
S A N F R A N C I S C O | A P R I L 2 0 ‒ 2 1 , 2 0 2 2

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Enhancing Java memory
management with generational
Shenandoah
Kelvin Nilsen (he/him)

O P N 3 0 2

Principal Software Engineer

AWS

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

Pauseless Shenandoah GC

Generational GC concepts

Shenandoah generations

Qualifying use cases

Getting started with generational Shenandoah

Configuration options

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pauseless Shenandoah GC

• Traditional (serial, parallel) GC stops the world for seconds
or minutes at a time to collect all young or full

• Mostly concurrent (CMS, G1) GCs allow Java threads to run while GC
is marking live memory but stop the world for less frequent
compaction efforts

• CMS is deprecated in JDK9, eliminated in JDK14

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pauses in G1 GC

• Periodically compacts the entire young-generation (limits size of
young-generation to satisfy – XX:MaxGCPauseMillis=200)

• Following rare concurrent marking, some number of subsequent
young-generation collections also compact some number of old-gen
heap regions (so-called mixed evacuations)

• A stop-the-world full GC is required if:

▪ We encounter an evacuation failure, or

▪ We encounter an allocation failure during concurrent marking

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pauses in Shenandoah GC

We describe Shenandoah GC as pause-less because there is no stop-the-world
phase (except brief coordination points)

Coordination points

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shenandoah GC compared to parallel GC

• Application stalled throughout mark, evacuate, update

• Higher application throughput because no coordination overhead

No distinct

update-roots

phase

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shenandoah GC compared to G1 GC

Global marking is concurrent, but evacuation and updating is
stop-the-world

200 ms typical bound on this pause

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS service adoption of Shenandoah

Adopted Sept 2020, OpenJDK11

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Another AWS service adoption of Shenandoah

Adopted Sept 2020, OpenJDK11

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Additional pauses in Shenandoah GC

• A stop-the-world degenerated GC occurs when concurrent GC fails:

▪ Due to allocation or evacuation failure (application allocates faster than GC replenishes)

▪ Degenerated GC stops the world to finish what concurrent GC started

• A stop-the-world full GC occurs if too many back-to-back degenerated
GCs fail to resolve problem

▪ Reclaims all garbage and compacts even the humongous regions

▪ Often runs in less time than a degenerated GC even though it is doing more work

• Planned improvements to generational Shenandoah

▪ Use pacing and heuristics to avoid out-of-memory triggers for degenerated GC

▪ Implement concurrent compaction of humongous regions to avoid need for full GC

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1

10

100

1,000

10,000

1 2 3 4 5 6 7 8 9 10 11 12

Responsiveness of Heapothesys Extremem PRP with G1 and Shenandoah

as function of heap size (ms vs. MB)

Series1 Series2 Series3 Series4

Let’s look a bit closer at why Shenandoah performs so poorly here

Strenuous workload: Shenandoah vs. G1 GC

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

768 MB heap: 381 degenerated GC of 3,763 GC

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Percent of CPU time consumed by garbage collection vs. time

(simulated workload spans 10 minutes)

Series1 Series2

Build out data structures Time-triggered client/server interactions Reclaim data structures

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shenandoah GC strengths

• Concurrent Shenandoah effectively bounds GC pauses to less than
10 ms when lightly loaded

▪ Low allocation rates (e.g., 512 MB/s or lower) even with high (e.g., 90%)
memory utilization

▪ High allocation rates (e.g., 4 GB/s or higher) if memory utilization is low
(e.g., below 25%)

• This motivates generational mode of Shenandoah

▪ Young generation has high allocation rate and very low memory utilization

▪ Old generation has very low allocation (promotion) rate and high memory
utilization

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The generational hypothesis

• Typical Java applications allocate lots of very short-lived objects

• Most objects die young

▪ The lifetime of a single method

▪ Or the lifetime of a single client interaction

• Smaller percentage of objects live much longer

▪ Indexes and databases used by all transactions

▪ Cached results used by multiple transactions

• Generational GC focuses efforts on recently allocated objects

▪ This is where we reclaim the largest amount of garbage with the lowest effort

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Adding generations to Shenandoah

• Young-gen and old-gen marking run concurrently (with application
and with each other)

• Young-gen typically has higher allocation rate

▪ Replenish free pool by running young-gen collections more frequently at
higher priority than old-gen collections

• The start of an old-gen collection piggybacks on the root scan
performed by a young-gen collection

▪ Following root scan, old-gen threads mark reachable old-gen objects and
young-gen threads mark reachable young-gen objects

▪ Young-gen marking runs at higher priority than old-gen marking because it is
most urgent to replenish the allocation pool

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Adding generations to Shenandoah

• Young-gen marking is followed by evacuation and updating references, all running at higher
priority than old-gen marking

• When old-gen marking completes, we assemble a list of old-gen collection set candidates

▪ During subsequent young-gen collections, each evacuation phase includes a subset of the old-gen
collection set candidates in its collection set; these are mixed evacuations

▪ After all collection set candidates have been processed, we can begin another concurrent old-gen
marking effort

• Shenandoah mixed evacuations resemble G1 mixed evacuations

▪ But Shenandoah evacuations are concurrent; G1 evacuations are stop-the-world

▪ Shenandoah limits size of collection set in order to sustain pace at which allocation pool is replenished

▪ G1 limits size of collection set in order to honor MaxGCPauseMillis

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Qualifying use cases

• Does your service value consistent response time latencies below
100 ms?

▪ If not, you might be better served by G1 or parallel GC

• Does your service require a combination of short-lived and long-lived
data with a high allocation rate for objects that die young?

▪ If not, you might be better served (or served equally well) by traditional
Shenandoah

• Does your service value frugal use of memory and CPU cores?

▪ If not, you may be able to configure traditional Shenandoah to satisfy your
target transaction rates and response-time latencies

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Generational Shenandoah target audience

• Have high allocation rates

• Maintain nontrivial amounts of long-lived data

• Value consistent client response times below 100 ms

• Value efficient use of memory

• Value efficient use of core processors

• Value efficient use of electricity for power and cooling

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Getting started with generational Shenandoah

• Development source: https://github.com/openjdk/shenandoah

• Experimental OpenJDK executable preview releases:
https://github.com/corretto/corretto-17/tree/generational-
shenandoah

https://github.com/openjdk/shenandoah
https://github.com/corretto/corretto-17/tree/generational-shenandoah

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Generational Shenandoah is under development

• Ongoing efforts to:

▪ Improve performance

▪ Reduce variation in timeliness

▪ Improve ease of use and reliability (automate self-configuration and
adaptive behavior)

• Early experimentation by users helps us identify where further
work is required

• Manual static configuration is currently required to make the
best use of this technology

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Service memory needs

• Your service memory needs are approximated by:

▪ Allocation rate

▪ Total live memory footprint

▪ How much of the live memory is ephemeral vs. enduring?

▪ What is the maximum lifetime of the ephemeral memory (e.g., transaction completion time)

▪ What is the rate of churn within “enduring memory”? (e.g., cached values become obsolete)

• We are working on techniques to automatically detect these characteristics of a
JVM workload

▪ Until this is completed, you’ll have to approximate and configure manually

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding your memory needs

• Analyze the GC logs when running your service with other GC

• ParallelGC

▪ From consecutive young-gen collection reports, you can determine allocation rate,
ephemeral live-memory needs, and promotion rate

▪ From less common full GC, you can determine total live-memory usage

• G1 GC

▪ Harder to know from G1 GC log what your true memory needs are because G1 GC is intentionally lazy

▪ You can still obtain allocation rates, the size of young-gen chosen by G1 GC, and promotion rates

• Generational Shenandoah

▪ Logs report allocation rates, ephemeral live-memory needs, and promotion rates

▪ From less common full GC, you can determine total live-memory usage

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Concurrent GC pacing

• With concurrent GC, there is a race between the GC and the
application service threads

▪ The application continues to allocate, while …

▪ The GC tries to replenish the allocation pool before it becomes exhausted

• Floating garbage

▪ GC only promises to find the garbage that existed at the moment GC begins

– Anything that becomes garbage following the start of GC may not be reclaimed (will not be
reclaimed if concurrent GC uses a SATB barrier)

– Anything allocated during the current GC pass is considered live until start of next GC pass

– Floating garbage is larger when concurrent GC runs longer

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Well-tuned generational Shenandoah

• GC is running “continually” in the background

• Old GC effort requires more total time because typical workload has
much more live memory in old-generation

• Young GC is higher priority because it is urgent to refresh the
allocation pool

• Old GC effort is frequently interrupted by young GC passes

Service threads run without interruption

Old GC

effort

Young

GC pass
Old GC

effort

Old GC

effort

Old GC

effort
Young GC

pass

Young GC

pass

Young GC

pass

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Well-tuned generational Shenandoah

• GC is running “continually” in the background

• Each young GC pass:

▪ Reclaims dead objects allocated during preceding young GC pass and
old GC effort

▪ Preserves as live the ephemeral live plus the floating garbage allocated during
this young GC pass

▪ Promotes some small percentage of the preserved memory into old-gen

Service threads run without interruption

Old GC

effort

Young GC

pass
Old GC

effort

Old GC

effort

Old GC

effort
Young GC

pass

Young GC

pass

Young GC

pass

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Well-tuned generational Shenandoah

• GC is running continually in the background

• Each old GC effort:

▪ Works to identify live memory residing in old generation

▪ After old-gen memory is fully marked, constructs old collection set candidates and feeds these
to subsequent mixed evacuations

▪ A young mixed effort takes more time than a traditional young effort

▪ Old GC efforts do not resume until mixed evacuations have processed all old collection
set candidates

Service threads run without interruption

Old GC

effort

Young GC

pass
Old GC

effort

Young GC

pass
Young mixed

GC pass

Young mixed

GC pass

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Well-tuned generational Shenandoah

• GC is running continually in the background

• Best to complete old GC efforts quickly:

▪ Not so much urgency to replenish old allocation pool because promotion rate is low

▪ But, old-gen can hold lots of old floating garbage if we take minutes to complete

• Both young- and old-gen efforts may not start immediately following
completion of previous GC effort (to improve GC efficiency and yield CPU)

Service threads run without interruption

Old GC

effort

Young GC

pass
Old GC

effort

Old GC

effort

Old GC

effort
Young GC

pass

Young GC

pass

Young GC

pass

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Configuring generational Shenandoah

• Step 1: Make sure old-gen is large enough to hold your enduring memory
(caches, databases, etc.)

▪ Add safety buffer to hold objects that were accidentally promoted

▪ Add a working buffer to support churn and floating garbage within enduring memory

▪ Example: total heap size 32g, old-gen size 8g: -Xms32g –Xmx32g –XX:NewSize=24g

• Guidance:

▪ If you configure old-gen too large, you force too frequent young-gen collections

▪ If configured too small, objects that have reached tenure age will not be promoted, requiring
frequent young-gen GC to repeatedly process enduring data

▪ Advice: Don’t overdue analysis ‒ tune empirically, using theory to guide understanding
of tradeoffs

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Configuring generational Shenandoah

• Step 2: Configure young-gen size

▪ Make young-gen large enough to hold live ephemeral memory plus the floating garbage
created during young-gen pass, plus a working buffer to hold allocations that accumulate
during old GC efforts

• Guidance:

▪ Consult GC log or metrics to figure out how long it takes to perform concurrent young-gen

▪ Adjusting the number of concurrent GC threads will change time required to perform
concurrent young collection

▪ Larger young-gen size lets GC run less frequently, reclaiming more garbage with same effort

▪ Smaller young-gen size is more frugal: smaller host memory, lower power, and cooling bills

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Configuring generational Shenandoah

• Step 3: Configure promotion behavior

▪ Set the tenure age so as to promote objects that have lived longer than the
“ephemeral age” for your application:

– -XX:InitialTenuringThreshold=7

– -XX:ShenandoahAgingCyclePeriod=1

• Guidance:

▪ Every application is different

▪ Judge based on knowledge of configured young-gen frequency and expected
maximum duration of ”transactions”

▪ Data that spans multiple transactions probably belongs in old generation

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Other configuration options

• -XX:ThreadPriorityPolicy=0 –XX:+UseThreadPriorities –
XX:ConcGCThreads=N

▪ Denotes that N GC threads get higher priority than Java threads

• Watch for degenerated and full GC events in GC logs

▪ If you see these, your system may be underprovisioned or misconfigured

▪ Or there may be more work for the generational Shenandoah developers to do
to reduce dependency on these

▪ Share your experiences with Amazon Corretto team and we will provide
guidance (for now)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Coming attractions

• We’re working to:

▪ Improve ShenandoahHeuristics to more effectively trigger the starts of GC
efforts so as to avoid allocation failures during GC

▪ Improve ShenandoahPacing to make it work better with generational mode

– This boosts GC priority and deprioritizes Java threads in order to avoid allocation failures

▪ Improve overall efficiency so that GC is less likely to lose the race against
allocating service threads

▪ Auto-tune and adapt configuration of generational Shenandoah

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Call to action

• If you run a service that needs efficient memory management and
values the absence of long execution pauses:

▪ Give generational Shenandoah a test drive

▪ Share your findings and workloads with the Corretto team

– Open a ticket at https://github.com/corretto/corretto-jdk/issues

– Help us understand what you are looking for and what you are finding

• Your early efforts to evaluate generational Shenandoah will help us
make sure the technology best serves your needs

https://github.com/corretto/corretto-jdk/issues

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deepen your skills with digital

learning on demand

Access 500+ free digital courses

and Learning Plans

Earn an industry-recognized

credential

AWS Skill Builder AWS Certifications

Explore resources with a variety

of skill levels and 16+ languages

to meet your learning needs

Join the AWS Certified community

and get exclusive benefits

Receive Foundational,

Associate, Professional,

and Specialty certifications

Train now
Access new

exam guides

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Learn in-demand AWS Cloud skills

Thank you!

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kelvin Nilsen

@kdnilsen on Twitter

