
Reviewed for technical accuracy August 25, 2022

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

microservices with purpose-built 

databases

Paginated Search with Purpose Built Databases
This reference architecture shows how create a searchable, paginated list on domain aggregates from purpose-built 

databases with a step transformation and SQL queries. Apply the command query responsibility segregation (CQRS) pattern 

to an event-driven microservice architecture to enable searching, pagination, and sorting by querying eventually-consistent 

data projections in Amazon Aurora.

5

4

3

2

1
Create a relational database using Amazon 

Aurora to hold projections of the domain 

aggregates you need to search, paginate, 

and sort. Working backwards from the user 

interfaces, decide how to design the tables 

and columns.

Create an AWS Lambda function to invoke a 

SQL query against the relational database, 

then connect it to your pagination API 

endpoint to handle search requests. The 

function uses a ‘Where’ clause for searching, 

‘OrderBy’ for sorting, and ‘Limit, Offset and 

Count’ for pagination. The paginated results 

include the unique keys of the returned 

domain aggregates.

Decoupled microservices raise events for 

changes in the domain aggregates they own. 

Each microservice selects the purpose-built 

database that suits their use case, while 

eventually keeping the projection database 

up to date consistently.

Use Amazon EventBridge to create an event 

bus to collect the domain events from your 

microservices. 

Normalize domain aggregates with database 

specific normalizers to match the projection 

tables in the database and calculate 

additional analytics. To manage the 

workflow and direct domain aggregates to 

the right normalizer, create a choice step 

within AWS Step Functions. For complex 

normalizations, the state machine can 

integrate and wait for long running 

containers on Amazon ECS.

Clients can request details on a returned 

aggregate, referring to it by a unique key. 

This is managed by the relevant microservice 

through the API endpoint.

AWS Cloud

clients

Amazon Aurora

relational database

Amazon EventBridge

event bus

API endpoint

pagination

4

NoSQL

microservice

timestream

microservice

graph

microservice API endpoint

details

view aggregate details

projection 

tables

Amazon DynamoDB

Amazon Relational 

Database Service 

(Amazon RDS)

Amazon Timestream

Amazon Neptune

relational database 

management system 

(RDBMS) microservice

1
23

6
6

AWS Step Functions

normalizer steps

domain 

aggregates

5

store 

eventually-consistent 

projections

choice step

microservice 

events

CQRS
query

AWS Lambda

searcher

AWS Lambda

database-specific 

normalizer


