
Reviewed for technical accuracy June 24, 2022
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

repeat flow

AWS Migration Hub Refactor Spaces

Replaying Parallel Requests to Break a Monolith
Use this architecture to break your monolith with confidence by setting up a parallel run strategy combined with the strangler fig pattern.
First proxy the methods to be replaced with a microservice, storing a copy of user requests and monolith responses in a time-series database.
Then replay the requests on your new microservice to compare the responses between the legacy monolith and the replacement microservice.

5

6

4

3

2

1 Assuming a legacy cloud monolith standing on
Amazon Elastic Compute Cloud (Amazon EC2)
and Amazon Relational Database Service
(Amazon RDS), apply the strangler fig pattern
with AWS Migration Hub Refactor to place an
API in front of your monolith and re-route the
endpoints-to-modernize into a recorder system
that records all requests and responses.

Use a proxy recorder AWS Lambda function to
proxy requests back to the legacy monolith, and
push a copy of all request-and-response
payloads into Amazon Kinesis Data Streams.

Use Amazon Kinesis Data Firehose to deliver
the monolith-payload stream into an Amazon
Simple Storage Service (Amazon S3) bucket.

Use a sorter function to store the payloads in
Amazon Timestream in a time-based order.

Using AWS Backup, periodically back up the
monolith’s database. This baselines the replay
flow’s start time to replay payloads.

Use an AWS Step Functions workflow to replay
the requests, first resetting the microservice’s
temporary databases from a monolith’s database
backup, then replaying the requests into the
microservice from the date/time of the backup.

Fetch all requests in the replay-time window,
sorted by request date/time, then push them to
a first-in-first-out (FIFO) queue using Amazon
Simple Queue Service (Amazon SQS).

For each request in the queue, invoke the same
request in the microservice’s API, recording the
responses in an S3 bucket.

From the last S3 bucket, prompt a function to
compare the responses to the same request sent
to the monolith and to the microservice. Raise an
alarm for any differences using Amazon Simple
Notification Service (Amazon SNS), and store
the final results in the requests database.

7

8

9

Amazon API
Gateway

strangler fig

Amazon SNS
alarm

Amazon SQS
FIFO queue

users

legacy
system

recorder
system

monolith periodic snapshot flow

AWS Backup
backup

Amazon S3
snapshot

periodic
backup

proxy

Amazon RDS
temporary DB

restore

load

AWS Lambda
sequencer
function

AWS Lambda
database reset

automatic recorder flow

Amazon Kinesis
Data Firehose
S3 connector

AWS Lambda
proxy recorder

Amazon Kinesis
Data Streams
data stream

Amazon S3
monolith
responses

record

AWS Lambda
sorter

function

Amazon Timestream
ordered requests

prompt

microservice
API

reset

then

fetchinsert push
AWS Lambda

request
repeater

invoke

Amazon S3
microservice

responses

AWS Lambda
response comparer

update request results

prompt
raise

1

2

3

4

5

6

7

prompt

8

9

Amazon EC2
application

Amazon RDS
database

AWS Step Functions
manual replay flow

https://en.wikipedia.org/wiki/Monolithic_application
https://en.wikipedia.org/wiki/Parallel_running
https://martinfowler.com/bliki/StranglerFigApplication.html

	Slide Number 1

