Massive Scale Real-Time Messaging for Multiplayer Games

Real-time messaging for delivering notifications to players in multiplayer games that can scale to support millions of
concurrent users (CCU) using multiple Redis PubSub clusters with Amazon ElastiCache and WebSockets.

—=

Game
Client

E AWS Cloud

&

&y VPC

— WebSocket WSS://

2

Real-time

Messaging Cluster

Get and save connection state

(G

API

Service Discovery

Find topic to
publish to

Redis

=1
PUBLISH <server> =———> @

Game Services

Friends Presence

Chat

Other services

Service Discovery Cache
e

i ElastiCache for

1
SUBSCRIBE <server>
to each instance

Redis PubSub Instances(s)
[‘%‘]

ElastiCache Redis
Cluster 1

ElastiCache Redis
Cluster...n

aWS © 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multiple real-time messaging servers can
be deployed into a cluster to provide
horizontal scalability. When a real-time
messaging server starts, it can check a
Service Discovery cache using Amazon
ElastiCache for Redis for a list of
available Redis PubSub instances and
subscribe to the same topic (i.e. real-
time-messaging123) in each of the Redis
PubSub instances. This enables traffic to
be sharded across multiple ElastiCache
clusters and still reach the correct real-
time messaging server.

Clients can send requests to a Service
Discovery API to retrieve a real-time
messaging server to connect to. The list
of available real-time messaging
instances is stored in the Service
Discovery cache.

A Service Discovery cache stores
information about the connected
endpoints, including clients, real-time
messaging instances and the Redis
PubSub clusters and topics that each
real-time messaging instance is reachable
on. If client disconnects, this information
is removed from the cache.

Applications use a Messaging API to
deliver messages to clients. The API
publishes the message to the appropriate
topic that reaches the correct real-time
messaging server and game client.

The Messaging API publishes the
message to the topic in one of Redis
PubSub instances. Since each real-time
messaging server is listening to the same
topic in every Redis PubSub instance, it
gets a message that is delivered to any of
the ElastiCache clusters and delivers the
message to the client, enabling
horizontal scalability.



