re:Invent

NOV. 28 - DEC. 2, 2022 | LAS VEGAS, NV

BOA401

Explainable attention-based NLP using perturbation methods

Cyrus Vahid

Principal AI Specialist Developer Advocate AWS

Saousan Kaddami

Research Scientist AWS

Introduction

Session content

Why explainable AI?

How does XAI work?

Perturbation-based models

Perturbation strategies

Project report

Lessons learned

XAI in Amazon SageMaker

Why explainable AI?

What is explainable AI?

- Explainable AI is the process of explaining the behavior of a model in terms that are intuitive and understandable to human common sense
 - Local explanation: Explaining why a single decision was made
 - Global explanation: Explaining how a model arrives at its decisions

Local explanation

Explaining why a single decision was made

Local explanation

Explaining why a single decision was made

Local explanation

Explaining why a single decision was made

Why we should care

Trust

Transparency

Fairness

Accountability

Troubleshooting

Training

Information constituency

- The fundamental idea behind constituency is to represent class abstraction
- Example: The study of molecules is at the right level of detail to understand matter, whereas the study of subatomic particles is too detailed

Complex models don't have information constituency

Three-layer text generator

Layer (type)	Output Shape	Param #	
embedding (Embedding)	multiple	16896	
gru (GRU)	multiple	3938304	
dense (Dense)	multiple	67650	
Total params: 4,022,850 Trainable params: 4,022,850 Non-trainable params: 0			

Weight visualization

GRU layer; T: gate weights, M: recurrent weight, B: bias

Dense layer; L: kernel matrix; R: bias vector

This is what we actually understand

Left: Humorous reading, elephant is in the pyjamas

Right: Person shot the elephant wearing pyjamas

https://web.stanford.edu/~jurafsky/slp3/13.pdf

How does XAI work?

Our context

- Goal: Finding a simple (surrogate) model that explains the original model
- Perturbation-based: Partitioning the input to super-pixels; turning the super-pixels on and off randomly and measuring the effect on the output
- Feature attribution: Discovering how important each super-pixel is to the output
- Local explainability: Explaining individual decisions
- Blackbox approach: We only know what goes in the model and what comes out
- Post-hoc: Explainability is applied to the model after the model is built

Characteristics of a good explanation

High local fidelity

Intuitive interpretability

Model-agnostic

LIME

Local Interpretable Model-agnostic Explanation

LIME

- The idea behind LIME is to perturb the input and see how it affects predictions
- LIME provides a local explanation by approximating local decisions to a simpler linear model
- Example: Newtonian physics ignores the curvature of the Earth when calculating the trajectory of a ball for short distances

https://physics.weber.edu/schroeder/software/NewtonsCannon.html

LIME – An example approach

- 1 The original data is transformed to the dataset with perturbations
- 2 Some of the regions of super pixels are turned off
- 3 A regression model learns the effect of omitting turned-off regions on the original prediction
- 4 Highest impact regions are presented as explanations (Source: Marco Tulio Ribeiro, Pixabay)

SHAP

Cooperative n-person games

- Cooperative games measure how forming coalitions can help players in a competitive situation
- The goal is to calculate each person's contribution to the success of the collective
- Question: How much does each player contribute to a goal scored by a football team?

Definitions – Coalition function

 A sales team with three members – an account manager, a solutions architect, and a technical account manager (A, B, and C respectively) – can have the following payout table for closing a 250K deal:

Coalition	Payout
φ	0
Α	100K
В	80K
С	65K
A,B	160K
A, C	140K
В,С	100K
A,B,C = Ω	250K

-	v(A) > v(B) > v(C)
-	v(A+B) < v(A) + v(B)
-	v(A+C) < v(A) + v(B)
-	v(B+C) < v(B) + v(C)
-	v(A + B + C) > v(A) + v(B) + v(C)

Suggested solutions

- An obvious solution is equal payouts, but this is unfair to the high performing players
- Another solution could be: $\lambda = \left\{ \frac{100}{245}, \frac{80}{245}, \frac{65}{245} \right\}$
 - This also is not a good solution as it discourages teamplay

Shapley values were proposed in 1952 by 2012 Nobel Prize laureate Lloyd Shapley in his work on game theory in the context of cooperative n-person games

Unique solution – Shapley values

 Provided certain conditions are met, there is a unique solution to the fair division of the payout function among players

Coalition	Payout
А	100K
В	40K
A,B	160K

$$\lambda(N=\{A,B\},\nu)=\{110,50\}$$

SHAP for sentiment analysis

- Tripped by typos
- In this instance, aware of irony
- Unaware of how to deal with punctuation in context detection

Perturbation strategies

Perturbation methods for explainability

- Start: Seminal study by Zeiler and Fergus for images
- Idea: Perturbate input and observe changes in the output

Examples of perturbation approaches on different data

Data	Potential Method	Process
Images	Occlusion	Make perturbations patch by patch or pixel by pixel
Tabular	LIME	Approximate black box models with a local interpretable one
Videos	Temporal masks	Make normalized freeze and reverse perturbations
Reinforcement learning entities	Rewards corruption	Disturb reinforcement learning agents with corrupted rewards

Saliency methods for perturbations

Saliency methods:

Measure the consistency between the rationales before and after perturbations

Attention-based models:

- Assign a distribution of importance score over the input tokens to represent their impacts on model predictions
- Use attention weights as token importance scores

Drastic adversarial perturbation

(1) Naïve approach

```
text_1= 'When life gives you lemons, make lemonade.'
text = 'If we are to teach real peace in this world, and if we are to carry on a real war against war, we shall have to begin with the children.'
text_augmentation(text_1,'MASK' , 1)
```

(2) Attacks by character substitution

```
import nlpaug.augmenter.char as nac
aug_char_random=nac.random.RandomCharAug(action='substitute', name='RandomChar_Aug')
aug_char_keyboard = nac.keyboard.KeyboardAug(name='Keyboard_Aug')
text = 'You must be the change you wish to see in the world.'

text_augmentation(text,aug_char_keyboard , 1)

'You musy be the change you wich to see in the wkrld.'
```


Gradual adversarial perturbation

(3) Attacks by synonym substitution

```
import nlpaug.augmenter.word as naw
aug_syn = naw.SynonymAug(aug_src='wordnet', model_path=None, name='Synonym_Aug')

text = 'An apple a day keeps the doctor away.'

text_augmentation(text,aug_syn, 1)
```

(4) Attacks by paraphrase

```
import nlpaug.augmenter.word as naw
aug_bert = naw.ContextualWordEmbsAug(model_path='distilbert-base-uncased', action=ACT, top_k=TOPK)

text = 'You must be the change you wish to see in the world.'

text_augmentation(text,aug_char_keyboard, 1)
```


Pitfalls of perturbation methods

- Risk of OOD (Out Of Distribution) generation
- Interpretability vs robustness

Original Sentence:

"This article includes answers what options have for **software intel based unix system**"

Output Sentence:

"This article explores a recent study on a large scale of global climate system climate change and climate warming"

Project report

The on-call assistant model

Natural language DL attention-based encoder

- 1. Encoding of ticket descriptions into vectors after text cleaning:
 - Removal of common expressions (for example, 'Describe Current Behavior')
 - Cleaning from digits + stemming
 - BERT encoding:

$$w_i \Rightarrow 12x768$$

$$v_i \Rightarrow 1x768$$

$$T = \frac{1}{N} * \sum_{i=1}^{N} v_i$$

Unsupervised model for nearest neighbors

- 2. Looking for n (here, 4) nearest neighbors from the closed tickets:
 - Ball-Tree approach:

Brute Cosine Similarity approach:

Challenges and goals

Challenges:

- Lack of quantitative metrics to evaluate, troube shoot and imporve the model
- Consistent requests from the business to provide a text-based explanation of the outputs

Goal from perturbation-based explainability:

- ✓ Improve the model
- ✓ Troubleshoot
- ✓ Provide interpetability to the business

Perturbation-based explainability

Our perturbation algorithm

Sentence importance algorithm

Our results

Importance curve for NN changes

What is happening?

The tool Pandax is facing bugs when trying to refresh the interface. Could you please have a look at the attached screenshot?

Expect an answer from Engineering team within 2 business days.

Sentence Importance

What is happening? We can't get refreshed schedules in the forecasting model Adapt. There should be an issue with the source data. Please have a look at the following link: www.xxxxx.com. Expect an answer from Engineering team within 2 business days.

What is happening? I can't open Safari on the vpn. What is the issue? Expect an answer from Engineering team within 2 business days.

What is happening? I can't login to Tokyo API, could you check my credentials? Expect an answer from Engineering team within 2 business days.

Efficiency of drastic changes for explainability

Drastic

Character strategy

Removal strategy

Gradual

Paraphrase strategy

Synonym strategy

Outcomes and practical tips

Outcomes and practical tips

Outcomes:

- ✓ Succeeded to troubleshoot the On-Call Assistant
 - ✓ Discovered unimportant repeated sentences with high interpretability scores
- ✓ Provided explainability to the business stakeholders

Technical tips:

- Perturbation methods are generalizable to all DL models
- Explainability drastic changes; Robustness gradual changes
- Combine with embedded layers' analysis → understand neurons' learning

Amazon SageMaker and explainable AI

Amazon SageMaker Clarify

- Provides both local and global explainability
- Detects data biases in pre-processing phase
- Detects biases in trained model
- Monitors your models for emerging biases caused by changes in the real world

Global explainability

 Providing global explainability by detecting feature attributions and generating reports using integration with SageMaker Experiments

Data bias

 Checks for bias in the data itself during pre-processing phase through integration with Data Wrangler

Model bias

 Checks your trained model for biases, such as predictions that produce a negative result more frequently for one group than they do for another

Monitoring your model for bias

- Although your initial data or model may not have been biased, changes in the world – for example, demographical changes – may introduce biases to a model that has already been trained
- Clarify can monitor the emergence of such biases through integration with Model Monitor

Monitoring model behaviour

- Changes in the real world can have an impact on feature importance
- A drop in property process might reduce importance of income
- Integration with Model Monitor helps Clarify to provide users with such reports

Thank you!

Cyrus Vahid cyrusmv@amazon.com

Saousan Kaddami kaddams@amazon.lu

Please complete the session survey in the **mobile app**

