This architectural blueprint shows how the AWS Cloud can enable digital transformation for manufacturers, and highlights how a smart factory, smart products, enterprise applications, and engineering and design workloads can be integrated using a data lake.

- Establish your smart factories by connecting industrial Internet of Things (IoT) devices to the cloud, and host your production applications on a hybrid cloud infrastructure.
- Central to the architecture is the manufacturing data lake, which enables analytics and machine learning for use cases like production optimization and predictive maintenance.
- Host your enterprise application in the cloud with a cost effective, resilient, and scalable architecture that integrates with the data lake.
- 4 Utilize Spot and GPU based instances for computer aided and high performance compute workloads.
- Build smart products to provide additional function and features for your connected products and machines, and enable product-as-a-service.

Ke

ML - Machine Learning

PLC – Programmable Logic Controller

DCS – Distributed Control System

MES – Manufacturing Execution System

MOM – Manufacturina Operations Management

ERP - Enterprise Resource Planning

CRM - Customer Relationship Management

MRO – Maintenance Repair Operations

PLM – Product Lifecycle Management

CAD – Computer Aided Design

CAE – Computer Aided Engineering

Data Ingestion

Architectural view of data ingestion from industrial and automation devices in the factory, and contextualization with data from manufacturing and enterprise applications.

- Connect your industrial devices with **AWS IoT Greengrass** running on an Edge gateway to the cloud.
- Stream your industrial data into your data lake using Amazon Kinesis Data Firehose.
- With AWS IoT SiteWise, model your industrial assets, calculate metrics from telemetry data, and visualize the data using AWS IoT SiteWise Monitor.
- Unstructured manufacturing data can be synchronized into the data lake using AWS Storage Gateway.
- For manufacturing application interface, use Amazon Transfer Family to transfer files into the data lake.
- For manufacturing databases, use AWS Database Migration Service to synchronize the data into Amazon RDS.
- 7 For enterprise application, use Amazon API Gateway and AWS Lambda functions to build interfaces to import and export data into the data lake.
- For migration of large data sets, use AWS Snowball Edge to migrate the data into your data lake or run your manufacturing applications at the factory Edge.

Data Lake and Analytics

Architectural view of a data lake to enable analytics and machine learning for manufacturing use cases.

- Utilize AWS Lake Formation or Amazon Simple Storage Service to establish a data lake structure.
- For industrial IoT and automation equipment data ingested through AWS IoT Core, use Amazon Kinesis Data Analytics for streaming analytics such as anomaly detection.
- For near real-time analytics, use **AWS Lambda** to run analytical functions.
- Process, transform and analyze data in the data lake using **Amazon EMR**.
- Develop, train, and deploy machine learning models with Amazon SageMaker.
- For demand forecasting use cases, use **Amazon Forecast**.
- 7 Store structured data sets and analytics results in a data warehouse using Amazon Redshift.
- Create business intelligence reports and visualize data with Amazon QuickSight from Amazon Redshift, and from Amazon S3 using Amazon Athena.

Application hosting

Architecture view for hosting application on an integrated, resilient, and scalable architecture that connects AWS to an on-premises environment..

- For latency sensitive and high data processing cloud-native workloads, extend the AWS Cloud into onpremises data centers with AWS Outposts.
- For use cases that have a disconnected state or need ruggedized hardware, use AWS Snowball Edge to host the application.
- Host your enterprise application on Amazon EC2 instances within a virtual private cloud (VPC) using AWS Auto Scaling and Elastic Load Balancing to provide availability and scalability.
- For high performance computing (HPC) workloads, utilize Amazon FSx and Amazon EC2 instances with Amazon AppStream 2.0 to run computer-aided engineering (CAE) and computer-aided design (CAD) applications in the cloud.

Smart Products

Architectural view of how smart products can be built on AWS and integrated into a manufacturing data lake.

- Use **AWS IoT Core** to connect to products and machines using Message Queuing Telemetry Transport (MQTT), ingest telemetry data, and send commands.
- Ingest telemetry data into Amazon S3 using Amazon Kinesis Data Firehose from AWS IoT Core.
- Define event based logic and actions for connected devices using AWS IoT Events and Amazon Simple Notation Service.
- Build micro service applications for connected products and machines using AWS Lambda functions and Amazon DynamoDB.

