HttpEndpoint": "nd-
rg3gm4u7hffhhhgjhhu7unpclu.ethereum.managedblockchain.us-east-1.amazonaws.com", 

9



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Deleting a node

                "WebSocketEndpoint": "nd-
rg3gm4u7hffhhhgjhhu7unpclu.wss.ethereum.managedblockchain.us-east-1.amazonaws.com" 
            } 
        }, 
        "Status": "CREATING", 
        "CreationDate": "2021-06-25T20:10:18.555000+00:00", 
        "Tags": {}, 
        "Arn": "arn:aws:managedblockchain:us-east-1:111122223333:nodes/nd-
RG3GM4U7HFFHHHGJHHU7UNPCLU" 
    }
}

Deleting a node
When you delete an Ethereum node from AMB Access, all resources that are stored on that node are 
immediately deleted. The IAM principal (user or group) that you use must have permissions to delete 
nodes. For more information, see Performing all available actions for AMB Access Ethereum (p. 56).

To delete an Ethereum node using the AWS Management 
Console
1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.
2. If the console doesn't open to the Networks list, choose Networks from the navigation pane.
3. Choose the Name of the Ethereum network that the node belongs to from the list.
4. On the network details page, under Nodes, select the Node ID, and then choose Delete.

To delete an Ethereum node using the AWS CLI
Use the delete-node command to delete an Ethereum node. Replace the value of --network-id and
--node-id as appropriate.

aws managedblockchain delete-node \ 
  --network-id n-ethereum-goerli \ 
  --node-id nd-RG3GM4U7HFFHHHGJHHU7UNPCLU

10

https://console.aws.amazon.com/managedblockchain/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Creating an Accessor token for token based access

Using token based access to make 
Ethereum API calls to Ethereum 
nodes in Amazon Managed 
Blockchain (AMB)

You can also use Accessor tokens to make Ethereum API calls to an Ethereum node as a convenient 
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN from 
one of the Accessor tokens that you create as a query parameter with the call.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing process 
instead.

• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based access. 
However, if you choose to use both protocols, then any security benefits that are provided by 
using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.

In the console, the Token Accessors page displays a list of all the Accessor tokens that you can use 
to make Ethereum API calls to nodes in your AWS account from code on a client. There are separate 
endpoints for HTTP connections and WebSocket connections.

To learn more about how to make Ethereum API calls using token based access with your Accessor 
tokens, see:

• Using token based access to make JSON-RPC API calls to an Ethereum node (p. 31).

• Using token based access to make Consensus API calls to an Ethereum node (p. 38).

You can create and manage Accessor tokens using the AMB Access Ethereum console. You can also create 
and manage Accessor tokens using the following API operations: CreateAccessor,  GetAccessor,
ListAccessors, and  DeleteAccessor. An Accessor token object is a container that has information 
that's required for token based access to Ethereum nodes in your AWS account. A billing token is also 
created when you create an Accessor object. This billing token is used to track your Accessor token for 
billing Ethereum API requests made to Ethereum nodes in your AWS account.

All API actions related to creating and managing Accessor tokens are available through the AWS CLI and 
SDKs.

Creating an Accessor token for token based access
You can create an Accessor token and use it to make Ethereum API calls on any Ethereum node in your 
AWS account.

11

https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_CreateAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_GetAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_ListAccessors.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_DeleteAccessor.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Viewing an Accessor token details

Create an Accessor token to access an Ethereum node using the 
AWS Management Console
<result>

AMB Access then provisions and configures the token for you. The length of this process depends on 
many variables.
</result>

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.
2. Choose Token Accessors.
3. Choose New to create a new Accessor token.

Create an Accessor token to access an Ethereum node using the 
AWS CLI

aws managedblockchain create-accessor --accessor-type BILLING_TOKEN

The previous command returns the AccessorId along with the BillingToken, as shown in the 
following example.

{
"AccessorId": "ac-NGQ6QNKXLNEBXD3UI6XFDIL3VA",
"BillingToken": "jZlP8OUI-PcQSKINyX9euJJDC5-IcW9e-nm1NyKH3n"
}

The key element in the response is the BillingToken. You can use this property to make Ethereum API 
calls to your Ethereum nodes.

Note
You can use BillingToken to make Ethereum API calls to all the nodes owned by the AWS 
account that created the Accessor token.

Viewing an Accessor token details
You can view the properties for each Accessor token that your AWS account owns. For example, you can 
view the Accessor ID or the Amazon Resource Name (ARN) of the Accessor. You can also view the status, 
the type, the creation date, and the BillingToken.

To view an Accessor token's information using the AWS 
Management Console
<result>

The token details page pops up. From this page, you can view the properties of the token including 
endpoints to use for Ethereum API calls on HTTP and WebSocket (JSON-RPC API only) connections, the 
status, and the unique identifier for the token.
</result>

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.
2. In the navigation pane, choose Token Accessors.
3. Choose the Accessor ID of the token from the list.

12

https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Deleting an Accessor token

To view an Accessor token's information using the AWS CLI
Run the following command to view the details of an Accessor token. Replace values of --accessor-id
with your Accessor ID.

aws managedblockchain get-accessor --accessor-id ac-NGQ6QNKXLNEBXD3UI6XFDIL3VA

The BillingToken and other key properties are returned as shown in the following example.

{ 
  "Accessor": { 
  "Id": "ac-NGQ6QNKXLNEBXD3UI6XFDIL3VA", 
  "Type": "BILLING_TOKEN", 
  "BillingToken": "jZlP8OUI-PcQSKINyX9euJJDC5-IcW9e-nm1NyKH3n", 
  "Status": "AVAILABLE", 
  "CreationDate": "2022-01-04T23:09:47.750Z", 
  "Arn": "arn:aws:managedblockchain:us-east-1:251534485660:accessors/ac-
NGQ6QNKXLNEBXD3UI6XFDIL3VA" 
  }
}

Deleting an Accessor token
When you delete an Accessor token, the token changes from the AVAILABLE to the PENDING_DELETION
status. You can't use an Accessor token with the PENDING_DELETION status for WebSocket requests and 
HTTP requests.

Note
WebSocket connections that were initiated while the Accessor token was in AVAILABLE
status might remain open for up to 2 hours after they expire. An Accessor token with the
PENDING_DELETION status eventually becomes unavailable through GetAccessor calls. 
Within 48 hours, it also disappears from ListAccessor results.

To delete an Accessor token using the AWS Management 
Console
<result>

You're returned to the Tokens Accessors page with your deleted Accessor token. The page displays the
PENDING_DELETION status.
</result>

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.
2. In the navigation pane, choose Token Accessors.
3. Select the Accessor token that you want from the list.
4. Choose Delete.
5. Confirm your choice.

To delete an Accessor token using the AWS CLI
The following example shows how to delete a token. Use the delete-accessor command to delete a 
token. Set the value of --accessor-id with your Accessor ID.

13

https://console.aws.amazon.com/managedblockchain/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Deleting an Accessor token

Deleting an Accessor token using the AWS CLI

aws managedblockchain delete-accessor --accessor-id ac-NGQ6QNKXLNEBXD3UI6XFDIL3VA

If this command runs successfully, no messages are returned.

14



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

Using the Ethereum APIs with 
Amazon Managed Blockchain (AMB)

This topic provides a list and reference of the Ethereum (JSON-RPC and Consensus) API methods that 
Amazon Managed Blockchain (AMB) supports. It also includes code examples that implement API calls 
from clients using either HTTP or WebSocket (JSON-RPC API only) connections.

You use the Ethereum API from a client to query smart contract data and submit transactions to an 
Ethereum node on Amazon Managed Blockchain (AMB). You use the Ethereum Consensus API from 
a client to query the Beacon chain, its configuration, and the node health. For more information, see
Viewing node details (p. 7).

Execution and consensus client support

The Ethereum Merge transitioned the Ethereum blockchain to a proof-of-stake consensus, and it 
resulted in a new modular design for Ethereum. After the Merge, the original Ethereum stack forked 
into two distinct layers: the execution layer and the consensus layer. There are many different client 
implementations for both of these layers; however, Amazon Managed Blockchain (AMB) provides a fully 
managed Ethereum node that uses the GoEthereum (Geth) execution client and the Lighthouse consensus 
client.

Topics
• Supported JSON-RPC methods (p. 15)
• Supported Consensus API methods (p. 33)

Supported JSON-RPC methods
Amazon Managed Blockchain (AMB) Access Ethereum supports the following Ethereum JSON-RPC API 
methods. Each supported API call has a brief description of its utility. Unique considerations for using the 
JSON-RPC method with an Ethereum node in Amazon Managed Blockchain (AMB) are indicated where 
applicable.

Note

• Ethereum API calls to an Ethereum node in Amazon Managed Blockchain (AMB) can be 
authenticated by using the Signature Version 4 (SigV4) signing process. This means that only 
authorized IAM principals in the AWS account that created the node can interact with it using 
the Ethereum APIs. AWS credentials (an access key ID and secret access key) must be provided 
with the call.

• Token based access can also be used to make Ethereum API calls to an Ethereum node as a 
convenient alternative to the Signature Version 4 (SigV4) signing process. If you prioritize 
security and auditability over convenience, use the SigV4 signing process instead. However, 
if you use both SigV4 and token based access to make Ethereum APIs calls, any security 
provided through the use of the SigV4 signing process is negated.

• JSON-RPC batch requests aren't supported on Amazon Managed Blockchain (AMB) Access 
Ethereum.

• WebSocket calls have a 512 KB payload quota. Some calls might exceed this quota and cause 
a "message response is too large" error. For this reason, we recommend you use HTTP for 
these requests instead of WebSocket connections.

15

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

• If your HTTP response is larger than 5.9 MB, you will get an error. To correct this, you must 
set both compression headers as Accept: application/gzip and Accept-Encoding: 
gzip. The compressed response your client then receives contains the following headers: 
Content-Type: application/json and Content-Encoding: gzip.

Topics

• Making JSON-RPC API calls to an Ethereum node in Amazon Managed Blockchain (AMB) (p. 24)

The block identifier parameter

Some methods have an extra block identifier parameter. The following options are possible values for 
this parameter:

• A hexadecimal string value that represents an integer block number.

• "earliest" – String for the genesis block.

• "latest" – String for the latest mined block.

• "pending" – String for the pending state transactions.

Method Description Considerations

debug_traceBlock Returns the full 
stack trace of 
all the invoked 
opcodes for all the 
transactions that 
were included in 
the block provided 
as a parameter in 
RLP format.

 

debug_traceBlockByHash Returns the full 
stack trace of all 
the transactions 
that were included 
in a specified 
block by its hash.

 

debug_traceBlockByNumber Returns the full 
stack trace of all 
the transactions 
that were included 
in the specified 
block number.

 

debug_traceCall Returns the 
full stack trace 
after running an
eth_call within 
the context of 
the given block 
execution. The 
method is also 
used to simulate 
the outcomes of 

  

16

https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtraceblock
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtraceblockbyhash
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtraceblockbynumber
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtracecall


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

Method Description Considerations

transactions and 
supports custom 
tracers.

debug_traceTransaction Attempts to return 
all traces for a 
given transaction.

 

eth_blockNumber Returns the 
number of the 
most recent block.

 

eth_call Immediately 
runs a new 
message call 
without creating a 
transaction on the 
blockchain.

eth_call consumes 
0 gas, but has a 
gas parameter 
for messages that 
require it.

eth_chainId Returns an 
integer value 
for the currently 
configured Chain 
Id value that's 
introduced in
EIP-155. Returns
None if no Chain 
Id is available.

 

eth_createAccessList This method 
creates an
EIP2930 type
accessList
based on a given
Transaction. 
The accessList
contains all the 
storage slots and 
addresses read 
and written by the 
transaction, except 
for the sender 
account and the 
precompiles. 
This method 
uses the same
transaction
call object and
blockNumberOrTag
object as
eth_call.

An accessList
can be used to 
unstuck contracts 
that became 
inaccessible due to 
gas cost increases.

17

https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtracetransaction
https://eth.wiki/json-rpc/API#eth_blocknumber
https://eth.wiki/json-rpc/API#eth_call
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-2930


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

Method Description Considerations

eth_estimateGas Estimates and 
returns the gas 
that's required 
for a transaction 
without adding 
the transaction to 
the blockchain.

 

eth_feeHistory Returns a 
collection of 
historical gas 
information.

 

eth_gasPrice Returns the 
current price per 
gas in Wei.

 

eth_getBalance Returns the 
balance of an 
account for the 
specified account 
address and block 
identifier.

 

eth_getBlockByHash Returns 
information about 
the block specified 
using the block 
hash.

 

eth_getBlockByNumber Returns 
information about 
the block specified 
using the block 
number.

 

eth_getBlockTransactionCountByHash Returns the 
number of 
transactions in the 
block specified 
using the block 
hash.

 

eth_getBlockTransactionCountByNumber Returns the 
number of 
transactions in the 
block specified 
using the block 
number.

 

eth_getCode Returns the 
code at the 
specified account 
address and block 
identifier.

 

18

https://eth.wiki/json-rpc/API#eth_estimategas
https://eth.wiki/json-rpc/API#eth_gasprice
https://eth.wiki/json-rpc/API#eth_getbalance
https://eth.wiki/json-rpc/API#eth_getblockbyhash
https://eth.wiki/json-rpc/API#eth_getblockbynumber
https://eth.wiki/json-rpc/API#eth_getblocktransactioncountbyhash
https://eth.wiki/json-rpc/API#eth_getblocktransactioncountbynumber
https://eth.wiki/json-rpc/API#eth_getcode


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

Method Description Considerations

eth_getFilterChanges Polls the specified 
filter ID, retuning 
an array of logs 
that occurred since 
the last poll.

Filters are 
ephemeral. If 
AMB Access needs 
to manage or 
maintain node 
instances for 
availability and 
performance, 
and an instance 
is replaced, filters 
might be deleted. 
We recommend 
that you write 
your application 
code to handle 
the occasional 
deletion of filters.

eth_getFilterLogs Returns an array 
of all logs for the 
specified filter ID.

Filters are 
ephemeral. If 
AMB Access needs 
to manage or 
maintain node 
instances for 
availability and 
performance, 
and an instance 
is replaced, filters 
might be deleted. 
We recommend 
that you write 
your application 
code to handle 
the occasional 
deletion of filters.

eth_getLogs Returns an array 
of all logs for a 
specified filter 
object.

Filters are 
ephemeral. If 
AMB Access needs 
to manage or 
maintain node 
instances for 
availability and 
performance, 
and an instance 
is replaced, filters 
might be deleted. 
We recommend 
that you write 
your application 
code to handle 
the occasional 
deletion of filters.

19

https://eth.wiki/json-rpc/API#eth_getfilterchanges
https://eth.wiki/json-rpc/API#eth_getfilterlogs
https://eth.wiki/json-rpc/API#eth_getlogs


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

Method Description Considerations

eth_getProof Experimental
– Returns the 
account and 
storage values 
of the specified 
account, including 
the Merkle proof.

 

eth_getStorageAt Returns the 
value of the 
specified storage 
position for the 
specified account 
address and block 
identifier.

 

eth_getTransactionByBlockHashAndIndex Returns 
information about 
a transaction 
using the specified 
block hash and 
transaction index 
position.

 

eth_getTransactionByBlockNumberAndIndex Returns 
information about 
a transaction 
using the specified 
block number and 
transaction index 
position.

 

eth_getTransactionByHash Returns 
information about 
the transaction 
with the specified 
transaction hash.

 

eth_getTransactionCount Returns the 
number of 
transactions sent 
from the specified 
address and block 
identifier.

 

eth_getTransactionReceipt Returns the 
receipt of the 
transaction using 
the specified 
transaction hash.

 

20

https://eth.wiki/json-rpc/API#eth_getstorageat
https://eth.wiki/json-rpc/API#eth_gettransactionbyblockhashandindex
https://eth.wiki/json-rpc/API#eth_gettransactionbyblocknumberandindex
https://eth.wiki/json-rpc/API#eth_gettransactionbyhash
https://eth.wiki/json-rpc/API#eth_gettransactioncount
https://eth.wiki/json-rpc/API#eth_gettransactionreceipt


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

Method Description Considerations

eth_getUncleByBlockHashAndIndex Returns 
information about 
the uncle block 
specified using 
the block hash 
and uncle index 
position.

 

eth_getUncleByBlockNumberAndIndex Returns 
information about 
the uncle block 
specified using 
the block number 
and uncle index 
position.

 

eth_getUncleCountByBlockHash Returns the 
number of counts 
in the uncle 
specified using the 
uncle hash.

 

eth_getUncleCountByBlockNumber Returns the 
number of counts 
in the uncle 
specified using the 
uncle number.

 

eth_getWork Returns the 
hash of the 
current block, the 
seedHash, and 
the boundary 
condition (also 
called the "target") 
to be met.

 

eth_maxPriorityFeePerGas Returns the fee 
per gas that's an 
estimate of how 
much you can 
pay as a priority 
fee, or "tip," to 
get a transaction 
included in the 
current block.

Generally you use 
the value that's 
returned from this 
method to set the
maxFeePerGas
in the subsequent 
transaction that 
you're submitting.

eth_newBlockFilter Creates a filter 
in the node to 
notify when a new 
block arrives. Use
eth_getFilterChanges
to check for state 
changes.

 

21

https://eth.wiki/json-rpc/API#eth_getunclebyblockhashandindex
https://eth.wiki/json-rpc/API#eth_getunclebyblocknumberandindex
https://eth.wiki/json-rpc/API#eth_getunclecountbyblockhash
https://eth.wiki/json-rpc/API#eth_getunclecountbyblocknumber
https://eth.wiki/json-rpc/API#eth_getwork
https://eth.wiki/json-rpc/API#eth_newblockfilter


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

Method Description Considerations

eth_newFilter Creates a filter 
object with the 
specified filter 
options (such as 
from block, to 
block, contract 
address, or topics).

 

eth_newPendingTransactionFilter Creates a filter 
in the node to 
notify when 
new pending 
transactions 
arrive. Use 
<code>eth_getFilterChanges</
code> to check for 
state changes.

 

eth_protocolVersion Returns the 
current Ethereum 
protocol version.

 

eth_sendRawTransaction Creates a new 
message call 
transaction 
or a contract 
creation for signed 
transactions.

AMB Access 
supports raw 
transactions 
only. You must 
create and sign 
transactions 
before sending 
them. For more 
information, see
How to create raw 
transactions in 
Ethereum.

eth_subscribe Experimental 
for publication 
subscription
– Creates a 
subscription for 
specified events 
and returns a 
subscription ID.

Available only 
when using 
WebSocket 
connections. 
Subscriptions are 
coupled to each 
connection. When 
the connection 
closes, the 
subscription is 
removed.

eth_syncing Returns an object 
with sync status 
data or false
when not syncing.

 

eth_uninstallFilter Uninstalls the 
filter with the 
specified filter ID.

 

22

https://eth.wiki/json-rpc/API#eth_newfilter
https://eth.wiki/json-rpc/API#eth_newpendingtransactionfilter
https://eth.wiki/json-rpc/API#eth_protocolversion
https://eth.wiki/json-rpc/API#eth_sendrawtransaction
https://medium.com/blockchain-musings/how-to-create-raw-transactions-in-ethereum-part-1-1df91abdba7c
https://medium.com/blockchain-musings/how-to-create-raw-transactions-in-ethereum-part-1-1df91abdba7c
https://medium.com/blockchain-musings/how-to-create-raw-transactions-in-ethereum-part-1-1df91abdba7c
https://geth.ethereum.org/docs/interacting-with-geth/rpc/pubsub
https://eth.wiki/json-rpc/API#eth_syncing
https://eth.wiki/json-rpc/API#eth_uninstallfilter


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported JSON-RPC methods

Method Description Considerations

eth_unsubscribe Experimental 
for publication 
subscription
– Cancels the 
subscription with 
the specified 
subscription ID.

 

net_listening Returns true
if the client is 
actively listening 
for network 
connections.

 

net_peerCount Returns the 
number of 
peers currently 
connected to the 
client.

 

net_version Returns the 
current network 
ID.

 

txpool_inspect Lists a textual 
summary of all 
the transactions 
that are currently 
pending inclusion 
in the next blocks, 
and those that 
are queued (being 
scheduled for 
future execution 
only).

 

txpool_status Provides a count 
of all transactions 
currently pending 
inclusion in the 
next blocks, and 
those that are 
queued (being 
scheduled for 
future execution 
only).

 

web3_clientVersion Returns the 
current client 
version.

 

web3_sha3 Returns 
Keccak-256 (not 
the standardized 
SHA3-256) of the 
given data.

 

23

https://geth.ethereum.org/docs/interacting-with-geth/rpc/pubsub#cancel-subscriptions
https://eth.wiki/json-rpc/API#net_listening
https://eth.wiki/json-rpc/API#net_peercount
https://eth.wiki/json-rpc/API#net_version
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-txpool#txpool-inspect
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-txpool#txpool-status
https://eth.wiki/json-rpc/API#web3_clientversion
https://eth.wiki/json-rpc/API#web3_sha3


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

Making JSON-RPC API calls to an Ethereum node in 
Amazon Managed Blockchain (AMB)
The following examples demonstrate ways to make Ethereum JSON-RPC API calls to an Ethereum node 
in Amazon Managed Blockchain (AMB).

Topics

• Using Signature Version 4 to make JSON-RPC API calls to an Ethereum node (p. 24)

• Using token based access to make JSON-RPC API calls to an Ethereum node (p. 31)

Using Signature Version 4 to make JSON-RPC API calls to an 
Ethereum node

The following sections demonstrate ways to make JSON-RPC API calls to an Ethereum node on Amazon 
Managed Blockchain (AMB) using the Signature Version 4 signing process.

Important
The Signature Version 4 signing process requires the credentials that are associated with an 
AWS account. Some examples in this section export these sensitive credentials to the shell 
environment of the client. Only use these examples on a client that run in a trusted context. Do 
not use these examples in an untrusted context, such as in a web browser or mobile app. Never 
embed client credentials in user-facing applications. To expose an Ethereum node in AMB Access 
to anonymous users visiting from trusted web domains, you can set up a separate endpoint in
Amazon API Gateway that's backed by a Lambda function that forwards requests to your node 
using the proper IAM credentials.

Topics

• Endpoint format for making JSON-RPC API calls over WebSocket and HTTP connections using 
Signature Version 4 (p. 24)

• Using web3.js to make JSON-RPC API calls (p. 25)

• Making JSON-RPC API call using AWS SDK for JavaScript with a WebSocket connection to an 
Ethereum node in Amazon Managed Blockchain (AMB) (p. 29)

• Making JSON-RPC API calls using awscurl over HTTP (p. 30)

Endpoint format for making JSON-RPC API calls over WebSocket and HTTP 
connections using Signature Version 4

Example

An Ethereum node created using AMB Access Ethereum hosts one endpoint for WebSocket connections 
and another for HTTP connections. These endpoints conform to the following patterns.

Note
The node ID is case sensitive and must be lowercase where indicated, or a signature mismatch 
error occurs.

WebSocket endpoint format

wss://your-node-id-lowercase.wss.ethereum.managedblockchain.us-east-1.amazonaws.com/

24

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

For example: wss://
nd-6eaj5va43jggnpxouzp7y47e4y.wss.ethereum.managedblockchain.us-
east-1.amazonaws.com/

HTTP endpoint format

https://your-node-id-lowercase.ethereum.managedblockchain.us-east-1.amazonaws.com/

For example, https://nd-6eaj5va43jggnpxouzp7y47e4y.ethereum.managedblockchain.us-
east-1.amazonaws.com/

Using web3.js to make JSON-RPC API calls

Web3.js is a popular collection of JavaScript libraries available using the Node package manager (npm). 
You can run the following examples to send a JSON-RPC API call to Ethereum using a Javascript file for 
Node.js. The examples demonstrate an HTTP connection and a WebSocket connection to an Ethereum 
node.

Both HTTP and WebSocket connection types rely on a local connection provider library to open the 
Signature Version 4 authenticated connection to the Ethereum node. You install the provider for the 
connection locally by copying the source code to a file on your client. Then, reference the library files in 
the script that makes the Ethereum API call.

Prerequisites

Example

Running the example scripts requires the following prerequisites. Prerequisites for both HTTP and 
WebSocket connections are included.

1. You must have node version manager (nvm) and Node.js installed on your machine. If you use an 
Amazon EC2 instance as your Ethereum client, see Tutorial: Setting Up Node.js on an Amazon EC2 
Instance for more information.

2. Type node --version and verify that you are using Node version 14 or later. If necessary, you can 
use the nvm install 14 command followed by the nvm use 14 command to install version 14.

3. Use node package manager (npm) to install the aws-sdk, web3, and xhr2 packages by running the 
following commands.

npm install aws-sdk

npm install web3

npm install xhr2

4. The example scripts use ES modules. To enable ECMAScript (ES) module support, add the "type": 
"module" line to your package.json file. The example that follows shows the contents of a simple
package.json file.

{ 
  "type": "module", 
  "dependencies": { 
    "aws-sdk": "^2.809.0", 
    "web3": "^1.3.0", 
    "xhr2": "^0.2.0" 
  }

25

https://web3js.readthedocs.io/en/v1.3.0/
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

}

5. The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain the 
credentials that are associated with the same AWS account that created the node. The environment 
variables AMB_HTTP_ENDPOINT and AMB_WS_ENDPOINT must contain your Ethereum node's HTTP 
and WebSocket endpoints respectively.

Export these variables as strings on your client using the following commands. Replace the values with 
appropriate values from your IAM user account.

export AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"

export AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

export 
 AMB_HTTP_ENDPOINT="https://nd-6eaj5va43jggnpxouzp7y47e4y.ethereum.managedblockchain.us-
east-1.amazonaws.com/"

export 
 AMB_WS_ENDPOINT="wss://nd-6eaj5va43jggnpxouzp7y47e4y.wss.ethereum.managedblockchain.us-
east-1.amazonaws.com/"

Example

To make an Ethereum API call using web3.js over HTTP to your Ethereum node in the AMB 
Access

1. Copy the contents of the example that follows, and then use your preferred text editor to save it to a 
file that's named aws-http-provider.js on your client machine in the same directory where you 
run your script.

Contents of aws-http-provider.js

/////////////////////////////////////////////////////
// Authored by Carl Youngblood
// Senior Blockchain Solutions Architect, AWS
// Adapted from web3 npm package v1.3.0
// licensed under GNU Lesser General Public License
// https://github.com/ethereum/web3.js
/////////////////////////////////////////////////////

import AWS from 'aws-sdk';
import HttpProvider from 'web3-providers-http';
import XHR2 from 'xhr2';

export default class AWSHttpProvider extends HttpProvider { 
  send(payload, callback) { 
    const self = this; 
    const request = new XHR2(); // eslint-disable-line 

    request.timeout = self.timeout; 
    request.open('POST', self.host, true); 
    request.setRequestHeader('Content-Type', 'application/json'); 

    request.onreadystatechange = () => { 
      if (request.readyState === 4 && request.timeout !== 1) { 
        let result = request.responseText; // eslint-disable-line 

26



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

        let error = null; // eslint-disable-line 

        try { 
          result = JSON.parse(result); 
        } catch (jsonError) { 
          let message; 
          if (!!result && !!result.error && !!result.error.message) { 
            message = `[aws-ethjs-provider-http] ${result.error.message}`; 
          } else  { 
            message = `[aws-ethjs-provider-http] Invalid JSON RPC response from host 
 provider ${self.host}: ` + 
              `${JSON.stringify(result, null, 2)}`; 
          } 
          error = new Error(message); 
        } 

        callback(error, result); 
      } 
    }; 

    request.ontimeout = () => { 
      callback(`[aws-ethjs-provider-http] CONNECTION TIMEOUT: http request timeout 
 after ${self.timeout} ` + 
        `ms. (i.e. your connect has timed out for whatever reason, check your 
 provider).`, null); 
    }; 

    try { 
      const strPayload = JSON.stringify(payload); 
      const region = process.env.AWS_DEFAULT_REGION || 'us-east-1'; 
      const credentials = new AWS.EnvironmentCredentials('AWS'); 
      const endpoint = new AWS.Endpoint(self.host); 
      const req = new AWS.HttpRequest(endpoint, region); 
      req.method = request._method; 
      req.body = strPayload; 
      req.headers['host'] = request._url.host; 
      const signer = new AWS.Signers.V4(req, 'managedblockchain'); 
      signer.addAuthorization(credentials, new Date()); 
      request.setRequestHeader('Authorization', req.headers['Authorization']); 
      request.setRequestHeader('X-Amz-Date', req.headers['X-Amz-Date']); 
      request.send(strPayload); 
    } catch (error) { 
      callback(`[aws-ethjs-provider-http] CONNECTION ERROR: Couldn't connect to node 
 '${self.host}': ` + 
        `${JSON.stringify(error, null, 2)}`, null); 
    } 
  }
}

2. Copy the contents of the following example, and then use your preferred text editor to save it to 
a file that's named web3-example-http.js in the same directory where you saved the provider 
from the previous step. The example script runs the getNodeInfo Ethereum method. You can 
modify the script to include other methods and their parameters.

Contents of web3-example-http.js

import Web3 from 'web3';
import AWSHttpProvider from './aws-http-provider.js';
const endpoint = process.env.AMB_HTTP_ENDPOINT
const web3 = new Web3(new AWSHttpProvider(endpoint));
web3.eth.getNodeInfo().then(console.log);

3. Run the script to call the Ethereum API method over HTTP on your Ethereum node.

27



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

node web3-example-http.js

The output is similar to the following.

Geth/v1.9.24-stable-cc05b050/linux-amd64/go1.15.5

To make an Ethereum API call using web3.js over WebSocket to your Ethereum node in the 
AMB Access

1. Copy the contents of the example that follows, and then use a text editor of your choosing to save 
it to a file that's named aws-websocket-provider.js in the same directory on your client where 
you run your script.

Contents of aws-websocket-provider.js

/////////////////////////////////////////////////////
// Authored by Carl Youngblood
// Senior Blockchain Solutions Architect, AWS
// Adapted from web3 npm package v1.3.0
// licensed under GNU Lesser General Public License
// https://github.com/ethereum/web3.js
/////////////////////////////////////////////////////

import AWS from 'aws-sdk';
import WebsocketProvider  from 'web3-providers-ws';
import pkg from 'websocket';
const { w3cwebsocket } = pkg;
const Ws = w3cwebsocket;

export default class AWSWebsocketProvider extends WebsocketProvider { 
  connect() { 
    const region = process.env.AWS_DEFAULT_REGION || 'us-east-1'; 
    const credentials = new AWS.EnvironmentCredentials('AWS'); 
    const host = new URL(this.url).hostname; 
    const endpoint = new AWS.Endpoint(`https://${host}/`); 
    const req = new AWS.HttpRequest(endpoint, region); 
    req.method = 'GET'; 
    req.body = ''; 
    req.headers['host'] = host; 
    const signer = new AWS.Signers.V4(req, 'managedblockchain'); 
    signer.addAuthorization(credentials, new Date()); 
    const headers = { 
      'Authorization': req.headers['Authorization'], 
      'X-Amz-Date': req.headers['X-Amz-Date'], 
      ...this.headers 
    } 
    this.connection = new Ws(this.url, this.protocol, undefined, headers, 
 this.requestOptions, this.clientConfig); 
    this._addSocketListeners(); 
  }
}

2. Copy the contents of the following, and then use a text editor of your choosing to save it to a file 
that's named web3-example-ws.js in the same directory where you saved the provider from the 
previous step. The example script runs the getNodeInfo Ethereum method and then closes the 
connection. You can modify the script to include other methods and their parameters.

Contents of web3-example-ws.js

28



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

import Web3 from 'web3';
import AWSWebsocketProvider from "./aws-websocket-provider.js";
const endpoint = process.env.AMB_WS_ENDPOINT
const web3 = new Web3(new AWSWebsocketProvider(endpoint));
web3.eth.getNodeInfo().then(console.log).then(() => { 
  web3.currentProvider.connection.close();
});

3. Run the script to call the Ethereum API method over WebSocket on your Ethereum node.

node web3-example-ws.js

The output is similar to following.

Geth/v1.9.24-stable-cc05b050/linux-amd64/go1.15.5

Making JSON-RPC API call using AWS SDK for JavaScript with a WebSocket 
connection to an Ethereum node in Amazon Managed Blockchain (AMB)

The following example uses a JavaScript file for Node.js to open a WebSocket connection to the 
Ethereum node endpoint in AMB Access and sends an Ethereum JSON-RPC API call.

Running the example script requires the following:

• Node.js is installed on your machine. If you are using an Amazon EC2 instance, see Tutorial: Setting Up 
Node.js on an Amazon EC2 Instance.

• The Node package manager (npm) was used to install the AWS SDK for JavaScript, websocket-client, 
and ws packages. The script uses classes from these packages. You can do so by running the following 
commands.

npm install websocket-client

npm install ws

npm install aws-sdk

• The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain 
credentials associated with the same account that created the node.

Note
If you added the "type": "module" line in your package.json, the script that follows fails 
with the error require is not defined. To resolve this error, modify package.json to 
remove or comment out this line before running the script.

Example To make an Ethereum API call over WebSocket to your Ethereum node on AMB 
Access

1. Copy the contents of the following script and save it to a file on your machine (for example, ws-
ethereum-example.js). Use a text editor to replace your-node-id-lowercase with the ID 
of a node in your account (for example, nd-6eaj5va43jggnpxouzp7y47e4y). Then, replace us-
east-1 with the AWS Region that you created your node in.

29

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

The example calls the Ethereum JSON-RPC method eth_subscribe along with the newHeads
parameter. You can replace this method and its parameters with any method that's listed in
Supported JSON-RPC methods (p. 15).

Contents of ws-ethereum-example.js

const AWS = require('aws-sdk');
const WebSocket = require('ws')
const region = 'us-east-1';
const host = 'your-node-id-lowercase.wss.ethereum.managedblockchain.us-
east-1.amazonaws.com';
const payload = { 
  jsonrpc: '2.0', 
  method: 'eth_subscribe', 
  params: ["newHeads"], 
  id: 67
}
const credentials = new AWS.EnvironmentCredentials('AWS');
const endpoint = new AWS.Endpoint(`https://${host}`);
const request = new AWS.HttpRequest(endpoint, region);
request.method = 'GET';
request.body = '';
request.headers['host'] = host;
const signer = new AWS.Signers.V4(request, 'managedblockchain');
signer.addAuthorization(credentials, new Date());
const ws = new WebSocket(`wss://${host}`, {headers: request.headers});
ws.onopen = async () => { 
  ws.send(JSON.stringify(payload)); 
  console.log('Sent request');
}
ws.onerror = (error) => { 
  console.error(`WebSocket error: ${error.message}`)
}
ws.onmessage = (e) => { 
  console.log(e.data)
}

2. Run the following command to call the Ethereum API method over WebSocket on your Ethereum 
node.

node ws-ethereum-example.js

The eth_subscribe method with the newHeads parameter generates a notification each time a 
new header is appended to the chain. Output is similar to the following example. The WebSocket 
connection remains open and additional notifications appear until you cancel the command.

sent request
{"id":67,"jsonrpc":"2.0","result":"0xabcd123456789efg0h123ijk45l6m7n8"}

Making JSON-RPC API calls using awscurl over HTTP

Example

The example that follows uses awscurl, which sends a signed HTTP request based on the current 
credentials you have set for the AWS CLI. If you construct your own HTTP requests, see Signing AWS 
requests with Signature Version 4 in the AWS General Reference.

Replace your-node-id-lowercase with the ID of a node in your account (for example,
nd-6eaj5va43jggnpxouzp7y47e4y). The example calls the web3_clientVersion method, which 

30

https://pypi.org/project/awscurl/0.6/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

takes an empty parameter block. You can replace this method and its parameters with any method that's 
listed in Supported JSON-RPC methods (p. 15).

awscurl --service managedblockchain \
-X POST -d '{"jsonrpc": "2.0", "method": "web3_clientVersion", "params": [], "id": 67}' \
https://your-node-id-lowercase.ethereum.managedblockchain.us-east-1.amazonaws.com

The command returns output similar to the following.

{"jsonrpc":"2.0","id":67,"result":"Geth/v1.9.22-stable-c71a7e26/linux-amd64/go1.15.5"}

Using token based access to make JSON-RPC API calls to an 
Ethereum node
You can also use Accessor tokens to make Ethereum API calls to an Ethereum node as a convenient 
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN from 
one of the Accessor tokens that you create as a query parameter with the call. For more information on 
creating and managing Accessor tokens, see the topic on Using token based access.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing process 
instead.

• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based access. 
However, if you choose to use both protocols, then any security benefits that are provided by 
using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.

The following examples demonstrate ways to make Ethereum JSON-RPC API calls to an Ethereum node 
on Amazon Managed Blockchain (AMB) using token based access.

Topics
• Endpoint format for WebSocket and HTTP connections using token based access (p. 31)
• Using wscat to connect and JSON-RPC API calls to your Ethereum node over WebSocket connection 

using token based access (p. 32)
• Using awscurl to make JSON-RPC API calls to your Ethereum node over HTTP using token based 

access (p. 33)

Endpoint format for WebSocket and HTTP connections using token based access

Example

Each Ethereum node hosts one endpoint for WebSocket connections and another for HTTP connections. 
For token based access, these endpoints conform to the following patterns:

Note
The node ID is case sensitive and must be lowercase where indicated, or a signature mismatch 
error occurs.

WebSocket endpoint format

wss://your-node-id-lowercase.wss.t.ethereum.managedblockchain.us-east-1.amazonaws.com?
billingtoken=your-billing-token

31

https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-tokens.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Examples using the JSON-RPC API

For example, nd-6eaj5va43jggnpxouzp7y47e4y.wss.t.ethereum.managedblockchain.us-
east-1.amazonaws.com?billingtoken=n-MWY63ZJZU5HGNCMBQER7IN6OIU

HTTP endpoint format

https://your-node-id-lowercase.t.ethereum.managedblockchain.us-east-1.amazonaws.com?
billingtoken=your-billing-token

For example, https://
nd-6eaj5va43jggnpxouzp7y47e4y.t.ethereum.managedblockchain.us-
east-1.amazonaws.com?billingtoken=n-MWY63ZJZU5HGNCMBQER7IN6OIU

Using wscat to connect and JSON-RPC API calls to your Ethereum node over 
WebSocket connection using token based access

Example

This section describes how you can use a third party utility,  wscat, to connect to your node using a 
token.

After installing wscat, use the following command to open a WebSocket connection to your ethereum 
node.

wscat --connect wss://your-node-id.wss.t.ethereum.managedblockchain.us-
east-1.amazonaws.com?billingtoken=your-billing-token

This opens an active WebSocket connection to your node as shown in the following example response:

Connected (press CTRL+C to quit)
>

JSON-RPC calls can now be executed as follows,

{"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id": 1}

A reply should arrive back with the same id.

> {"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id": 1}
< {"jsonrpc":"2.0","id":1,"result":"0x9798e5

For subscriptions, calls can be executed in the following format,

> {"jsonrpc":"2.0","method":"eth_subscribe","params":["newHeads"],"id": 1}
< {"id":1,"jsonrpc":"2.0","result":"0x4742411a16a232389a5877d4184e57b9"}

You should continuously get subscription messages that correspond to new blocks roughly every 15 
seconds. To stop the messages, unsubscribe by using the subscription ID from the initial response.

> {"jsonrpc":"2.0","method":"eth_unsubscribe","params":
["0x4742411a16a232389a5877d4184e57b9"],"id": 1}
< {"id":1,"jsonrpc":"2.0","result":true}

32

https://www.npmjs.com/package/wscat


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported Consensus API methods

Using awscurl to make JSON-RPC API calls to your Ethereum node over HTTP 
using token based access

Example

The following example uses awscurl, which sends a signed HTTP request based on the credentials that 
you set for the AWS CLI.

awscurl -X POST -d '{"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id": 
 1}' 'https://your-node-id.t.ethereum.managedblockchain.us-east-1.amazonaws.com?
billingtoken=your-billing-token

Example Reply (Contents may differ):

{"jsonrpc":"2.0","id":1,"result":"0x9798d2"}

Supported Consensus API methods
Amazon Managed Blockchain (AMB) Access Ethereum supports the following Ethereum Consensus API 
methods. Each supported API has a brief description of its utility. Unique considerations for using the 
Consensus method with an Ethereum node in Amazon Managed Blockchain (AMB) are indicated where 
applicable.

Note

• The Consensus API is not supported on the Rinkeby testnet.

• The Consensus API doesn't support WebSocket connections.

• Any methods that aren't listed are not supported.

• Ethereum API calls to an Ethereum node in Amazon Managed Blockchain (AMB) can be 
authenticated by using the Signature Version 4 (SigV4) signing process. This means that only 
authorized IAM principals in the AWS account that created the node can interact with it using 
the Ethereum APIs. AWS credentials (an access key ID and secret access key) must be provided 
with the call.

• Token based access can also be used to make Ethereum API calls to an Ethereum node as a 
convenient alternative to the Signature Version 4 (SigV4) signing process. If you prioritize 
security and auditability over convenience, use the SigV4 signing process instead. However, 
if you use both SigV4 and token based access to make Ethereum APIs calls, any security 
provided through the use of the SigV4 signing process is negated.

Topics

• Making Consensus API calls to an Ethereum node in Amazon Managed Blockchain (AMB) (p. 35)

State related APIs are supported only for the following states:

• /eth/v1/beacon/states/head

• /eth/v1/beacon/states/finalized

• /eth/v1/beacon/states/justified

• /eth/v1/beacon/states/genesis

33

https://pypi.org/project/awscurl/0.6/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Supported Consensus API methods

Method Description

/eth/v1/beacon/genesis Returns the details 
of the chain's genesis 
block.

/eth/v1/beacon/states/{state_id}/root Calculates the 
HashTreeRoot for the 
state with a given
state_id. If the
state_id is root, the 
same value will be 
returned.

/eth/v1/beacon/states/{state_id}/fork Gets the fork object 
for the requested
state_id.

/eth/v1/beacon/states/{state_id}/finality_checkpoints Returns the finality 
checkpoints for a state 
with a given state_id. 
In case finality is 
not yet achieved, 
the checkpoint 
returns epoch 0 and
ZERO_HASH as root.

/eth/v1/beacon/states/{state_id}/committees Returns the committees 
for a given state_id.

/eth/v1/beacon/headers Returns the block 
headers matching a 
given query.

/eth/v1/beacon/headers/headers/{block_id} Returns the block 
header for a given
block_id.

/eth/v2/beacon/blocks/{block_id} Returns the block 
details for a given
block_id.

/eth/v1/beacon/blocks/{block_id}/root Returns the 
hashTreeRoot of 
a BeaconBlock/
BeaconBlockHeader for 
a given block_id.

/eth/v1/beacon/blocks/{block_id}/attestations Returns the attestations 
of a block using its
block_id.

/eth/v1/config/fork_schedule Returns all the forks; 
past, present, and 
future, of which this 
node is aware.

/eth/v1/config/spec Returns the 
configuration 

34



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Examples making Consensus API calls

Method Description

specification used for 
this node.

/eth/v1/config/deposit_contract Returns the Eth1 
deposit contract 
address and chain ID.

/eth/v2/debug/beacon/heads Returns all the possible 
chain heads (leaves of 
the fork choice tree).

/eth/v1/node/identity Returns data about 
the node's network 
presence.

/eth/v1/node/peers Returns data about the 
node's network peers.

/eth/v1/node/peers/{peer_id} Returns data about 
a peer given the
peer_id.

/eth/v1/node/peer_count Returns the number of 
known peers.

/eth/v1/node/version Requests the Beacon 
node identify 
information about its 
implementation in a 
format similar to a
HTTP User-Agent field.

/eth/v1/node/syncing Requests the Beacon 
node to describe if it's 
currently syncing, and 
if it's, what block it's up 
to.

/eth/v1/node/health Returns the Beacon 
node's health status in 
HTTP status codes. This 
is useful information for 
load balancers.

Making Consensus API calls to an Ethereum node in 
Amazon Managed Blockchain (AMB)
The following examples demonstrate ways to make Ethereum Consensus API calls to an Ethereum node 
in Amazon Managed Blockchain (AMB).

Topics

• Using Consensus API calls signed using Signature Version 4 to an Ethereum node (p. 36)

• Using token based access to make Consensus API calls to an Ethereum node (p. 38)

35

https://datatracker.ietf.org/doc/html/rfc7231#section-5.5.3


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Examples making Consensus API calls

Using Consensus API calls signed using Signature Version 4 to 
an Ethereum node
The following sections demonstrate ways to make Consensus API calls to an Ethereum node on Amazon 
Managed Blockchain (AMB) using the Signature Version 4 signing process.

Important
The Signature Version 4 signing process requires the credentials that are associated with an 
AWS account. Some examples in this section export these sensitive credentials to the shell 
environment of the client. Only use these examples on a client that run in a trusted context. Do 
not use these examples in an untrusted context, such as in a web browser or mobile app. Never 
embed client credentials in user-facing applications. To expose an Ethereum node in AMB Access 
to anonymous users visiting from trusted web domains, you can set up a separate endpoint in
Amazon API Gateway that are backed by a Lambda function that forwards requests to your node 
using the proper IAM credentials.

Topics

• Endpoint format for making Consensus API calls over HTTP (p. 36)

• Making Consensus API calls using AWS SDK for JavaScript over HTTP  (p. 36)

• Using awscurl to make Consensus API calls over HTTP (p. 38)

Endpoint format for making Consensus API calls over HTTP

An Ethereum node that's created using AMB Access Ethereum hosts one endpoint for HTTP connections. 
This endpoint conforms to the following patterns.

Note
The node ID is case sensitive and must be lowercase where indicated, or a signature mismatch 
error occurs.

HTTP endpoint format

https://your-node-id-lowercase.ethereum.managedblockchain.us-east-1.amazonaws.com/<followed 
 by HTTP path of the Consensus API>

For example: https://nd-6eaj5va43jggnpxouzp7y47e4y.ethereum.managedblockchain.us-
east-1.amazonaws.com/eth/v1/beacon/genesis

Making Consensus API calls using AWS SDK for JavaScript over HTTP

The following example uses a JavaScript file for Node.js to make Consensus API calls by sending HTTP 
requests to the Ethereum node endpoint in Amazon Managed Blockchain (AMB).

Running the example script requires the following:

• Node.js is installed on your machine. If you use an Amazon EC2 instance, see Tutorial: Setting Up 
Node.js on an Amazon EC2 Instance.

• The Node package manager (npm) is used to install the AWS SDK for JavaScript. The script uses classes 
from these packages.

npm install aws-sdk

• The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain the 
credentials that are associated with the same account that created the node.

36

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Examples making Consensus API calls

Otherwise, the alternative is that the ~/.aws/credentials file is populated.

Example — Make a Consensus API call using AWS SDK for JavaScript with an HTTP 
connection to an Ethereum node in Amazon Managed Blockchain (AMB)

1. Copy the contents of the script that follows and save it to a file on your machine (for example,
consensus-ethereum-example.js).

Contents of consensus-ethereum-example.js

const AWS = require('aws-sdk');
const REGION = process.env.AWS_DEFAULT_REGION || 'us-east-1';

async function signedManagedBlockchainRequest(endpoint, credentials, host) { 
    const awsRequest = new AWS.HttpRequest(new AWS.Endpoint(endpoint), REGION); 
    awsRequest.method = 'GET'; 
    awsRequest.headers['host'] = host; 
    const signer = new AWS.Signers.V4(awsRequest, 'managedblockchain'); 
    signer.addAuthorization(credentials, new Date()); 

    return awsRequest
}

/** 
 * Sends Consensus API requests to AMB Ethereum node. 
 * @param {*} nodeId - Node ID 
 * @param {*} consensusApi - Consensus API to invoke, such as "/eth/v1/beacon/genesis". 
 * @param {*} credentials - AWS credentials. 
 * @returns A promise with invocation result. 
 */
async function sendRequest(nodeId, consensusApi, credentials) { 
    const host = `${nodeId}.ethereum.managedblockchain.${REGION}.amazonaws.com` 
    const endpoint = `https://${host}${consensusApi}`; 
    request = await signedManagedBlockchainRequest(endpoint, credentials, host) 
    const client = new AWS.HttpClient(); 
    return  await  new Promise((resolve, reject) => { 
        client.handleRequest(request, null, response => { 
            let data = [] 
            response.on('data', chunk => { 
                data.push(chunk); 
            }); 
            response.on('end', () => { 
            var responseBody = Buffer.concat(data); 
                resolve(responseBody.toString('utf8')) 
            }); 
        }) 
    });
}

const nodeId = process.env.NODE_ID;
new AWS.CredentialProviderChain() 
    .resolvePromise() 
    .then(credentials => sendRequest(nodeId, '/eth/v1/beacon/states/finalized/root', 
 credentials)) 
    .then(console.log) 
    .catch(err => console.error('ERROR: ' + err))

2. Run the script to call the Consensus API method over HTTP on your Ethereum node.

NODE_ID=nd-6eaj5va43jggnpxouzp7y47e4y AWS_DEFAULT_REGION=us-east-1 node consensus-
ethereum-example.js

37



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Examples making Consensus API calls

Using awscurl to make Consensus API calls over HTTP

The following example uses awscurl, which sends a signed HTTP request based on the credentials that 
you set for the AWS CLI. If you make your own HTTP requests, see Signing AWS requests with Signature 
Version 4 in the AWS General Reference.

This example calls the  /eth/v1/beacon/genesis method, which takes an empty parameter block. 
You can replace this method and its parameters with any method listed in Supported Consensus API 
methods. Replace your-node-id-lowercase with the ID of a node in your account (for example,
nd-6eaj5va43jggnpxouzp7y47e4y).

awscurl --service managedblockchain \
-X GET 'https://your-node-id-lowercase.ethereum.managedblockchain.us-
east-1.amazonaws.com/eth/v1/beacon/genesis'

The command returns output similar to the following.

{"data":
{"genesis_time":"1606824023","genesis_validators_root":"0x4b363db94e286120d76eb905340fdd4e54bfe9f06bf33ff6cf5ad27f511bfe95","genesis_fork_version":"0x00000000"}}

Using token based access to make Consensus API calls to an 
Ethereum node
You can also use Accessor tokens to make Ethereum API calls to an Ethereum node as a convenient 
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN from 
one of the Accessor tokens that you create as a query parameter with the call. For more information on 
creating and managing Accessor tokens, see the topic on Using token based access.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing process 
instead.

• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based access. 
However, if you choose to use both protocols, then any security benefits that are provided by 
using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.

The following examples demonstrate ways to make Ethereum Consensus API calls to an Ethereum node 
on Amazon Managed Blockchain (AMB) using token based access.

Topics
• Endpoint format for making Consensus API calls over HTTP using token based access (p. 38)
• Making Consensus API calls using AWS SDK for JavaScript over HTTP using token based access

 (p. 39)
• Using awscurl to make Consensus API calls over HTTP using token based access (p. 41)

Endpoint format for making Consensus API calls over HTTP using token based 
access

An Ethereum node that's created using AMB Access Ethereum hosts one endpoint for HTTP connections. 
This endpoint conforms to the following patterns.

Note
The node ID is case sensitive and must be lowercase where indicated, or a signature mismatch 
error occurs.

38

https://pypi.org/project/awscurl/0.6/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-tokens.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Examples making Consensus API calls

HTTP endpoint format

https://your-node-id-lowercase.t.ethereum.managedblockchain.us-
east-1.amazonaws.com/<followed by HTTP path of the Consensus API>?billingtoken=your-
billing-token

For example:
https://nd-6eaj5va43jggnpxouzp7y47e4y.t.ethereum.managedblockchain.us-
east-1.amazonaws.com/eth/v1/beacon/genesis?billingtoken=n-
MWY63ZJZU5HGNCMBQER7IN6OIU

Making Consensus API calls using AWS SDK for JavaScript over HTTP using 
token based access

The following example uses a JavaScript file for Node.js to make Consensus API calls using token based 
access by sending HTTP requests to the Ethereum node endpoint in Amazon Managed Blockchain (AMB).

Running the example script requires the following:

• Node.js is installed on your machine. If you use an Amazon EC2 instance, see Tutorial: Setting Up 
Node.js on an Amazon EC2 Instance.

• The Node package manager (npm) is used to install the AWS SDK for JavaScript. The script uses classes 
from these packages.

npm install aws-sdk

• The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain the 
credentials that are associated with the same account that created the node.

Otherwise, the alternative is that the ~/.aws/credentials file is populated.

Example — Make a Consensus API call using AWS SDK for JavaScript with an HTTP 
connection using token based access to an Ethereum node in Amazon Managed Blockchain 
(AMB)

1. Copy the contents of the script that follows and save it to a file on your machine (for example,
consensus-ethereum-example.js).

Contents of consensus-ethereum-example.js

const AWS = require('aws-sdk');
const REGION = process.env.AWS_DEFAULT_REGION || 'us-east-1';

function getManagedBlockchainClient(){ 
    const endpoint = `https://managedblockchain.${REGION}.amazonaws.com`; 
    const client = new AWS.ManagedBlockchain(); 
    client.setEndpoint(endpoint); 
    return client;
}

async function getAccessTokenFromManagedBlockChain() { 
    const client = getManagedBlockchainClient(); 
    const accessorType = { AccessorType : "BILLING_TOKEN"}; 
    const tokenResponse = await new Promise((resolve, reject) => { 
        client.createAccessor( accessorType, (err, data) => { 
            if (err) { 
                console.error(err); 
                reject(err.message); 

39

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Examples making Consensus API calls

            } 
            else { 
  resolve(data); 
     } 
        }); 
    }); 
    return tokenResponse;
}

async function deleteAccessTokenFromManagedBlockChain(accessorId) { 
    const client = getManagedBlockchainClient(); 
    const id = { AccessorId : accessorId }; 
    const tokenResponse = await new Promise((resolve, reject) => { 
        client.deleteAccessor( id, (err, data) => { 
            if (err) { 
                console.error(err); 
                reject(err.message); 
            } 
            else resolve(data); 
        }); 
    });
}

function getManagedBlockchainRequest(endpoint, host) { 

    const awsRequest = new AWS.HttpRequest(new AWS.Endpoint(endpoint), REGION); 
    awsRequest.method = "GET"; 
    awsRequest.headers['host'] = host; 
    awsRequest.headers['Content-Type'] = 'application/json' 

    return awsRequest
}

/** 
 * Sends Consensus API requests to AMB Ethereum node. 
 * @param {*} nodeId - Node ID 
 * @param {*} consensusApi - Consensus API to invoke, such as "/eth/v1/beacon/genesis". 
 * @param {*} credentials - AWS credentials. 
 * @returns A promise with invocation result. 
 */
async function sendRequest(nodeId, consensusApi) { 
    const token = await getAccessTokenFromManagedBlockChain(); 

    const host = `${nodeId}.t.ethereum.managedblockchain.${REGION}.amazonaws.com`; 
    const endpoint = `https://${host}${consensusApi}?billingtoken=
${token.BillingToken}`; 
    request = getManagedBlockchainRequest(endpoint, host) 
    const client = new AWS.HttpClient(); 

    const promise =  await  new Promise((resolve, reject) => { 
        client.handleRequest(request, null, response => { 
            let data = [] 
            response.on('data', chunk => { 
                data.push(chunk); 
            }); 
            response.on('end', () => { 
            var responseBody = Buffer.concat(data); 
                resolve(responseBody.toString('utf8')) 
            }); 
        }) 
    }); 
    deleteAccessTokenFromManagedBlockChain(token.AccessorId); 
    return promise;
}

const nodeId = process.env.NODE_ID;

40



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Examples making Consensus API calls

new AWS.CredentialProviderChain() 
    .resolvePromise() 
    .then(() => sendRequest(nodeId, '/eth/v1/beacon/states/finalized/root')) 
    .then(console.log) 
    .catch(err => console.error('ERROR: ' + err))

2. Run the script to call the Consensus API method over HTTP on your Ethereum node.

NODE_ID=nd-6eaj5va43jggnpxouzp7y47e4y AWS_DEFAULT_REGION=us-east-1 node consensus-
ethereum-example.js

Using awscurl to make Consensus API calls over HTTP using token based access

The following example uses awscurl, which sends a signed HTTP request based on the credentials that 
you set for the AWS CLI.

This example calls the  /eth/v1/beacon/genesis method, which takes an empty parameter block. 
You can replace this method and its parameters with any method listed in Supported Consensus API 
methods. Replace your-node-id-lowercase with the ID of a node in your account (for example,
nd-6eaj5va43jggnpxouzp7y47e4y).

awscurl --service managedblockchain \
-X GET 'https://your-node-id-lowercase.t.ethereum.managedblockchain.us-
east-1.amazonaws.com/eth/v1/beacon/genesis?billingtoken=your-billing-token'

The command returns output similar to the following.

{"data":{"root":"0x71ef3f7c2470a7564af6eb8232855b602401cc9acdfc02c9fdf699e643cf8ba4"}}

41

https://pypi.org/project/awscurl/0.6/
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Data Protection

Amazon Managed Blockchain (AMB) 
Access Ethereum Security

To provide data protection, authentication, and access control, Amazon Managed Blockchain (AMB) 
benefits from AWS features and the features of the open-source framework running in AMB Access.

This chapter covers security information specific to AMB Access Ethereum. For security information 
specific to AMB Access Hyperledger Fabric, see AMB Access Hyperledger Fabric Security in the Amazon 
Managed Blockchain (AMB) Hyperledger Fabric Developer Guide.

Topics
• Data protection for Amazon Managed Blockchain (AMB) Access Ethereum (p. 42)
• Authentication and access control for Amazon Managed Blockchain (AMB) Access Ethereum (p. 42)

Data protection for Amazon Managed Blockchain 
(AMB) Access Ethereum

Data encryption helps prevent unauthorized users from reading data from a blockchain network and the 
associated data storage systems. This includes data that might be intercepted as it travels the network, 
known as data in transit.

Encryption in transit
By default, AMB Access uses an HTTPS/TLS connection to encrypt all the data that's transmitted from a 
client computer that runs the AWS CLI to AWS service endpoints.

You don't need to do anything to enable the use of HTTPS/TLS. It's always enabled unless you explicitly 
disable it for an individual AWS CLI command by using the --no-verify-ssl command line option.

Authentication and access control for Amazon 
Managed Blockchain (AMB) Access Ethereum

IAM permissions policies are associated with AWS users in your account and determine who has access 
to what. Permissions policies specify the actions that each user can perform using AMB Access and other 
AWS services.

Before you configure IAM permissions, see Identity and Access Management for Amazon Managed 
Blockchain (AMB) Access Ethereum (p. 42). We also recommend What is IAM? and IAM JSON Policy 
Reference in the IAM User Guide.

Identity and Access Management for Amazon 
Managed Blockchain (AMB) Access Ethereum

42

https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use AMB Access Ethereum resources. IAM is an AWS service that you can 
use with no additional charge.

Topics
• Audience (p. 43)
• Authenticating with identities (p. 43)
• Managing access using policies (p. 45)
• How Amazon Managed Blockchain (AMB) Access Ethereum works with IAM (p. 47)
• Troubleshooting Amazon Managed Blockchain (AMB) Access Ethereum identity and access (p. 52)
• Identity-based policy examples for Amazon Managed Blockchain (AMB) Access Ethereum (p. 54)
• Using Service-Linked Roles for AMB Access (p. 60)

Audience
How you use AWS Identity and Access Management (IAM) differs, depending on the work that you do in
AMB Access Ethereum.

Service user – If you use the AMB Access Ethereum service to do your job, then your administrator 
provides you with the credentials and permissions that you need. As you use more AMB Access Ethereum
features to do your work, you might need additional permissions. Understanding how access is managed 
can help you request the right permissions from your administrator. If you cannot access a feature 
in AMB Access Ethereum, see Troubleshooting Amazon Managed Blockchain (AMB) Access Ethereum
identity and access (p. 52).

Service administrator – If you're in charge of AMB Access Ethereum resources at your company, 
you probably have full access to AMB Access Ethereum. It's your job to determine which AMB Access 
Ethereum features and resources your service users should access. You must then submit requests to 
your IAM administrator to change the permissions of your service users. Review the information on this 
page to understand the basic concepts of IAM. To learn more about how your company can use IAM 
with AMB Access Ethereum, see How Amazon Managed Blockchain (AMB) Access Ethereum works with 
IAM (p. 47).

IAM administrator – If you're an IAM administrator, you might want to learn details about how you 
can write policies to manage access to AMB Access Ethereum. To view example AMB Access Ethereum
identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon Managed 
Blockchain (AMB) Access Ethereum (p. 54).

Authenticating with identities
Authentication is how you sign in to AWS using your identity credentials. You must be authenticated
(signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity source. 
AWS IAM Identity Center (successor to AWS Single Sign-On) (IAM Identity Center) users, your company's 
single sign-on authentication, and your Google or Facebook credentials are examples of federated 
identities. When you sign in as a federated identity, your administrator previously set up identity 
federation using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the AWS 
access portal. For more information about signing in to AWS, see How to sign in to your AWS account in 
the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a command 
line interface (CLI) to cryptographically sign your requests by using your credentials. If you don't use AWS 

43

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

tools, you must sign requests yourself. For more information about using the recommended method to 
sign requests yourself, see Signing AWS API requests in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication (MFA) 
to increase the security of your account. To learn more, see Multi-factor authentication in the AWS IAM 
Identity Center (successor to AWS Single Sign-On) User Guide and Using multi-factor authentication (MFA) 
in AWS in the IAM User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and is 
accessed by signing in with the email address and password that you used to create the account. We 
strongly recommend that you don't use the root user for your everyday tasks. Safeguard your root user 
credentials and use them to perform the tasks that only the root user can perform. For the complete list 
of tasks that require you to sign in as the root user, see Tasks that require root user credentials in the
AWS Account Management Reference Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use 
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS 
Directory Service, the Identity Center directory, or any user that accesses AWS services by using 
credentials provided through an identity source. When federated identities access AWS accounts, they 
assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center (successor to 
AWS Single Sign-On). You can create users and groups in IAM Identity Center, or you can connect and 
synchronize to a set of users and groups in your own identity source for use across all your AWS accounts 
and applications. For information about IAM Identity Center, see What is IAM Identity Center? in the AWS 
IAM Identity Center (successor to AWS Single Sign-On) User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person or 
application. Where possible, we recommend relying on temporary credentials instead of creating IAM 
users who have long-term credentials such as passwords and access keys. However, if you have specific 
use cases that require long-term credentials with IAM users, we recommend that you rotate access keys. 
For more information, see Rotate access keys regularly for use cases that require long-term credentials in 
the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier to 
manage for large sets of users. For example, you could have a group named IAMAdmins and give that 
group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role 
is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but 
roles provide temporary credentials. To learn more, see When to create an IAM user (instead of a role) in 
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM 
user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS 

44

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API 
operation or by using a custom URL. For more information about methods for using roles, see Using IAM 
roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role and define 
permissions for the role. When a federated identity authenticates, the identity is associated with 
the role and is granted the permissions that are defined by the role. For information about roles for 
federation, see  Creating a role for a third-party Identity Provider in the IAM User Guide. If you use IAM 
Identity Center, you configure a permission set. To control what your identities can access after they 
authenticate, IAM Identity Center correlates the permission set to a role in IAM. For information about 
permissions sets, see  Permission sets in the AWS IAM Identity Center (successor to AWS Single Sign-On) 
User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily take on 
different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a different 
account to access resources in your account. Roles are the primary way to grant cross-account access. 
However, with some AWS services, you can attach a policy directly to a resource (instead of using a role 
as a proxy). To learn the difference between roles and resource-based policies for cross-account access, 
see How IAM roles differ from resource-based policies in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when you 
make a call in a service, it's common for that service to run applications in Amazon EC2 or store objects 
in Amazon S3. A service might do this using the calling principal's permissions, using a service role, or 
using a service-linked role.
• Principal permissions – When you use an IAM user or role to perform actions in AWS, you are 

considered a principal. Policies grant permissions to a principal. When you use some services, you 
might perform an action that then triggers another action in a different service. In this case, you 
must have permissions to perform both actions. To see whether an action requires additional 
dependent actions in a policy, see Actions, resources, and condition keys for Amazon Managed 
Blockchain (AMB) Access Ethereum in the Service Authorization Reference.

• Service role – A service role is an IAM role that a service assumes to perform actions on your behalf. 
An IAM administrator can create, modify, and delete a service role from within IAM. For more 
information, see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS service. 
The service can assume the role to perform an action on your behalf. Service-linked roles appear in 
your AWS account and are owned by the service. An IAM administrator can view, but not edit the 
permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary credentials 
for applications that are running on an EC2 instance and making AWS CLI or AWS API requests. 
This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2 
instance and make it available to all of its applications, you create an instance profile that is attached 
to the instance. An instance profile contains the role and enables programs that are running on the 
EC2 instance to get temporary credentials. For more information, see Using an IAM role to grant 
permissions to applications running on Amazon EC2 instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user) in the
IAM User Guide.

Managing access using policies
You control access in AWS by creating policies and attaching them to AWS identities or resources. A 
policy is an object in AWS that, when associated with an identity or resource, defines their permissions. 
AWS evaluates these policies when a principal (user, root user, or role session) makes a request. 
Permissions in the policies determine whether the request is allowed or denied. Most policies are stored 

45

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

in AWS as JSON documents. For more information about the structure and contents of JSON policy 
documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can 
perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on the 
resources that they need, an IAM administrator can create IAM policies. The administrator can then add 
the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with 
that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such 
as an IAM user, group of users, or role. These policies control what actions users and roles can perform, 
on which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies 
are embedded directly into a single user, group, or role. Managed policies are standalone policies that 
you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS 
managed policies and customer managed policies. To learn how to choose between a managed policy or 
an inline policy, see Choosing between managed policies and inline policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-
based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. For the 
resource where the policy is attached, the policy defines what actions a specified principal can perform 
on that resource and under what conditions. You must specify a principal in a resource-based policy. 
Principals can include accounts, users, roles, federated users, or AWS services.

Resource-based policies are inline policies that are located in that service. You can't use AWS managed 
policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to 
access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy 
document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more about 
ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the 
maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role). 
You can set a permissions boundary for an entity. The resulting permissions are the intersection of an 
entity's identity-based policies and its permissions boundaries. Resource-based policies that specify 
the user or role in the Principal field are not limited by the permissions boundary. An explicit deny 

46

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

in any of these policies overrides the allow. For more information about permissions boundaries, see
Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions for 
an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for 
grouping and centrally managing multiple AWS accounts that your business owns. If you enable all 
features in an organization, then you can apply service control policies (SCPs) to any or all of your 
accounts. The SCP limits permissions for entities in member accounts, including each AWS account 
root user. For more information about Organizations and SCPs, see How SCPs work in the AWS 
Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session policies. 
Permissions can also come from a resource-based policy. An explicit deny in any of these policies 
overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated to 
understand. To learn how AWS determines whether to allow a request when multiple policy types are 
involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Managed Blockchain (AMB) Access Ethereum
works with IAM
Before you use IAM to manage access to AMB Access Ethereum, learn what IAM features are available to 
use with AMB Access Ethereum.

IAM features you can use with Amazon Managed Blockchain (AMB) Access Ethereum

IAM feature AMB Access Ethereum support

Identity-based policies (p. 48) Yes

Resource-based policies (p. 48) No

Policy actions (p. 48) Yes

Policy resources (p. 49) Yes

Policy condition keys (service-specific) (p. 50) No

ACLs (p. 51) No

ABAC (tags in policies) (p. 51) Yes

Temporary credentials (p. 51) No

Principal permissions (p. 52) Yes

Service roles (p. 52) No

Service-linked roles (p. 52) Yes

To get a high-level view of how AMB Access Ethereum and other AWS services work with most IAM 
features, see AWS services that work with IAM in the IAM User Guide.

47

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

Important
Ethereum API calls to an Ethereum node in Amazon Managed Blockchain (AMB) can be 
authenticated by using the Signature Version 4 (SigV4) signing process. This means that only 
authorized IAM principals in the AWS account that created the node can interact with it using 
the Ethereum APIs. AWS credentials (an access key ID and secret access key) must be provided 
with the call.

Identity-based policies for AMB Access Ethereum

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such 
as an IAM user, group of users, or role. These policies control what actions users and roles can perform, 
on which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the 
conditions under which actions are allowed or denied. You can't specify the principal in an identity-based 
policy because it applies to the user or role to which it is attached. To learn about all of the elements 
that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Identity-based policy examples for AMB Access Ethereum

To view examples of AMB Access Ethereum identity-based policies, see Identity-based policy examples 
for Amazon Managed Blockchain (AMB) Access Ethereum (p. 54).

Resource-based policies within AMB Access Ethereum

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-
based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. For the 
resource where the policy is attached, the policy defines what actions a specified principal can perform 
on that resource and under what conditions. You must specify a principal in a resource-based policy. 
Principals can include accounts, users, roles, federated users, or AWS services.

To enable cross-account access, you can specify an entire account or IAM entities in another account as 
the principal in a resource-based policy. Adding a cross-account principal to a resource-based policy is 
only half of establishing the trust relationship. When the principal and the resource are in different AWS 
accounts, an IAM administrator in the trusted account must also grant the principal entity (user or role) 
permission to access the resource. They grant permission by attaching an identity-based policy to the 
entity. However, if a resource-based policy grants access to a principal in the same account, no additional 
identity-based policy is required. For more information, see How IAM roles differ from resource-based 
policies in the IAM User Guide.

Policy actions for AMB Access Ethereum

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can 
perform actions on what resources, and under what conditions.

48

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

The Action element of a JSON policy describes the actions that you can use to allow or deny access in a 
policy. Policy actions usually have the same name as the associated AWS API operation. There are some 
exceptions, such as permission-only actions that don't have a matching API operation. There are also 
some operations that require multiple actions in a policy. These additional actions are called dependent 
actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AMB Access Ethereum actions, see Actions defined by Amazon Managed Blockchain (AMB) 
Access Ethereum in the Service Authorization Reference.

Policy actions in AMB Access Ethereum use the following prefix before the action:

managedblockchain:

For example, to grant someone permission to create a node with the AMB Access CreateNode API 
operation, you include the managedblockchain:CreateNode action in their policy. Policy statements 
must include either an Action or NotAction element. AMB Access Ethereum defines its own set of 
actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas.

"Action": [ 
      "managedblockchain::action1", 
      "managedblockchain::action2" 
         ]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with 
the word Describe, include the following action:

"Action": "managedblockchain::List*"

To view examples of AMB Access Ethereum identity-based policies, see Identity-based policy examples 
for Amazon Managed Blockchain (AMB) Access Ethereum (p. 54).

Policy resources for AMB Access Ethereum

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can 
perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. 
Statements must include either a Resource or a NotResource element. As a best practice, specify 
a resource using its Amazon Resource Name (ARN). You can do this for actions that support a specific 
resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard (*) to 
indicate that the statement applies to all resources.

"Resource": "*"

AMB Access resource types that can be used in IAM permissions policy statements for resources on 
Ethereum networks include the following:

49

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

• network
• node
• accessor

Nodes and accessors are associated with your account. Networks are associated with Ethereum public 
networks and are not associated with AWS Regions.

For example an Ethereum public network resource on AMB Access has one of the following ARNs.

arn:aws:managedblockchain:::networks/n-ethereum-mainnet

arn:aws:managedblockchain:::networks/n-ethereum-goerli

arn:aws:managedblockchain:::networks/n-ethereum-ropsten

arn:aws:managedblockchain:::networks/n-ethereum-rinkeby

To see a list of AMB Access Ethereum resource types and their ARNs, see Resources defined by Amazon 
Managed Blockchain (AMB) Access Ethereum in the Service Authorization Reference. To learn with which 
actions you can specify the ARN of each resource, see Actions defined by Amazon Managed Blockchain 
(AMB) Access Ethereum.

To view examples of AMB Access Ethereum identity-based policies, see Identity-based policy examples 
for Amazon Managed Blockchain (AMB) Access Ethereum (p. 54).

Policy condition keys for AMB Access Ethereum

Supports service-specific policy condition keys No

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can 
perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in 
effect. The Condition element is optional. You can create conditional expressions that use condition 
operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition
element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single 
condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be 
met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM 
user permission to access a resource only if it is tagged with their IAM user name. For more information, 
see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global condition 
keys, see AWS global condition context keys in the IAM User Guide.

Note
AMB Access Ethereum does not provide any service-specific condition keys, but it does support 
using some AWS global condition keys.

50

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

To see a list of the AWS global condition keys supported, see Condition keys for Amazon Managed 
Blockchain (AMB) Access Ethereum in the Service Authorization Reference. To learn with which actions and 
resources you can use a condition key, see Actions defined by Amazon Managed Blockchain (AMB) Access 
Ethereum.

To view examples of AMB Access Ethereum identity-based policies, see Identity-based policy examples 
for Amazon Managed Blockchain (AMB) Access Ethereum (p. 54).

ACLs in AMB Access Ethereum

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to 
access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy 
document format.

ABAC with AMB Access Ethereum

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on 
attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or roles) 
and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then you design 
ABAC policies to allow operations when the principal's tag matches the tag on the resource that they are 
trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy 
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy using 
the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the service. 
If a service supports all three condition keys for only some resource types, then the value is Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with steps 
for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

To control access based on tags, you provide tag information in the condition element of a policy 
using the managedblockchain::ResourceTag/key-name, aws:RequestTag/key-name, or
aws:TagKeys condition keys. For more information about tagging AMB Access Ethereum resources, see
Tagging Amazon Managed Blockchain (AMB) resources (p. 63).

To view example identity-based policies for allowing or denying access to resources and actions based on 
tags, see Controlling access using tags (p. 57).

Using temporary credentials with AMB Access Ethereum

Supports temporary credentials No

Some AWS services don't work when you sign in using temporary credentials. For additional information, 
including which AWS services work with temporary credentials, see AWS services that work with IAM in 
the IAM User Guide.

51

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

You are using temporary credentials if you sign in to the AWS Management Console using any method 
except a user name and password. For example, when you access AWS using your company's single 
sign-on (SSO) link, that process automatically creates temporary credentials. You also automatically 
create temporary credentials when you sign in to the console as a user and then switch roles. For more 
information about switching roles, see Switching to a role (console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use those 
temporary credentials to access AWS. AWS recommends that you dynamically generate temporary 
credentials instead of using long-term access keys. For more information, see Temporary security 
credentials in IAM.

Cross-service principal permissions for AMB Access Ethereum

Supports principal permissions Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal. Policies 
grant permissions to a principal. When you use some services, you might perform an action that 
then triggers another action in a different service. In this case, you must have permissions to perform 
both actions. To see whether an action requires additional dependent actions in a policy, see Actions, 
resources, and condition keys for Amazon Managed Blockchain (AMB) Access Ethereum in the Service 
Authorization Reference.

Service roles for AMB Access Ethereum

Supports service roles No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM 
administrator can create, modify, and delete a service role from within IAM. For more information, see
Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning
Changing the permissions for a service role might break AMB Access Ethereum functionality. 
Edit service roles only when AMB Access Ethereum provides guidance to do so.

Service-linked roles for AMB Access Ethereum

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can assume the 
role to perform an action on your behalf. Service-linked roles appear in your AWS account and are owned 
by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM. Find 
a service in the table that includes a Yes in the Service-linked role column. Choose the Yes link to view 
the service-linked role documentation for that service.

Troubleshooting Amazon Managed Blockchain (AMB) Access 
Ethereum identity and access
Use the following information to help you diagnose and fix common issues that you might encounter 
when working with AMB Access Ethereum and IAM.

52

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

Topics
• I am not authorized to perform an action in AMB Access Ethereum (p. 53)
• I am not authorized to perform iam:PassRole (p. 53)
• I want to allow people outside of my AWS account to access my AMB Access Ethereum 

resources (p. 53)

I am not authorized to perform an action in AMB Access Ethereum

If you receive an error that you're not authorized to perform an action, your policies must be updated to 
allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console 
to view details about a fictional my-example-widget resource but doesn't have the fictional
managedblockchain::GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: 
 managedblockchain::GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the managedblockchain::GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided you 
with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your policies 
must be updated to allow you to pass a role to AMB Access Ethereum.

Some AWS services allow you to pass an existing role to that service instead of creating a new service 
role or service-linked role. To do this, you must have permissions to pass the role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console to 
perform an action in AMB Access Ethereum. However, the action requires the service to have permissions 
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided you 
with your sign-in credentials.

I want to allow people outside of my AWS account to access my AMB Access 
Ethereum resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 
resource-based policies or access control lists (ACLs), you can use those policies to grant people access to 
your resources.

To learn more, consult the following:

• To learn whether AMB Access Ethereum supports these features, see How Amazon Managed 
Blockchain (AMB) Access Ethereum works with IAM (p. 47).

53



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

• To learn how to provide access to your resources across AWS accounts that you own, see Providing 
access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing access to 
AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, see
How IAM roles differ from resource-based policies in the IAM User Guide.

Identity-based policy examples for Amazon Managed Blockchain 
(AMB) Access Ethereum
By default, users and roles don't have permission to create or modify AMB Access Ethereum resources. 
They also can't perform tasks by using the AWS Management Console, AWS Command Line Interface 
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they need, an 
IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles, and 
users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy documents, see
Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AMB Access Ethereum, including the format of 
the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon Managed 
Blockchain (AMB) Access Ethereum in the Service Authorization Reference.

Topics

• Policy best practices (p. 54)

• Using the AMB Access Ethereum console (p. 55)

• Allow users to view their own permissions (p. 55)

• Performing all available actions for AMB Access Ethereum (p. 56)

• Controlling access using tags (p. 57)

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AMB Access Ethereum
resources in your account. These actions can incur costs for your AWS account. When you create or edit 
identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To get 
started granting permissions to your users and workloads, use the AWS managed policies that grant 
permissions for many common use cases. They are available in your AWS account. We recommend that 
you reduce permissions further by defining AWS customer managed policies that are specific to your 
use cases. For more information, see AWS managed policies or AWS managed policies for job functions
in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 
specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the IAM User 
Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your policies to 
limit access to actions and resources. For example, you can write a policy condition to specify that all 
requests must be sent using SSL. You can also use conditions to grant access to service actions if they 

54

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

are used through a specific AWS service, such as AWS CloudFormation. For more information, see  IAM 
JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions
– IAM Access Analyzer validates new and existing policies so that the policies adhere to the IAM 
policy language (JSON) and IAM best practices. IAM Access Analyzer provides more than 100 policy 
checks and actionable recommendations to help you author secure and functional policies. For more 
information, see IAM Access Analyzer policy validation in the IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a root 
user in your AWS account, turn on MFA for additional security. To require MFA when API operations are 
called, add MFA conditions to your policies. For more information, see  Configuring MFA-protected API 
access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Using the AMB Access Ethereum console

To access the Amazon Managed Blockchain (AMB) Access Ethereum console, you must have a minimum 
set of permissions. These permissions must allow you to list and view details about the AMB Access 
Ethereum resources in your AWS account. If you create an identity-based policy that is more restrictive 
than the minimum required permissions, the console won't function as intended for entities (users or 
roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the AWS 
CLI or the AWS API. Instead, allow access to only the actions that match the API operation that they're 
trying to perform.

To ensure that users and roles can still use the AMB Access Ethereum console, also attach the AMB Access 
Ethereum ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

AmazonManagedBlockchainConsoleFullAccess

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and managed 
policies that are attached to their user identity. This policy includes permissions to complete this action 
on the console or programmatically using the AWS CLI or AWS API.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "ViewOwnUserInfo", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetUserPolicy", 
                "iam:ListGroupsForUser", 
                "iam:ListAttachedUserPolicies", 
                "iam:ListUserPolicies", 
                "iam:GetUser" 
            ], 
            "Resource": ["arn:aws:iam::*:user/${aws:username}"] 
        }, 
        { 
            "Sid": "NavigateInConsole", 
            "Effect": "Allow", 
            "Action": [ 

55

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

                "iam:GetGroupPolicy", 
                "iam:GetPolicyVersion", 
                "iam:GetPolicy", 
                "iam:ListAttachedGroupPolicies", 
                "iam:ListGroupPolicies", 
                "iam:ListPolicyVersions", 
                "iam:ListPolicies", 
                "iam:ListUsers" 
            ], 
            "Resource": "*" 
        } 
    ]
}

Performing all available actions for AMB Access Ethereum

This example shows how you grant users AWS account access in the us-east-1 Region so that they can 
do the following:

• List all Ethereum networks
• Create and list nodes on all those networks
• Get and delete nodes in AWS account 111122223333
• Get and delete accessors in AWS account 555555555555
• Create WebSocket connections, and send HTTP requests to an Ethereum node

Note

• If you want to grant access across all Regions, replace us-east-1 with *.
• You must specify the AWS account ID of the node and accessor resources in the policy that 

you want to enforce.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "WorkWithEthereumNetworks", 
            "Effect": "Allow", 
            "Action": [ 
                "managedblockchain:ListNetworks", 
                "managedblockchain:GetNetwork" 
            ], 
            "Resource": [ 
                "arn:aws:managedblockchain:us-east-1::networks/n-ethereum-mainnet", 
                "arn:aws:managedblockchain:us-east-1::networks/n-ethereum-goerli", 
                "arn:aws:managedblockchain:us-east-1::networks/n-ethereum-ropsten", 
                "arn:aws:managedblockchain:us-east-1::networks/n-ethereum-rinkeby" 
                 
            ] 
        }, 
        { 
            "Sid": "CreateAndListEthereumNodes", 
            "Effect": "Allow", 
            "Action": [ 
                "managedblockchain:CreateNode", 
                "managedblockchain:ListNodes" 
            ], 
            "Resource": [ 
                "arn:aws:managedblockchain:us-east-1::networks/*" 
            ] 

56



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

        }, 
        { 
            "Sid": "ManageEthereumNodes", 
            "Effect": "Allow", 
            "Action": [ 
                "managedblockchain:GetNode", 
                "managedblockchain:DeleteNode" 
            ], 
            "Resource": [ 
                "arn:aws:managedblockchain:us-east-1:111122223333:nodes/*" 
            ] 
        }, 
         { 
            "Sid": "GetAndDeleteAccessors", 
            "Effect": "Allow", 
            "Action": [ 
                "managedblockchain:GetAccessor", 
                "managedblockchain:DeleteAccessor" 
            ], 
            "Resource": [ 
                "arn:aws:managedblockchain:us-east-1:555555555555:accessors/*" 
            ] 
        }, 
        { 
            "Sid": "CreateAndListAccessors", 
            "Effect": "Allow", 
            "Action": [ 
                "managedblockchain:CreateAccessor", 
                "managedblockchain:ListAccessors" 
            ], 
            "Resource": [ 
                "*" 
            ] 
        },        
        { 
            "Sid": "WorkWithEthereumNodes", 
            "Effect": "Allow", 
            "Action": [ 
                "managedblockchain:POST", 
                "managedblockchain:GET", 
                "managedblockchain:Invoke" 

            ], 
            "Resource": [ 
                "arn:aws:managedblockchain:us-east-1:111122223333:*" 
             ] 
        } 
    ]
}

Controlling access using tags

The following example policies demonstrate how you can use tags to limit access to AMB Access 
Ethereum resources and actions performed on those resources.

Note
This topic includes examples of policy statements with a Deny effect. These policies assume 
that other policies with Allow effect for those actions exist with broader applicability. The Deny
policy statement is being used to restrict that otherwise overly-permissive allow statement.

Example – Deny access to networks with a specific tag key

The following identity-based policy statement denies the IAM principal the ability to retrieve or view 
network information if the network has a tag with the tag key of restricted.

57



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "DenyTaggedNetworkAccess", 
            "Effect": "Deny", 
            "Action": [ 
                "managedblockchain:GetNetwork" 
            ], 
            "Resource": [ 
                "*" 
            ], 
            "Condition": { 
                "StringLike": { 
                    "aws:ResourceTag/restricted": [ 
                        "*" 
                    ] 
                } 
            } 
        } 
    ]
}

Example – Deny node creation on networks that have a specific tag and value

The following identity-based policy statement denies the IAM principal the ability to create a node on 
an Ethereum public network tagged in the AWS account with the tag key of department and the value
accounting.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "DenyCreateNodeForNetworkWithTag", 
            "Effect": "Deny", 
            "Action": [ 
                "managedblockchain:CreateNode" 
            ], 
            "Resource": [ 
                "*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "aws:ResourceTag/department": [ 
                        "accounting" 
                    ] 
                } 
            } 
        } 
    ]
}

Example – Require a specific tag key and value to be added when a node is created

The following identity-based policy statements allow an IAM principal to create a node for the AWS 
account 111122223333 only if a key with the tag key of department and a value of accounting is 
added during creation.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 

58



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

            "Sid": "RequireTagForCreateNode", 
            "Effect": "Allow", 
            "Action": [ 
                "managedblockchain:CreateNode" 
            ], 
            "Resource": [ 
                "*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "aws:RequestTag/department": [ 
                        "accounting" 
                    ] 
                } 
            } 
        }, 
        { 
            "Sid": "AllowTaggingNodes", 
            "Effect": "Allow", 
            "Action": [ 
                "managedblockchain:TagResource" 
            ], 
            "Resource": [ 
                "arn:aws:managedblockchain:us-east-1:111122223333:nodes/*" 
            ] 
        } 
    ]
}

Example – Deny listing nodes for networks that have a specific tag key and value

The following identity-based policy statement denies the IAM principal the ability to list nodes on an 
Ethereum public network tagged in the AWS account with the tag key of department and the value
accounting.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "DenyListNodesForNetworkWithTag", 
            "Effect": "Deny", 
            "Action": [ 
                "managedblockchain:ListNodes" 
            ], 
            "Resource": [ 
                "*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "aws:ResourceTag/department": [ 
                        "accounting" 
                    ] 
                } 
            } 
        } 
    ]
}

Example – Deny retrieving and viewing node information for nodes with a specific tag key 
and value

The following identity-based policy statement denies the IAM principal the ability to view node 
information for nodes that have a tag with the tag key of department and the value accounting.

59



Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "DenyGetNodeWithNodeTag", 
            "Effect": "Deny", 
            "Action": [ 
                "managedblockchain:GetNode" 
            ], 
            "Resource": [ 
                "*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "aws:ResourceTag/department": [ 
                        "accounting" 
                    ] 
                } 
            } 
        } 
    ]
}

Using Service-Linked Roles for AMB Access
Amazon Managed Blockchain (AMB) uses AWS Identity and Access Management (IAM) service-linked 
roles. A service-linked role is a unique type of IAM role that is linked directly to AMB Access. Service-
linked roles are predefined by AMB Access and include all the permissions that the service requires to call 
other AWS services on your behalf.

A service-linked role can make setting up AMB Access easier because you don’t have to manually add the 
necessary permissions. AMB Access defines the permissions of its service-linked roles, and, unless defined 
otherwise, only AMB Access can assume its roles. The defined permissions include the trust policy and 
the permissions policy. The permissions policy cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting its related resources. This protects your AMB 
Access resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS Services That Work with 
IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link 
to view the service-linked role documentation for that service.

Service-Linked Role Permissions for AMB Access

AMB Access uses the service-linked role named AWSServiceRoleForAmazonManagedBlockchain. This 
role enables access to AWS Services and Resources used or managed by Amazon Managed Blockchain.

The AWSServiceRoleForAmazonManagedBlockchain service-linked role trusts the following services to 
assume the role:

• managedblockchain.amazonaws.com

The role permissions policy allows AMB Access to complete actions on the specified resources shown in 
the following example policy.

{ 

60

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Action": [ 
                "logs:CreateLogGroup" 
            ], 
            "Effect": "Allow", 
            "Resource": "arn:aws:logs:*:*:log-group:/aws/managedblockchain/*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "logs:CreateLogStream", 
                "logs:PutLogEvents", 
                "logs:DescribeLogStreams" 
            ], 
            "Resource": [ 
                "arn:aws:logs:*:*:log-group:/aws/managedblockchain/*:log-stream:*" 
            ] 
        } 
    ]
} 
       
     

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, edit, or 
delete a service-linked role. For more information, see Service-Linked Role Permissions in the IAM User 
Guide.

Creating a Service-Linked Role for AMB Access

You don't need to manually create a service-linked role. When you create a network, a member, or a 
peer node, AMB Access creates the service-linked role for you. It doesn't matter if you use the AWS 
Management Console, the AWS CLI, or the AWS API. The IAM entity performing the action must have 
permissions to create the service-linked role. After the role is created in your account, AMB Access can 
use it for all networks and members.

If you delete this service-linked role, and then need to create it again, you can use the same process to 
recreate the role in your account. When you create a network, member, or node, AMB Access creates the 
service-linked role for you again.

Editing a Service-Linked Role for AMB Access

AMB Access does not allow you to edit the AWSServiceRoleForAmazonManagedBlockchain service-linked 
role. After you create a service-linked role, you cannot change the name of the role because various 
entities might reference the role. However, you can edit the description of the role using IAM. For more 
information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a Service-Linked Role for AMB Access

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don’t have an unused entity that is not actively monitored 
or maintained. However, you must clean up the resources for your service-linked role before you can 
manually delete it.

Note
If the AMB Access service is using the role when you try to delete the resources, then the 
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To manually delete the service-linked role

61

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide
Identity and Access Management

Use the IAM console, the AWS CLI, or the AWS API to delete the 
AWSServiceRoleForAmazonManagedBlockchain service-linked role. For more information, see Deleting a 
Service-Linked Role in the IAM User Guide.

Supported Regions for AMB Access Service-Linked Roles

AMB Access supports using service-linked roles in all of the Regions where the service is available. For 
more information, see AWS Regions and Endpoints.

62

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Create and add tags for AMB Access Ethereum resources

Tagging Amazon Managed 
Blockchain (AMB) resources

A tag is a custom attribute label that you assign or that AWS assigns to an AWS resource. Each tag has 
two parts:

• A tag key, such as CostCenter, Environment, or Project. Tag keys are case-sensitive.
• An optional field known as a tag value, such as 111122223333 or Production. Omitting the tag 

value is the same as using an empty string. Like tag keys, tag values are case-sensitive.

Tags help you do the following:

• Identify and organize your AWS resources. Many AWS services support tagging, so you can assign the 
same tag to resources from different services to indicate that the resources are related. For example, 
you could assign the same tag to an Amazon Managed Blockchain (AMB) node and an EC2 instance 
that you use as a client for the AMB Access framework.

• Track your AWS costs. You activate these tags on the AWS Billing and Cost Management dashboard. 
AWS uses the tags to categorize your costs and deliver a monthly cost allocation report to you. For 
more information, see Using cost allocation tags in the AWS Billing User Guide.

• Control access to your AWS resources with AWS Identity and Access Management (IAM). For 
information, see Controlling access using tags (p. 57) in this developer guide and Control access using 
IAM tags in the IAM User Guide.

For more information about tags, see the Tagging Best Practices guide.

The following sections provide more information about tags for AMB Access.

Create and add tags for AMB Access Ethereum
resources

You can tag the following resources:

• Networks
• Nodes

Tags that you create for Ethereum public networks are scoped only to the account in which you create 
them. . Other AWSaccounts participating on the network cannot access the tags.

Tag naming and usage conventions
The following basic naming and usage conventions apply to tags used with AMB Access resources:

• Each resource can have a maximum of 50 tags.
• For each resource, each tag key must be unique, and each tag key can have only one value.

63

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_iam-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_iam-tags.html
http://aws.amazon.com/answers/account-management/aws-tagging-strategies/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Working with tags

• The maximum tag key length is 128 Unicode characters in UTF-8.
• The maximum tag value length is 256 Unicode characters in UTF-8.
• Allowed characters are letters, numbers, spaces representable in UTF-8, and the following characters:
. : + = @ _ / - (hyphen).

• Tag keys and values are case-sensitive. As a best practice, decide on a strategy for capitalizing tags, 
and consistently implement that strategy across all resource types. For example, decide whether to use
Costcenter, costcenter, or CostCenter, and use the same convention for all tags. Avoid using 
similar tags with inconsistent case treatment.

• The aws: prefix is reserved for AWS use. You can't edit or delete a tag's key or value when the tag 
has a tag key with the aws: prefix. Tags with this prefix do not count against your limit of tags per 
resource.

Working with tags
You can use the AMB Access console, the AWS CLI, or the AMB Access API to add, edit, or delete tag keys 
and tag values. You can assign tags when you create a resource, or you can apply tags after the resource 
is created.

For more information about AMB Access API actions for tagging, see the following topics in the Amazon 
Managed Blockchain (AMB) API Reference:

• ListTagsForResource
• TagResource
• UntagResource

Using the AMB Access console, you can add a tag to an Ethereum node when you create it or when 
viewing node details. You can remove a tag when viewing node details. For more information, see
Working with Ethereum nodes using AMB Access (p. 6).

AMB Access allows you to tag public Ethereum networks after you create a node on the network using 
AMB Access.

To add or remove a tag for an Ethereum network using the AWS Management Console

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.
2. If the console doesn't open to the Networks list, choose Networks from the navigation pane.
3. Choose the network from the list.
4. Under Tags, choose Edit tags, and then do one of the following:

• To add a tag, choose Add new tag, enter a Key and optional Value, and then choose Save.
• To remove a tag, choose Remove next to the Tag you want to remove, and then choose Save.

To add or remove a tag for a node

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.
2. Choose Networks and then choose an Ethereum network from the list.
3. Under Nodes, choose a Node ID from the list.
4. Choose Tags, choose Edit tags, and then do one of the following:

• To add a tag, choose Add new tag, enter a Key and optional Value, and then choose Save.
• To remove a tag, choose Remove next to the Tag you want to remove, and then choose Save.

64

https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_TagResource.html
https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Managed Blockchain information in CloudTrail

Logging Amazon Managed 
Blockchain API calls using AWS 
CloudTrail

Amazon Managed Blockchain is integrated with AWS CloudTrail, a service that provides a record of 
actions taken by a user, role, or an AWS service in Managed Blockchain. CloudTrail captures all API calls 
for Managed Blockchain as events. The calls captured include calls from the Managed Blockchain console 
and code calls to the Managed Blockchain API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, 
including events for Managed Blockchain. If you don't configure a trail, you can still view the most recent 
events in the CloudTrail console in Event history. Using the information that's collected by CloudTrail, 
you can determine the request that was made to Managed Blockchain, the IP address that the request 
was made from, who made the request, when it was made, and other additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Managed Blockchain information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When activity occurs in 
Managed Blockchain, that activity is recorded in a CloudTrail event along with other AWS service events 
in Event history. You can view, search, and download recent events in your AWS account. For more 
information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for Managed Blockchain, create a 
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a 
trail in the console, the trail applies to all AWS Regions that Amazon Managed Blockchain is available in. 
The trail logs events from all the Regions in the AWS partition and delivers the log files to the S3 bucket 
that you specify. Additionally, you can configure other AWS services to further analyze and act on the 
event data that's collected in CloudTrail logs. For more information, see the following:

• Creating a trail
• CloudTrail supported services and integrations
• Configuring Amazon SNS notifications for CloudTrail
• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from multiple 

accounts

All your Managed Blockchain actions are logged as management events by CloudTrail and are 
documented in the Amazon Managed Blockchain API Reference. For example, calls to the CreateNode,
GetNode and DeleteNetwork actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. You can use the identity 
information to determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user 
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.
• Whether the request was made by another AWS service.

65

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Understanding log file entries

For more information, see the CloudTrail userIdentity element.

Understanding Managed Blockchain log file entries
A trail is a configuration that enables delivery of events as log files to an S3 bucket that you specify. 
Managed Blockchain supports logging management events. For more information, see Logging 
management events for trails in the AWS CloudTrail User Guide. Managed Blockchain also supports 
logging data events for Ethereum API calls over HTTP or WebSockets (JSON-RPC API only) connections. 
For more information, see Using CloudTrail to track Ethereum calls (p. 66).

CloudTrail log files contain one or more log entries. An event represents a single request from any 
source. It includes information about the requested action, the date and time of the action, and request 
parameters. CloudTrail log files aren't an ordered stack trace of the public API calls. This way, they don't 
appear in any specific order.

Example – Management event log entry

The following example shows a CloudTrail management event log entry that demonstrates the GetNode
action.

{ 
  "eventVersion": "1.05", 
  "userIdentity": { 
    "type": "AssumedRole", 
    "principalId": "ABCD1EF23G4EXAMPLE56:carlossalazar", 
    "arn": "arn:aws:sts::111122223333:assumed-role/Admin/carlossalazar", 
    "accountId": "111122223333", 
    "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
      "webIdFederationData": {}, 
      "attributes": { 
        "mfaAuthenticated": "false", 
        "creationDate": "2020-12-10T05:36:38Z" 
      } 
    } 
  }, 
  "eventTime": "2020-12-10T05:50:48Z", 
  "eventSource": "managedblockchain.amazonaws.com", 
  "eventName": "GetNode", 
  "awsRegion": "us-east-1", 
  "sourceIPAddress": "198.51.100.1", 
  "userAgent": "aws-cli/2.0.7 Python/3.7.3 Linux/5.4.58-37.125.amzn2int.x86_64 
 botocore/2.0.0dev11", 
  "requestParameters": { 
    "networkId": "n-ethereum-goerli", 
    "nodeId": "nd-6EAJ5VA43JGGNPXOUZP7Y47E4Y" 
  }, 
  "responseElements": null, 
  "requestID": "1e2xa3m4-56p7-8l9e-0ex1-23456a78m90p", 
  "eventID": "ex12345a-m678-901p-23e4-567ex8a9mple", 
  "readOnly": true, 
  "eventType": "AwsApiCall", 
  "recipientAccountId": "111122223333"
}

Using CloudTrail to track Ethereum calls
You can track Ethereum API as data events  using CloudTrail. By default, when you create a trail, data 
events aren't logged. To record Ethereum API calls as CloudTrail data events, you must explicitly add the 

66

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Using CloudTrail to track Ethereum calls

supported resources or resource types that you want to collect activity to a trail for. Amazon Managed 
Blockchain supports adding data events using the AWS CLI. For more information, see Log events by 
using advanced selectors in the AWS CloudTrail User Guide.

To log data events for a trail, run the put-event-selectors command after you create the trail. Use the
--advanced-event-selectors option to specify the data events to log. The following example 
demonstrates a put-event-selectors command that logs all Ethereum API calls for a trail that's 
named my-ethereum-trail in the us-east-1 Region.

aws cloudtrail put-event-selectors \
--region us-east-1 \
--trail-name my-ethereum-trail \
--advanced-event-selectors '[{ 
    "Name": "MyDataEventSelectorForEtherumJsonRpcCalls", 
    "FieldSelectors": [ 
      { "Field": "eventCategory", "Equals": ["Data"] }, 
      { "Field": "resources.type", "Equals": ["AWS::ManagedBlockchain::Node"] } ]}]'

Example Data event log entry for an Ethereum JSON-RPC API call

The following example demonstrates a CloudTrail data event log entry for an Ethereum JSON-RPC API 
all, web3_clientVersion, from a client to a node in Amazon Managed Blockchain.

{ 
  "eventVersion": "1.05", 
  "userIdentity": { 
    "type": "AssumedRole", 
    "principalId": "ABCD1EF23G4EXAMPLE56:carlossalazar", 
    "arn": "arn:aws:sts::111122223333:assumed-role/Admin/carlossalazar", 
    "accountId": "111122223333", 
    "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
      "webIdFederationData": {}, 
      "attributes": { 
        "mfaAuthenticated": "false", 
        "creationDate": "2020-12-11T16:51:12Z" 
      } 
    } 
  }, 
  "eventTime": "2020-12-11T19:56:36Z", 
  "eventSource": "managedblockchain.amazonaws.com", 
  "eventName": "web3_clientVersion", 
  "awsRegion": "us-east-1", 
  "sourceIPAddress": "198.51.100.1", 
  "userAgent": "python-requests/2.23.0", 
  "requestParameters": { 
    "id": 67, 
    "jsonrpc": "2.0", 
    "method": "web3_clientVersion", 
    "params": [] 
  }, 
  "responseElements": { 
    "result": "Geth/v1.9.24-stable-cc05b050/linux-amd64/go1.15.5", 
    "id": 67, 
    "jsonrpc": "2.0" 
  }, 
  "requestID": "1e2xa3m4-56p7-8l9e-0ex1-23456a78m90p", 
  "eventID": "ex12345a-m678-901p-23e4-567ex8a9mple", 
  "readOnly": false, 
  "eventType": "AwsApiCall", 
  "recipientAccountId": "111122223333"
}

67

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-advanced
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-advanced
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/put-event-selectors.html


Amazon Managed Blockchain 
(AMB) Ethereum Developer Guide

Document history
The following table describes important additions to the Amazon Managed Blockchain (AMB) Access 
Ethereum Developer Guide.

Change Description Date

Amazon Managed Blockchain 
(AMB) Access

Updated terminology to change 
Amazon Managed Blockchain to 
Amazon Managed Blockchain 
(AMB) Access.

July 27, 2023

Token based access (GA) The Accessor tokens feature 
is in general availability. This 
is a convenient alternative to 
the Signature Version 4 signing 
process.

February 28, 2023

Token based access (preview) Use Accessor tokens as a 
convenient alternative to the 
Signature Version 4 signing 
process. Thii feature is in preview 
release and is subject to change.

October 21, 2022

The Merge Mainnet has merged with the 
Beacon chain's proof-of-stake 
system. Ethereum nodes on 
Amazon Managed Blockchain 
(AMB) support this change and 
require no further action on your 
part.

September 15, 2022

Goerli support for the Consensus 
API for the Beacon chain

Goerli now supports Consensus 
APIs for the Beacon chain.

August 11, 2022

Mainnet support for the 
Consensus API for the Beacon 
chain

Mainnet now supports 
Consensus APIs for the Beacon 
chain.

July 27, 2022

Consensus API for the Beacon 
chain

Release of the Consensus API for 
the Beacon chain on the Ropsten 
testnet.

June 8, 2022

Görli (Goerli) Release of the Görli (Goerli) 
testnet.

May 2, 2022

Initial Release Initial release. December 15, 2020

68

https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/managed-blockchain-ethereum-overview.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/managed-blockchain-ethereum-overview.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-tokens.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-tokens.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-concepts.html#ethereum-considerations
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev

	Amazon Managed Blockchain (AMB)
	Table of Contents
	What is Amazon Managed Blockchain (AMB) Access Ethereum
	Key concepts: Amazon Managed Blockchain (AMB) Access Ethereum
	Considerations and limitations for Amazon Managed Blockchain (AMB) Access Ethereum

	Setting up for AMB Access Ethereum
	Sign up for AWS
	Create an IAM user with appropriate permissions

	Working with Ethereum nodes using AMB Access
	Creating a node
	To create an Ethereum node using the AWS Management Console
	To create an Ethereum node using the AWS CLI

	Viewing node details
	To view Ethereum node information using the AWS Management Console
	To view Ethereum node information using the AWS CLI

	Deleting a node
	To delete an Ethereum node using the AWS Management Console
	To delete an Ethereum node using the AWS CLI


	Using token based access to make Ethereum API calls to Ethereum nodes in Amazon Managed Blockchain (AMB)
	Creating an Accessor token for token based access
	Create an Accessor token to access an Ethereum node using the AWS Management Console
	Create an Accessor token to access an Ethereum node using the AWS CLI

	Viewing an Accessor token details
	To view an Accessor token's information using the AWS Management Console
	To view an Accessor token's information using the AWS CLI

	Deleting an Accessor token
	To delete an Accessor token using the AWS Management Console
	To delete an Accessor token using the AWS CLI


	Using the Ethereum APIs with Amazon Managed Blockchain (AMB)
	Supported JSON-RPC methods
	Making JSON-RPC API calls to an Ethereum node in Amazon Managed Blockchain (AMB)
	Using Signature Version 4 to make JSON-RPC API calls to an Ethereum node
	Endpoint format for making JSON-RPC API calls over WebSocket and HTTP connections using Signature Version 4
	Using web3.js to make JSON-RPC API calls
	Prerequisites

	Making JSON-RPC API call using AWS SDK for JavaScript with a WebSocket connection to an Ethereum node in Amazon Managed Blockchain (AMB)
	Making JSON-RPC API calls using awscurl over HTTP

	Using token based access to make JSON-RPC API calls to an Ethereum node
	Endpoint format for WebSocket and HTTP connections using token based access
	Using wscat to connect and JSON-RPC API calls to your Ethereum node over WebSocket connection using token based access
	Using awscurl to make JSON-RPC API calls to your Ethereum node over HTTP using token based access



	Supported Consensus API methods
	Making Consensus API calls to an Ethereum node in Amazon Managed Blockchain (AMB)
	Using Consensus API calls signed using Signature Version 4 to an Ethereum node
	Endpoint format for making Consensus API calls over HTTP
	Making Consensus API calls using AWS SDK for JavaScript over HTTP
	Using awscurl to make Consensus API calls over HTTP

	Using token based access to make Consensus API calls to an Ethereum node
	Endpoint format for making Consensus API calls over HTTP using token based access
	Making Consensus API calls using AWS SDK for JavaScript over HTTP using token based access
	Using awscurl to make Consensus API calls over HTTP using token based access




	Amazon Managed Blockchain (AMB) Access Ethereum Security
	Data protection for Amazon Managed Blockchain (AMB) Access Ethereum
	Encryption in transit

	Authentication and access control for Amazon Managed Blockchain (AMB) Access Ethereum
	Identity and Access Management for Amazon Managed Blockchain (AMB) Access Ethereum
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Managed Blockchain (AMB) Access Ethereum works with IAM
	Identity-based policies for AMB Access Ethereum
	Identity-based policy examples for AMB Access Ethereum

	Resource-based policies within AMB Access Ethereum
	Policy actions for AMB Access Ethereum
	Policy resources for AMB Access Ethereum
	Policy condition keys for AMB Access Ethereum
	ACLs in AMB Access Ethereum
	ABAC with AMB Access Ethereum
	Using temporary credentials with AMB Access Ethereum
	Cross-service principal permissions for AMB Access Ethereum
	Service roles for AMB Access Ethereum
	Service-linked roles for AMB Access Ethereum

	Troubleshooting Amazon Managed Blockchain (AMB) Access Ethereum identity and access
	I am not authorized to perform an action in AMB Access Ethereum
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AMB Access Ethereum resources

	Identity-based policy examples for Amazon Managed Blockchain (AMB) Access Ethereum
	Policy best practices
	Using the AMB Access Ethereum console
	Allow users to view their own permissions
	Performing all available actions for AMB Access Ethereum
	Controlling access using tags

	Using Service-Linked Roles for AMB Access
	Service-Linked Role Permissions for AMB Access
	Creating a Service-Linked Role for AMB Access
	Editing a Service-Linked Role for AMB Access
	Deleting a Service-Linked Role for AMB Access
	Supported Regions for AMB Access Service-Linked Roles




	Tagging Amazon Managed Blockchain (AMB) resources
	Create and add tags for AMB Access Ethereum resources
	Tag naming and usage conventions
	Working with tags

	Logging Amazon Managed Blockchain API calls using AWS CloudTrail
	Managed Blockchain information in CloudTrail
	Understanding Managed Blockchain log file entries
	Using CloudTrail to track Ethereum calls

	Document history

