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1 The Library of Congress, The Card Catalog: Books, Cards, and Literary Treasures (San
Francisco: Chronicle Books, 2017).

CHAPTER 1

Finding Information in Your Data

Ever since people began recording information, we have needed to
find that information. More than 4,000 years ago, in ancient Sumer,
bureaucrats were creating catalogs to help organize and locate infor‐
mation. In ancient Greece 2,250 years ago, the scholar Callimachus
created the Pinakes—a table of authors and works in the Library of
Alexandria.1 Numerous concordances and indices surround ancient
texts to help readers find relevant portions.

The story of search and search engines is intimately tied to language.
This report is thus largely about language: the means by which peo‐
ple capture information and the tool they use to find information.
When you search, whether you’re talking to a librarian or typing
words into a search box, you’re asking a question with words to get
something you need. Language is the central element of searching.

Until recently, computers could not simulate human-level compre‐
hension, so finding information was a tedious and error-prone pro‐
cess. The search engine, much like when you use a library card
catalog, matches the words you type with words in its catalog of
information (its index). This is called lexical or keyword search.
This process of locating information is iterative, manual, and often
frustrating (Figure 1-1).
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Figure 1-1. The traditional method of iterative searching puts all the
work on the searcher

In 2022, decades of research on language in computers culminated
in OpenAI releasing ChatGPT, a chatbot that uses a large language
model (LLM) to generate text responses to text questions. ChatGPT
is a generative pretrained transformer, which is a class of LLMs
that produce text, vectors, images, videos, and more. LLMs capture
relationships between words to model their relationships for text,
image, and vector generation. ChatGPT and its cousins—such as AI
assistants, code generators, and agents—have changed the public’s
expectations about how we interact with digital tools. ChatGPT’s
startlingly accurate responses to language prompts have brought
excitement and hype around finding and working with information
in the digital sphere.

We are on the cusp of a search revolution that will combine the
conversational capabilities of chatbots and AI assistants with search
engines’ ability to match and sift through huge volumes of informa‐
tion quickly. For example, a technique called retrieval-augmented
generation (RAG) employs a search engine to retrieve relevant infor‐
mation that augments and improves the user’s query, enabling an
LLM to generate more accurate and relevant answers. (We’ll discuss
RAG in Chapter 4.) Taken together, LLMs and search engines have
shifted information retrieval from user-driven query and refinement
to something that looks more conversational (Figure 1-2). It’s start‐
ing to feel like you are talking to the librarian of Alexandria instead
of digging through the library’s card catalog!
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Figure 1-2. RAG supports conversational Q&A, finding answers by
using a chatbot and an LLM in tandem

This report will familiarize you with the possibilities that are just
opening up in the world of information retrieval. Builders will learn
the fundamentals of semantic search and generative AI and where
to incorporate them in your application. Product managers will
understand the “whys,” and the “hows,” guiding how to fit LLMs
into your product strategy. Executives seeking to capture the power
of generative AI (genAI) will learn the art of the possible to shape
your teams’ direction.

This chapter defines search engine, covers their main capabili‐
ties, and sets the stage for understanding chatbots and digital
assistants. Chapter 2, “Lexical Search” dives into lexical search,
covering the core search algorithm and the role of language. Chap‐
ter 3, “Vectors: Representing Semantic Information” helps demys‐
tify and define vectors and explains why and how vectors are
important for processing language. Chapter 4, “Semantic Search”
covers semantic search. Chapter 5, “Building with Search” gives
you some implementation details and helps you understand how to
build ML-driven search. Finally, Chapter 6, “Deploying a Winning
Search Strategy” provides hints and example use cases for vector
search, strategies for implementing semantic search, and thoughts
on governance and ethics.
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What’s Search and What’s a Search Engine?
The purpose of search is to locate information that is relevant to a
task at hand. Broadly speaking, whether you’re chatting with an AI
chatbot or typing words into a search box, you are searching. The
technologies that facilitate your path from question to answers begin
with search engines. OpenSearch, to name one of the many search
engine solutions available, is an open source search and analytics
suite integrated with latest genAI and vector search capabilities.

Search websites like Google.com are so useful that
search engine has come to refer not so much to a term
of art or a technology, but as a household word, like
Frisbee or Band-Aid—trademarked words that have
become so common that they have lost their original
brand affinity. In this report, we use search engine or
OpenSearch to refer to the database technology, and
search application to refer to websites and desktop and
mobile apps that employ search in the context of that
search application.

As a technology, search engines are closely aligned with and usu‐
ally described as databases. They fit the high-level characteristics
of a database; databases store information and enable retrieval
of that information. But search engines differ in some important
respects from relational databases, NoSQL databases, caches, graph
databases, document databases, and the like. At their inception,
search engines were developed for low latency and high throughput,
trading off transactional behavior and relational representation. The
most common architectural pattern is to use a search engine for
retrieval and a relational (or other) database for durable primary
storage.

Search engines have two core capabilities—indexing and retrieval.
To build a search experience, application builders send information
to the engine as structured documents. Document, in this context,
is a term of art referring to a single entity that the engine indexes
and that search queries retrieve. The engine indexes the information
in the fields of the search documents, providing fast matching and
retrieval for text, numbers, dates, geographical coordinates, vectors,
and other special types, like Internet Protocol (IP) addresses. We’ll
discuss how search engines treat text to break it into matchable
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terms so the engine can retrieve documents based on matches in
large blocks of text.

The search engine’s APIs enable flexible information retrieval by
supporting Boolean combinations of indexed fields, allowing users
to specify complex queries. These queries can match text exactly
or match words within larger blocks of text (free text). They can
also specify numeric ranges like date ranges, integer and floating-
point ranges, and much more. Search indices and algorithms enable
search engines to provide low-latency, high-throughput responses to
API queries.

The common practice for building search-based applications is to
use at least two systems—a durable, transactional system like a rela‐
tional database to serve as the consistent, accurate system of record,
and a search engine to search the data in the system of record.
The application sends user queries to the search engine and then
uses the system of record to retrieve the data for the search results.
The application sends updates to the system of record. Backend
systems capture and propagate these updates to the search engine.
(See Figure 1-3.)

Figure 1-3. Search data flow: when you query, the application sends a
request to OpenSearch, which holds search documents pulled from a
corpus

When you visit Google.com or Amazon.com and type some words
into the search bar, the website responds with a list of search results.
Ideally, your desired product or website will be the first result at the
top of the list. Search engines, unlike other databases, always sort
their results and are optimized to return the most relevant results
rather than all of the data that matches a particular query. Relevance
is a measure of how useful a search result is in performing the user’s
intended task. For example, for ecommerce sites like Amazon, the
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relevance of top results is closely related to whether the user buys
the product.

Modern search is no longer purely lexical; search now employs
machine learning (ML) and other strategies to make it easier to
return relevant results (see also Figure 5-1). Behavioral tracking,
query rewriting, and personalization feed an individual searcher’s
user behavior signals, like clicks and purchases, back to the search
engine to improve that searcher’s queries. For example, Learning to
Rank is an open source plug-in that can use this data in open source
search engines like OpenSearch. User behavior signals are also used
to rewrite the query sent to the search engine. Search applications
also use other signals and contextual information like the searcher’s
location, device type, feature engaged, etc.

Search ecosystems gather information about relationships between
a user’s queries and purchases to augment their queries with addi‐
tional terms or boosts. They can also use ML data to personalize
customers’ search experiences: for example, speeding the customer’s
time-to-purchase or time-to-click by altering their queries and rank‐
ings based on brand affinity, or by relating that customer’s segment
to particular brands or categories of results.

Beyond Free-Text Search
Free-text search is used to search unstructured information—that is,
blocks of text. A search engine can also search information with
structure. Consider an ecommerce website: the products in its cat‐
alog carry brand, category, pricing, rating, and other information,
stored either as fixed text or as numbers. A search engine can match
text and numbers exactly, as it does with words for free-text search.
Query offloading and curated datasets are two examples of more
structured search workloads.

Query Offloading
Query offloading involves running queries on a replica of your
production database that is hosted in a search engine. This lets
you take advantage of search engines’ high-throughput, low-latency
query capabilities, sorting, and aggregations to perform database-
like query processing without greatly increasing the load on the
source database itself. Query offloading opens the door to extremely
high scalability. Search engines can scale to handle 100,000 queries
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per second or more while maintaining latencies that are in the
milliseconds.

So why not make a search engine your primary data store? Because,
to provide high scalability, high throughput, and low latency, search
engines trade off on consistency, relational data structures, transac‐
tional behavior, and to some extent data durability. In most primary
data stores, all of these characteristics are highly desirable or even
necessary. Further, most search engines are distributed systems,
deployed in a cluster and relying on intracluster communication
during query processing to produce results. Large result sets (10
megabytes or larger) can paralyze the cluster with internal commu‐
nication. In contrast to some other database systems, search engines
are designed for retrieving small, sorted result sets—subsets of all of
a query’s results, rather than the full result set.

Curated Datasets
Raw data is the data in your organization that is not curated. It
can include all types of structured, unstructured, and semistructured
data, such as images, audio files, text, databases, PDFs, backups,
archives, JSON files, and XML files. Some of these data sources are
obvious, but others are less so, like recordings of meetings.

Curated datasets are organized and enriched datasets that often use
a data catalog to list the data. You can send the metadata from
your raw data to OpenSearch to provide the data catalog and enable
search to help your internal users find content they need. You may
even send the contents of your raw data, along with its metadata, to
enable search in the catalog and contents.

Chatbots
The search process is evolving to include natural language interac‐
tion as a prominent way that people find information. Chat applica‐
tions like Slack, WhatsApp, and WeChat provide ways for people to
talk to one another in short-form messages. AI-based chat applica‐
tions replace the person at the other end of the conversation with an
LLM-backed text generator. You can read more about chatbots and
RAG in Chapter 4.

Beyond Free-Text Search | 7

https://oreil.ly/_aSrm


Conclusion
In this chapter, we covered the broad sweep of how people search.
Language is the central tool that people use to store and retrieve
information. As search moves from a manual iterative process to an
automated, natural language–driven process, builders are expanding
their tool sets, based on advances in AI and ML for natural lan‐
guage, to support finding and acting on information. Even as the
once-futuristic world of talking to our tools emerges, searching by
language remains an important capability. In the next chapter, you’ll
learn how search engines work with language to retrieve relevant
results.
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CHAPTER 2

Lexical Search

It’s important to understand how lexical search works, because it
predates and anticipates how semantic search works. Lexical search
for unstructured text works directly with language by decomposing
blocks of text into words and matching those words to text from a
query. You might think of it as the “assembly code” of searching.

Consider a website that advises its users on which games to play.
The builders of the site use game descriptions as the corpus of docu‐
ments for their search engine. They might include the following two
blocks of text, which discuss the dice game craps and the card game
blackjack, in their respective documents:

Text sample A (craps) from Wikipedia
The shooter must shoot toward the farther back wall and is
generally required to hit the farther back wall with both dice.
Casinos may allow a few warnings before enforcing the dice to
hit the back wall and are generally lenient if at least one die hits
the back wall.

Text sample B (blackjack) from Wikipedia
The dealer deals from their left (“first base”) to their far right
(“third base”). Each box gets an initial hand of two cards visible
to the people playing on it. The dealer’s hand gets its first card
face-up and, in “hole card” games, immediately gets a second
card face-down.
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For the search play dice games, text sample A seems like a better
match than text sample B. Most search engines solve this problem in
three phases—matching, merging, and ranking.

Matching
Search engines analyze the text to break it into single words, then
bring each word to a normalized form. OpenSearch, for example,
contains 34 language-aware analyzers that refine terms to make
them match in a more intuitive way:

Segmenting
When the engine segments terms, it removes punctuation and
lowercases terms, so that Run. matches run.

Stemming
Language-specific stemming rules remove common inflections:
this means Run matches run, runs, and running.

Stop-word filtering
A stop words filter removes common terms like articles: a, an,
the, and the like. These terms appear in almost every document,
so they have low value for matching.

Synonym matching
Finally, it adds synonyms so that terms can match across com‐
mon groupings. For example, the engine might use begin and
initiate as synonyms for start.

This report focuses on the English language analyzer. Searching
across multiple languages is a broad topic touching index design,
language analysis, and index, cluster, and document tenancy.

To OpenSearch, the transformed text samples look like this:

Text sample A (craps), analyzed
shooter must shoot toward farther back wall gener requir hit
farther back wall both dice casino mai allow few warn befor
enforc dice hit back wall gener lenient least on die hit back wall

Text sample B (blackjack), analyzed
dealer deal from left first base far right third base each box get
initi hand two card visibl peopl plai dealer hand get it first card
face up hole card game immedi get second card face down
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The output looks odd. What’s going on here? Each term that you
see is an actual, matchable term from OpenSearch’s English ana‐
lyzer (segmentation). You can see that stop words are removed. We
haven’t applied synonyms, so there are no additional terms. Finally,
the English analyzer employs a stemmer that transforms, for exam‐
ple, generally → gener, and required → requir.

Of course, textual queries undergo a similar analysis. The query
play dice games is rendered plai dice game.

To match a query, search engines use an inverted index. An index
in a book maps words to the numbers of pages where those words
occur; to find something, you go to the index, look up a term, and
go to the page number(s) indicated until you find what you are look‐
ing for. Similarly, an inverted index in a search engine maps terms
onto the document IDs for documents that contain those terms. The
search engine looks up the terms in the index, then combines the
sets of document IDs (posting lists) to determine the match.

Figure 2-1 shows some of the terms that might be in our example
corpus. On the left, you see the terms index; on the right are the
posting lists for each entry. During matching, the engine looks up the
term in the terms index. To match play dice games, it looks up the
analyzed terms—plai, dice, and game—to get the posting lists [41,
42, 43], [3, 12, 15, 19, 38, 86], and [14, 33, 42, 75].

Figure 2-1. An inverted index, showing the terms index on the left and
the posting lists on the right
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Merging
The second phase of search is merging the posting lists to get a single
set of matches. Search engines use set math to compute the match.
If the application wants to match all terms in the query, it will use
an AND operator for the query, and the engine will compute the
intersection of the posting lists—in this case, [ ], or an empty set.
In most cases, the application will use an OR operator—a union—to
retrieve [3, 12, 14, 15, 19, 33, 38, 41, 42, 43, 75, 86]. It relies on
scoring and sorting to bring the most relevant documents to the top.

Ranking
The final phase of search is ranking. A search engine for lexical
search employs a ranking algorithm called Term Frequency-Inverse
Document Frequency (TF-IDF), which works based on the overall
statistics of the text. Rare terms get high scores; common terms get
low scores. A document’s score for a particular query is the sum
of the scores for the terms that match, multiplied by the number
of times they occur. During the ranking phase, the engine sorts all
matching documents by score to produce a final search result.

We’ll imagine that plai and game are common for this document
set, and that dice is rarer, with a higher value. The term dice occurs
twice for craps and not at all for blackjack, so craps will receive a
higher score and rank higher in the results than blackjack.

Conclusion
In this chapter you learned how search engines break up blocks of
text and store them for matching in an efficient, language-aware
way. Lexical search is about extracting as much meaning as possible
from raw words to match and rank them by intent and meaning. But
while this symbol-based text processing and retrieval goes a long
way, it still doesn’t directly get at the meaning of the symbols. For
example, compare the meaning or sense of “a couch” and “a cozy
place to curl up by the fire.” The word “couch” doesn’t match any
of the words “a cozy place to curl up by the fire,” but we feel the
concepts match. To move beyond lexical search, ML had to supply
tools, in the form of machine-learned vectors. That is where we turn
our attention in the next chapter.
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1 There’s a fascinating, long-running debate about the nature of consciousness and intel‐
ligence that spans the disciplines of philosophy, psychology, and computer science
called philosophy of mind.

CHAPTER 3

Vectors: Representing
Semantic Information

Language comes so naturally to humans that its complexity is
hard to understand. We go from concept and meaning to spoken
or written word (and back), mostly unconsciously. If computers
were humans, they could easily communicate in natural language.
AI researchers have studied symbolic natural language processing
(NLP) in computers for decades with mixed results. The advent of
modern machine learning and the age of big data has revolutionized
NLP and brought a paradigm shift in our approach, enabling us to
code language as high-dimensional vectors.1 In this chapter, you will
learn how ML systems train, employ, and create vectors to work
with natural language.

Vector Basics
Computers and ML models only understand numbers. To work
with the information contained in natural language, they need that
information in number form. Vectors are that number form.

Vectors for semantic search (called embeddings) represent natural
language as a set of values across many dimensions. When people
train ML models for use in search engines, the goal is to produce a

13
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model that generates vectors that are close together for text that has
similar meaning and far apart for text that has different meanings.

A vector (when centered at the origin) is a value for each of the axes
in an n-dimensional space. Figure 3-1 shows the vector (4,6) in two
dimensions—X and Y. You visualize this vector by drawing the line
from the origin to the (X,Y) point. We call this a two-dimensional
vector.

Figure 3-1. A two-dimensional vector

A 768-dimension vector has 768 values along orthogonal axes, just
like the 2-dimensional vector in Figure 3-1 has 2 values along the
two orthogonal X and Y axes. Of course, you can’t easily draw or
visualize 768 orthogonal dimensions!

To see how we encode language as vectors, let’s start with the naïve
stance that you could assign just one number to each word: aard
vark = 1, abacus = 2, apple = 3, and so on. But, while 1 + 2 = 3, it
doesn’t make any sense to say that aardvark + abacus = apple.

Expanding from a single number, you could use two numbers, like
the (latitude, longitude) coordinates used in GPS:

aardvark = (1,0)
abacus = (0,1)
apple = (0,2)
banana = (1,2)

Adding aardvark and abacus no longer results in apple.

Unfortunately, there’s still a problem. Adding aardvark and apple
gives (1,2)—which gives you banana. Adding more dimensions
helps reduce nonsensical implications, but how many more dimen‐
sions is enough?
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Dimensionality
One answer is to use as many dimensions as there are words in
the vocabulary. Let aardvark = (1,0,0,0,...), abacus = (0,1,0,0,...),
apple = (0,0,1,0,...), and so on. With this encoding, no two words
can be added to give another word, since no word’s representation
can have more than one 1. This is often called sparse, keyword, or
one-hot encoding, and the corresponding vectors are known as sparse
or one-hot vectors.

Sparse vectors are quite useful in search and other natural language
tasks, and until quite recently they were considered to be the state
of the art. But sparse vectors can’t combine in a meaningful way
(no word has more than one “1”). Take the words red and fruit.
Adding their vectors should not produce the vector corresponding
to aardvark or banana. But it would make sense if it equaled the
word apple, since an apple is indeed a red fruit.

To facilitate such natural language understanding and semantics,
you need to use a vector with fewer dimensions than there are
words. These vectors, known as dense vectors, are ubiquitous in
modern ML models such as LLMs. Modern LLMs produce vectors
with dimensions ranging from a few hundreds to a few thousands.

How LLMs Learn Vectors
ML uses an algorithm called backpropagation in neural networks
to discover the vectors that encode words. Let’s start with a simple
example. A line in two dimensions has two parameters (the slope
and the intercept). Given a set of data points in two dimensions,
you can train a neural network (of two parameters) to draw a line
that passes through the specified points. This is done by slowly and
steadily changing the parameters (using backpropagation) until the
points lie on the line. If the data is, say, in the shape of a circle
and does not lie on a straight line, the neural network will never
be able to find a line that passes through all of them. But in such a
scenario, increasing the model’s number of parameters would enable
it to draw complex curves (and not just straight lines), and thus fit
all the data points.
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This is precisely why most LLMs have billions of parameters: natural
language data is extremely complex. Their vectors live in very high-
dimensional spaces and do not align in a straight line!

LLMs used for search are trained in a similar way, but they produce
n-dimensional vectors (instead of curves or straight lines). LLM
training via backpropagation uses a loss function, a function that
measures how well the model fits the data points. For our example
of learning a line, the loss function would be the distance from
the point to the line. For language, the loss function depends on
the task: for instance, the loss function for learning vectors that
encode language for search is different than the loss function used
for generating text.

For our use case, we want the models to learn good vectors that set
us up for good search results. But what are “good” vectors and how
do models learn them? Alternatively, what loss function should we
use to teach the model “good” vectors?

You know that search LLMs convert every piece of text (word,
sentence, or document) into a vector. A good model should pro‐
duce vectors that satisfy the condition that vectors near each other
correspond to similar texts, and vectors far away from each other
correspond to dissimilar texts (Figure 3-2). The precise distance
between two relevant vectors becomes the loss function. The model
is trained to reduce the loss function—that is, the distance between
the relevant vectors. It is similar for irrelevant vectors, except that
the loss function now has a minus sign, so reducing the loss func‐
tion is equivalent to increasing the distance. Typically, the distance
between vectors is measured in terms of either the angle between
them or the length of the straight line that connects them.
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Figure 3-2. Good models produce vectors with small distances between
related words and large distances between unrelated words

Steps 3 and 4 (see Figure 3-3) guarantee that vectors close to each
other are related and vectors that are far apart are unrelated. Thus,
if you encode your query with the same LLM and find neighboring
vectors, the LLM will retrieve relevant results. Just finding the dis‐
tances between these vectors can help us build better search engines.

Figure 3-3. Training an LLM
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If you start with a model with random initial parameters, the vectors
it produces probably won’t satisfy the condition that distance ≈
meaning ≈ relevance (that is, closer vectors are more relevant to
each other). The loss function captures that requirement. You can
use the loss function and the backpropagation algorithm to train an
ML model, as shown in Figure 3-3. The training steps, in simplified
form, are:

1. Collect a dataset of (query, passage) texts, labelled with a rele‐1.
vance value.

2. Feed the texts and relevance values to the model.2.
3. Use the ML model to create a query vector and a passage vector.3.
4. Train the ML model to change this distance (decrease the loss4.

function) using backpropagation.

Figure 3-4 shows the vectors that an ML model created for several
texts before and after its neural network training. Most public mod‐
els are pretrained (trained on lots of data for a given task), so, often,
all you need to do is download the model and run it.

Figure 3-4. LLMs for search are trained with a loss function that
produces good vectors

Types of LLMs
Most modern ML search applications use a particular kind of
ML model, deployed in an architecture called a transformer. Trans‐
formers primarily come in two different types: encoder-only and
decoder-only.
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The decoder-only transformer is the architecture behind very large
language models, such as OpenAI’s GPT-3.5 and GPT-4, Anthropic’s
Claude, Google’s Gemini, and Amazon’s Titan. These models’ input
and output is most often in the form of text. That text is represented
internally, always in the form of vectors, but these vectors aren’t
really used for anything directly.

Encoder-only transformers, such as Bidirectional Encoder Represen‐
tations from Transformers (BERT), typically take input in the form
of text (such as a word, sentence, document, or even an entire book)
and output a vector that represents the input text. You can use this
vector to do all sorts of tasks, including search.

Foundation Models
Foundation models are LLMs that are trained on a large amount of
data (like a corpus consisting of all the text on the internet). Services
like Amazon Bedrock provide these pretrained models to make it
easier to get started. But because they are trained on such a broad
corpus, they are not specific to a particular user domain (such as
health care). To improve its vector embeddings and thus customize
it to perform better for more specific use cases, you fine-tune the
foundation model by training it with your specific data (see “Fine-
Tuning: Beyond Pretrained Models” on page 21).

Multimodal Models
With the right preprocessing, you can train LLMs on diverse kinds
of data, including images, video, and sound. Models such as Titan
Multimodal and Gemini are trained on both text and image data.
Titan can respond to text prompts with image-based embeddings,
while Gemini can generate images or text from its prompts. Models
like OpenAI’s Sora can generate video from text prompts.

Multilingual Models
Some models work with more than one language. Multilingual
LLMs such as GPT-4 or Claude provide capabilities for generating
text across languages. Cohere’s Embed v3 can create vector embed‐
dings for multilingual text.
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The Limitations of Dense Vector Search
So far, we have discussed the strengths of dense vector search and
how it can be used to encode semantic similarity. But lexical similar‐
ity is important too!

When you have a document corpus that uses very specialized and
specific words, like a corpus of product documents that contain
lots of alphanumeric strings, you need to be able to match those
strings exactly. If a user searches for a product by its serial number,
AX7D, they want to retrieve documents that match AX7D exactly.
Because the query has no semantic information, a semantic embed‐
ding would actually harm the results. A dense vector encoding of
AX7D will lie close to possibly unrelated items in the vector space.
Semantic search will retrieve some of these unrelated neighbors, but
they won’t match the searcher’s intent, which was to retrieve exactly
and only the product with serial number AX7D.

Hybrid Search
The same is true when the query is a highly specific word in a
specialized domain, like ADHD in psychology, or OB/GYN in medicine.
In such cases, a simple keyword search will yield better results.
Since a typical document corpus contains a lot of natural language
but also domain-specific, highly specialized words, the right search
solution would need to combine dense vector search with keyword
search: a hybrid search.

Recall that dense vector search retrieves the top k documents along
with their scores, and keyword search scored by TF/IDF retrieves
the top k documents with their respective keyword scores. To get the
final result, the engine combines these scores. It can do this using a
few strategies. One strategy is to interleave the lexical and semantic
results, where the final ranked list—comprising, for instance, 10
items—is obtained by alternating between the top five results of
each individual retriever. Another strategy, score normalization, nor‐
malizes the TF/IDF scores and dense vector scores to lie between 0
and 1 before combining them. OpenSearch has conducted extensive
research to benchmark the performance of different normalization
and combination techniques.

OpenSearch also supports efficient filtering for vector search that
can reduce the universe of possible matches by lexically filtering by
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an attribute value, like brand or product category. This elicits more
relevant results and solves cases where your customers are searching
for AX7D.

Sparse Vectors and SPLADE
Earlier in this chapter, we introduced sparse vectors—vectors with
the same number of dimensions as there are terms, encoding each
term as a single “1” value in a single dimension. We mentioned a
shortcoming of sparse vectors, that they don’t generalize so that,
for example, “red” + “fruit” = “apple.” Sparse Lexical and Expansion
Model (SPLADE) produces a sparse vector but uses a training objec‐
tive to make sure that some of the entries in the vector are larger
than zero. Allowing some nonzero values keeps relevant vectors
close to each other and preserves generalization to closely related
concepts. At the same time, the nearly-one-hot encoding maintains
a tighter relationship between the source term and the vector than a
dense vector does. Using sparse vectors, you get the benefit of term-
based matching with the generalization of dense vector matching.

Fine-Tuning: Beyond Pretrained Models
So far, we have described ML models that you can download from a
public repository. These models are trained on lots of data and often
perform decently on general-purpose questions. But if your queries
rely on a corpus and the model has not been trained on similar data,
it will not perform well. Fine-tuning allows the model to specialize
for particular tasks, improving its performance on those tasks.

In the fine-tuning phase, you start with a pretrained model and col‐
lect (query, document) pairs from the target domain. For example,
if you’re fine-tuning for medicine, you might use a training pair like
the one in Figure 3-5.

Figure 3-5. A healthcare question-and-answer pair with a positive
correlation
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You would ask the model to map the corresponding vectors close
together. Similarly, you would also take irrelevant pairs, like the one
in Figure 3-6, and ask the model to map their corresponding vectors
far away from each other (for example, revisit Figure 3-3). This
process forces the model to readjust its parameters based on new
data.

Figure 3-6. A healthcare question-and-answer pair with a negative
correlation

Conclusion
In this chapter, you learned about the foundation of how search
engines retrieve semantically relevant results: vectors. Vectors also
underlie the LLMs that power chatbots, AI assistants, and AI agents.
In the next chapter, you’ll learn how to use vectors for semantic
search.
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CHAPTER 4

Semantic Search

As you’ve seen, lexical (or keyword) search looks at the terms of a
query and matches those terms to terms in its index. Lexical search
is powerful in its own right, especially when users have a good idea
of exactly what they want to find. If you know that you want to
buy Zinus Ricardo Sofa Couch with tufted cushions in Lyon
blue, a site like Amazon.com can easily retrieve that couch for you
based on the lexical match between that query and the product’s title
and description.

But what if you’ve never heard of that particular couch? Maybe you
just know that your décor favors cool colors, you have a fireplace,
and you want to spend some quiet nights by that fireplace reading
books. You might search Amazon for a cozy place to curl up
by the fire, but the results will be disappointing, since none of
the terms cozy, curl up, place, and fire appear in the title or
description for the Zinus couch.

While the terms are not there, what the couch offers and what you
mean when you type a cozy place to curl up by the fire
match closely. Semantically, couches are related to coziness, firepla‐
ces are related to coziness, and couches are related to curling up.
The words don’t match, but their meanings do.

Vectors generated by LLMs encode semantic information from
blocks of text. In semantic search, the search application uses
an LLM to create a vector for each document in the corpus (Fig‐
ure 4-1). When a user runs a search, the application encodes the
text of that search query with the same LLM to produce a vector
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in the same space. It then uses a distance function to produce a
score for the query/document pairs and ranks the results by that
score. In some cases, it uses efficient filtering, hybrid search, or score
normalization, in addition to the distance score. Figures 4-1 and 4-2
show this process.

Figure 4-1. Using a BERT model to encode a document’s fields

Figure 4-2. Using a BERT model to encode a user’s query

You can see the difference in Figure 4-3, a screenshot from the
OpenSearch Playground. In this example, the query is sailboat
shoes. On the left are the results from a lexical search. On the right
are results from a semantic search by OpenSearch’s Neural plug-in.
The lexical matches contain one pair of boat shoes, but they also
contain many items that simply mention sailboat or shoes in their
descriptions. The semantic matches, by contrast, are for shoes that a
person might actually use on a sailboat.
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Figure 4-3. Comparing a BM25-ranked set of results (left) and a
kNN-ranked set of results (right) for the query “sailboat shoes” side by
side

Exact and Approximate Nearest-Neighbor
Search
Semantic searching by nearest neighbors gives high-fidelity results,
especially when augmented by hybrid search methods. In exact
k-Nearest Neighbors (kNN), the brute-force method of semantic
search, the engine tries every combination of query/document vec‐
tors and computes their distances. This is fine when the corpus is
small, but it becomes computationally expensive and leads to high
latency as the number of documents grows into the millions.

Approximate kNN (or ANN) solves this by reducing the number of
vectors the engine compares. There are two main algorithms for
ANN: Hierarchical Navigable Small World (HNSW) and Inverted
File (IVF). During indexing HNSW creates layers of graphs at differ‐
ent granularities, in which nodes are vectors and edges lead to other
neighborhoods of close vectors as the layers get deeper. During a
search, the HNSW algorithm walks the graph at the coarsest layer
until it finds a match close enough to enable it to go to the next
layer. It deepens progressively until it reaches the bottom layer,
where it collects highly local neighbors.
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1 Alan M. Turing, “Computing Machinery and Intelligence,” Mind 49 (1950): 433–60.
This is perhaps a subtle point. However, “No” is not the correct answer.

The IVF algorithm uses clustering techniques during indexing to
create clusters of related points. It then builds a small table of identi‐
fiers for the clusters, with a representative vector for each. During
search, it finds the nearest cluster of vectors and then scores against
that small cluster. A method called product quantization can further
reduce the storage needed by downsampling the vectors within the
vector cluster.

Approximate nearest-neighbor algorithms (HNSW and IVF) trade
accuracy for faster retrieval (and, in the case of IVF, storage).
HNSW gives better accuracy than IVF, but its storage needs can
be expensive. Be sure to evaluate search results carefully so that you
can make the right trade-offs.

Semantic Search for Retrieval-Augmented
Generation
When you prompt a chatbot, the LLM for that chatbot, in anthropo‐
morphic terms, “makes up” a response based on the structure and
content of its training data. It can make up perfectly right-sounding
answers that are wrong—hallucinations. Here is an example of a
hallucination generated by ChatGPT 3.5 in response to the prompt
“Does the Turing test mention gender”:

No, the original formulation of the Turing test, as proposed by Alan
Turing in his 1950 paper “Computing Machinery and Intelligence,”
does not explicitly mention or involve gender as a specific criterion.

However, “Computing Machinery and Intelligence” does indeed
mention gender: “The object of the game for the interrogator is
to determine which of the other two is the man and which is the
woman… Will the interrogator decide wrongly as often when the
game is played like this as he does when the game is played between
a man and a woman?”1

Prompt engineering is the process of structuring a prompt to elicit
better text from the LLM. Prompt engineering helps reduce halluci‐
nations by adding additional context that helps constrain the LLM’s
output. Prompts can contain declaratory information (“you are a
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student in middle school”), procedural information (“to take the
average of 12 and 24, add the numbers and divide by 2”), and other
factual information (“the average of 34 and 48 is 41”).

RAG is a technique that feeds additional data to the LLM as part of
the prompt to help avoid hallucinations. In the previous example,
the application might search for “does the Turing test mention gen‐
der” and retrieve Turing’s “Computing Machinery and Intelligence.”
It can then add the text of the article to the prompt to influence the
generated text, removing the hallucination.

Chat applications use many different data stores for RAG, including
relational databases, data lakes, and, of course, a search engine.
These data stores serve as a knowledge base—a pool of information
from which the LLM can retrieve relevant results for the user’s
query. The application augments the LLM prompt with accurate
data from these sources to drive better results.

For example, the Amazon OpenSearch Service builders might want
to provide a chatbot that can help its users with questions about
the service. As step 0 in Figure 4-4 shows, they could index
relevant information from the documentation, the service’s web‐
site, code from OpenSearch’s GitHub repositories, and any other
relevant sources. In step 1, users send questions to a chatbot.
The bot requests (step 2) and retrieves (step 3) information from
OpenSearch. The bot then sends an augmented prompt to an LLM
(step 4) and returns its response to the user.

Figure 4-4. RAG data flow
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Conclusion
Semantic search uses LLMs to capture the meaning of text and the
meaning of a user’s query text to perform vector matching and find
documents whose meaning is close to the query. In the next chapter,
you’ll learn how to build with OpenSearch to put semantic search to
work.
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CHAPTER 5

Building with Search

In this chapter, we’ll outline how you can put these concepts into
practice. For the search technology, we’ll discuss OpenSearch and
Amazon OpenSearch Service, but you could similarly employ any
commercial or open source solution.

OpenSearch, like most search engines, is a distributed system,
deployed on clusters of instances in different roles. When you use
it, you run the OpenSearch process on these nodes, and OpenSearch
discovers the other nodes to form a cluster. OpenSearch provides
automatic data replication for better durability and to parallelize
the workload across compute, memory, and storage resources. You
can run OpenSearch on your own or use a hosted version, such
as Amazon OpenSearch Service. Amazon OpenSearch Service takes
care of undifferentiated tasks like deploying hardware, installing and
upgrading OpenSearch software, and monitoring for and repairing
defects in your cluster.

Amazon OpenSearch Service has included a vector engine since
2021, when the service made a kNN plug-in available that provides
the data structures and algorithms to support storing and searching
vectors. OpenSearch’s Neural plug-in simplifies the process of gener‐
ating and attaching vector embeddings to documents and creating
the embeddings for user queries.
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ML-Powered Search
As an example, consider an ecommerce website, built to bring prod‐
ucts to customers who want to buy those products. Search engines
have played a primary role in retrieving relevant products, and the
architecture of search applications reflects this past.

Figure 5-1 shows some of the components and data flows that sup‐
port an ecommerce application. The band of systems at the top
processes and prepares the catalog of products. In the center band,
you can see the query-processing chain. Along the bottom is where
user behavior is captured and processed. The feedback loop from
user behavior to catalog enrichment is a key part of continuously
improving the application’s ability to retrieve products that custom‐
ers want to buy.

Figure 5-1. Search applications employ many components with varied
purposes to bring relevant products to customers for purchase

As we’ve highlighted throughout, this type of application can be
augmented with GPTs that summarize results or converse with
customers. With RAG, the customer from our Chapter 4 example
could chat with the search application about a cozy place to curl up
by the fire and find couches, recliners, and the like. If the model
powering the application is a good one, its embeddings will capture
the semantics of concepts like cozy, comfortable, sit, and warm.
OpenSearch will retrieve products that match these concepts and
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1 At the time of writing, the OpenSearch project has an experimental feature supporting
conversational search that encompasses much of the RAG processing needed to gener‐
ate conversational results.

feed them forward to the language model, which will summarize
them and generate text.1

Apart from RAG-driven chat, the application can look at a custom‐
er’s previous purchases to improve OpenSearch’s ranking and out‐
put, using the behavioral loop shown in Figure 5-1. The Learning
to Rank plug-in for OpenSearch lets you use ML on captured user
behavior to rerank OpenSearch’s results. The application can also
employ customization, adding known user preferences and past user
behavior as weights and modifications to its queries.

Setting Up Your Model
When you bring LLMs into your application to support semantic
search, you must decide which ML model you will use to create vec‐
tors for your documents and your queries. You can find a collection
of models in the Hugging Face Sentence Transformers repository or
choose one from the list in the OpenSearch ml-commons library’s
supported models. If you’re using Amazon OpenSearch Service,
you can take advantage of our prebuilt integrations to connect
with third-party model-hosting services like Amazon SageMaker,
and Amazon Bedrock. When choosing a model, some factors to
consider include:

Model size
Larger models with higher vector dimensionality generally pro‐
duce better results. Some newer, smaller models are almost
matching GPT’s results, so stay tuned.

Training data
Models are more accurate when their test and training data
distributions are similar. For instance, if a model was trained for
search on an ecommerce corpus, it will not yield the best search
results when used on a corpus of scientific papers.

Latency/accuracy trade-offs
Larger models lead to better results, but they require more
computation, which leads to higher latencies and expenses.
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Modality
In this report we have been primarily concerned with models
trained on text. Some multimodal models provide better accu‐
racy through training with video, image, or even sound data.

Once you have decided on your model, you can deploy it with the
ml-commons APIs or use Amazon OpenSearch Service’s one-click
connector interface (Figure 5-2) to connect to a third-party model
host.

Figure 5-2. As of this writing, you can use Amazon OpenSearch Serv‐
ice’s console on the Amazon Web Services (AWS) console to create
connectors to third-party model hosts. The console experience employs
AWS CloudFormation templates to deploy infrastructure that supports
connecting to these systems.

The integration templates create a connector and, within Open‐
Search, a model. The OpenSearch model is a placeholder for the
Neural plug-in to connect to the hosting service. You use its ID to
refer to the connector.
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Finally, you need to create an index that is ready to use OpenSearch’s
kNN plug-in. All indices in OpenSearch have an associated schema
called a mapping. You specify index settings, like knn, as well as field
definitions that control how those fields are analyzed.

Ingestion
Once you have created an index, it’s time to ingest documents
and turn them into vectors. For this, you’ll use an OpenSearch
ingest pipeline—an OpenSearch construct that lets you mutate the
documents during ingestion—and the Neural plug-in to convert
natural language prompts to embeddings. An ingest processor is
an OpenSearch construct that defines a transform to apply to docu‐
ments as they go through the ingest pipeline. When you define an
ingest processor that uses the Neural plug-in, you specify which
fields to use as source text and in which fields to store the embed‐
dings. The Neural plug-in calls your model to create the embeddings
(Figure 5-3).

Figure 5-3. Ingesting and embedding item and description fields from a
product catalog through a user-defined pipeline in OpenSearch

Most search models can only read the first 512 tokens of a docu‐
ment, so you may need to chunk the documents into several
pieces and create a vector for each chunk before sending them to
OpenSearch.
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Retrieval
Now you’re ready to search! At runtime, the Neural plug-in converts
every incoming query into a vector and uses the kNN plug-in
to find its nearest neighbors in the high-dimensional space and
retrieve relevant results.

Conclusion
This chapter illustrated how to implement semantic search with an
example for an ecommerce site. In the next chapter, you’ll learn
how enterprises have used this strategy to deploy effective semantic
search applications.
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CHAPTER 6

Deploying a Winning
Search Strategy

This chapter discusses important considerations for using ML to
drive your search strategy. We’ll begin by examining four real organ‐
izations that have successfully rethought their search strategies to
include ML-driven search: Walmart, CoStar, Syte, and Novartis.
We’ll discuss critical factors such as scalability, continuous improve‐
ments and updates, and governance. We’ll finish by discussing how
to make sure your search engine uses responsible AI techniques,
including basic safety and security considerations for AI models.

Success Stories
These success stories explain how four organizations have used
highly scalable ML-driven search engine strategies to boost their
customers’ experiences. Walmart is augmenting its staff with ML-
driven search in its stores and online. CoStar is now achieving
30-millisecond search results with a modern data plane for millions
of concurrent users. Syte is increasing retail conversions with visual
discovery, and Novartis is improving search recommendations by
applying groundbreaking NLP and ML techniques. These stories
speak to the breadth and depth of how people are building ML-
driven solutions.
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Walmart: AI Assistants
The world’s largest private employer, Walmart, is augmenting its
staff with ML-driven search that assists customers online and in
physical stores. These AI knowledge workers relieve staff from many
tedious tasks related to stocking and finding items, leading to higher
staffing levels and lower turnover.

Walmart’s in-store search strategy starts with shelving products as
they are unloaded from delivery trucks. An AI assistant helps staff
members scan the boxes and instructs them on exactly where to
place each product, based on customer behavior and sales data.

At night, while floor-scrubbing robots rove Walmart stores around
the world, they also scan and photograph every shelf and product,
calculating inventory (even on messy shelves). The robots feed that
data back into the system to inform restocking and product place‐
ment. The AI inventory scanners even calculate the likelihood that
a product has been pushed to the back of a shelf, behind other
products.

CoStar: Database Offloading
CoStar is a global provider of commercial real estate information
and news. It needed to scale its site up to support hundreds of
millions of real estate listings, millions of daily users, and thousands
of commercial real estate companies and brokers—all while keeping
search results fast and accurate. CoStar’s existing search solution was
slowing it down and hitting the limits of scaling its solution.

CoStar uses Amazon OpenSearch Service to provide real estate
listing search across multiple fields like the number of bedrooms,
the number of bathrooms, the square footage, or the price.
Amazon OpenSearch Service gave CoStar’s customers a richer set
of search results and brought CoStar some impressive benefits: a
30-millisecond average time to return search results, a 4-second
average time to update listings, the capacity to support 50 million
concurrent users, a 75% reduction in cost of their solution, and a
fully modernized architecture that can continue to grow with the
business.
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Syte: Multimodal Search
Syte, a search provider for ecommerce websites, needed to optimize
its visual discovery feature, which allows end users to upload an
image (such as a photo of an item of clothing they like) as a search
input instead of typing in a search phrase. The catalog then matches
that photo with available items.

Syte also uses product tagging, which makes products more search‐
able by associating related words and phrases with catalog pages.
The company wanted to automate this feature with AI. To build this
system, Syte implemented ML-driven search using Amazon Open‐
Search Service and Amazon SageMaker, a cloud service that allows
AWS customers to build and deploy highly scalable ML and NLP
models. This resulted in an average 200% increase in traffic and a
42% reduction in cost per transaction for the ecommerce websites.
As an added benefit, Syte improved its system’s scalability without
needing to hire new people.

Novartis: Semantic Search
Novartis, a global healthcare company and pharmaceutical manu‐
facturer, has a product catalog containing more than two million
items. Its challenge was to make search results faster and more
relevant.

The toughest issues to get past were related to accounting for price,
properties, and vendors in the search results. Free text input relied
heavily on keyword matching, without context, and the discovery
journey stopped after the first search results were presented to the
customer.

Novartis deployed semantic search within Amazon OpenSearch Ser‐
vice, using OpenSearch’s vector engine to support rich search and
recommendations across items within its catalog.

To make your own strategy as successful as these, the remainder
of this report looks at some additional considerations for creating
ML-driven search models.
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Digital Assistants and Agents
Along with such interactive advances as two-way chatbot conversa‐
tions, LLM-based workflow applications go much deeper than just
finding and presenting the best results. They can actually perform
tasks much like a human assistant would.

For example, a customer might type, “Please order packing peanuts
for 100 of our large boxes, get it to me by next Wednesday, and don’t
spend over $25.” The application can interact with the LLM and the
customer to fill this request. Now, instead of spending time doing
these tasks, the customer is free to do something else and can just
approve each of the actions in the steps the LLM generates.

If the customer ordered packing peanuts in the traditional way
(pictured in Figure 6-1), they would need to:

• Search for items to purchase.•
• Sign in to their own order system.•
• Create and complete a purchase requisition.•
• Get sign-offs on the requisition, tracking it all the way.•
• Create a purchase order (PO) from the requisition (or request•

this from someone else).
• Send the PO to the vendor to make the purchase.•

Figure 6-1. How a customer completes a traditional purchase. All work
steps are manual and time-consuming.

Contrast that with what you see in Figure 6-2: an automated work
process, fully driven by a chat interface. The customer issues a
prompt stating what they want to buy, how much they can spend,
and when they need the item. So long as the proper APIs and API
credentials are in place, the workflow can be fully automated.
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Figure 6-2. How work is automatically performed and presented for
review from a chatbot interface. All steps are quick for the customer
because the LLM-powered application does most of the work, interfac‐
ing directly with the APIs of the systems it needs to use.

Ethics and Responsible AI
Ethics and responsibility in AI are hot topics, and for good reason.
They’re very important in making sure your model functions as you
want it to over the long term. This section provides a very brief
overview of some of the issues in building with and using LLMs
as signposts toward implementing responsible AI that meets the
standards of your stakeholders.

Bias and Data Leakage
The internet encompasses a wide range of viewpoints on almost
every topic. Foundation models trained on general internet content
benefit from the vastness of this amount of text, but they also pick
up biases that reflect predominant viewpoints. For some topics, the
darker, seamier sides of the internet contain viewpoints that are
biased and objectionable, and the models’ results can reflect biases
like racism and sexism in some pretty alarming ways. There is a
growing body of research on removing bias in models trained on
general internet content so that the text they generate is inclusive
and promotes a positive and diverse community.

Data leakage is another problem. LLMs generate text based on their
training data. When you train or fine-tune your model with your
own data, that data remains coded in the model. If you train with
confidential data, your model might generate text that includes this
information. This could include personally identifying information
(PII) like an individual’s medical, financial, or demographic data,
or proprietary data from your enterprise, like secret methods or
processes, organizational information, and salaries.
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Partly for these reasons, you need to think about authentication and
access control. If any of your systems are powered by LLMs trained
on such information, only people authorized to access confidential
information should have access to those systems. Of course, you can
intervene earlier in the process and remove confidential information
from the training data.

Access control is an expanding area, with challenges driven by the
opacity of LLMs, and possible solutions involving semantic access
control—is this user authorized to ask this question, based on the
semantics of the question? Is this user authorized to receive this
answer, based on the semantics of the answer? As of this writing in
2024, search engines only provide access controls that operate on an
entity-data relationship.

Traceability, Provenance, and the “Opaque Box”
In Chapter 3 we described how LLMs encode the correlations
between words and concepts in their inputs with billions of param‐
eters. You can’t point at a single parameter in the model and say,
“This one is responsible for the output.” As of early 2024, there’s
no process that can map parameters to rules that people can under‐
stand. This makes every LLM an opaque box: it performs a task, but
with no visibility into why or how. At present, what you can do is to
provide traceability and provenance for the content you use to train
or fine-tune your models, and for the output of those models. You
can break down your AI’s supply chain and add ways to establish
origin and provenance of the data. Using a visible layer of proof that
shows the intent, origin, and components of the model, as shown in
Figure 6-3, will help make your AI supply chain more transparent.

Showing authenticity through user-viewable content provenance, or
a step-by-step history of that piece of content, is important in estab‐
lishing customer trust. One solution is to display a simple, easy-to-
read trust logo: an insignia indicating that the content meets the
standards of a reputable body, such as the Content Authenticity Ini‐
tiative, a community of technology organizations led by Adobe that
is focused on content provenance. Trust logos can be served by the
frontend of AI-generated content, allowing users to find provenance
at the level that gives them comfort. Being able to prove provenance
is also a key factor in defending legal risk issues involving AI.
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Figure 6-3. Top: customer wondering why they should trust the results
of the model. Bottom: the same customer resolving their concern by
checking for proof of the intent, origin, and components that comprise
the model.

Conclusion
In this report, you’ve learned how search is built to support both
lexical and semantic querying of information. You’ve learned the
core structures and algorithms for lexical search, the initial basis of
search engines. You’ve learned to understand vectors, how vectors
play a central role in enabling search with natural language, and how
that can extend to other modalities. You’ve learned how to imple‐
ment semantic search, with vector embeddings and approximate
nearest neighbor search algorithms. Finally, you read about some of
the companies that are employing semantic search to great success.

The process of searching begins with a goal and ends with the
means to satisfy that goal. Historically, searching for information
has been very different when talking with a person and when using
technology. The latest advances in AI and ML have narrowed the
gap, making it possible for people to use language to interact with
technology.
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