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The AWS ML Stack
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What are we talking about today?

The scaling problem and where PyTorch FSDP comes in

What is FSDP exactly?
Code snippets
Details: Activation Checkpointing, Sharding Strategies

Additional new PyTorch features for extremely large models

aws
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Scaling problem: Strong payoff from increasing model size

(b) Transformer
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Performance improves smoothly as you increase model size, compute time and dataset size.
(power law or power law + constant)

*OpenAI Scalmg Laws for Neural Language Models https://arxiv.org/abs/2106.09488
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Thus, Al models have gone up 10,000x in size
(but... GPU memory has only gone up ~10x)
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FSDP ( Fully Sharded Data Parallel)

Train @ much larger model with same resources

Resource efficiency . significantly reduce memory footprint on each GPU

Compute efficiency . Overlapping compute and communication

Ease of use : Lightweight config, just few knobs

m Number of layers Attention heads | Model size, billions of parameters

aws
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FSDP compared to DDP. DDP = sharding batch

Standard data parallel training

Distributed Data
Parallel = models

are duplicated on
multiple GPUs. GPUO date
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Fully Sharded Data Parallel (FSDP)

Fully sharded data parallel training
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With sufficient inter-node communication speed, scaling with FSDP can be linear.

Aggregate throughput vs number of GPUs
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Figure 7: Aggregate throughput vs number of GPUs (175B)
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PyTorch FSDP Sharding Strategy Details:

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

—

# import FSDP, including the class enum ShardingStrategy:

from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,

ShardingStrategy,

)

# Three available sharding strategies - tradeoff memory size vs communication overhead:
ShardingStrategy.FULL_SHARD # default! Model, optimizer and gradient are all sharded (communicated)
‘ | ‘ | ‘ ‘ | # max model size support
ShardingStrategy.SHARD_GRAD_OP # Zero2 mode — model parameters are not freed after forward pass,

| ‘ | ‘ ‘ | # reducing communication needs
ShardingStrategy.NO_SHARD # DDP mode - each GPU keeps a full copy of the model, optimizer and gradients
‘ | ‘ | ‘ ‘ | # only grad synch needed

# Future support:

ShardingStrategy.HYBRID_SHARD  #FSDP Full shard within each node, but No Shard (DDP) between each nodes.

# To use — just pass in desired sharding at FSDP init:
# ———— main FSDP init —-—————————=

model = FSDP|

model,

auto_wrap_policy=my_auto_wrap_policy,
mixed_precision=mp_policy,
backward_prefetch=prefetch_policy,

# sharding control

sharding_strategy=ShardingStrategy.SHARD_GRAD_OP,| # Zero2 or DDP, or Full_Shard (FSDP default)

device_id=torch.cuda.current_device(),

Fast network —
full-shard

Slower network -
experiment with
Zero?2 and DDP



Scaling benefits with FSDP - 4x larger models can be trained, same hardware
with no other changes.

(Adding in Activation Checkpointing and CPU offloading can go 21x+)

Trainable Model Size comparison (DeepViT, AWS G5.48XL)
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Fine grained Mixed Precision control via Policies

20 bfSixteen = MixedPrecision(

21 # Parameter precision

22 param_dtype=torch.bfloatl6,

23 # Gradient communication precision.
24 reduce_dtype=torch.bfloatl6,

25 # Buffer precision.

26 buffer_dtype=torch.bfloatl6,

27 )

aWS’ © 2022, Amazon Web Services, Inc. or its aff iliates. All rights reserved .



Fine grained Mixed Precision control via Policies

from torch.distributed. fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
CPUOffload,
BackwardPrefetch,
MixedPrecision,

bf16 = MixedPrecision(
# Param precision
param_dtype=torch.bfloatl6,
# Gradient communication precision.
reduce_dtype=torch.bfloatl6,

model = FSDP(
model,
MixedPrecision=bf16, # bfl6, fplé6

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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BFl6 1s only available
on Ampere GPUs. V100 may
not complain but results
in slowdowns.

Make sure 1f using FP 16
use ShardedGradScaler
from FSDP



BFloat16 can deliver up to 4x training speed vs FP32

Total Training Time Bfloat16 and Fp32 - Validation Loss (T5, 3 Billion Params)

B BFloat16 | FP32 == Bfloat 16 == Fp32

Validation Loss
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Transformer wrapping policy :

from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy,

Transformer Wrapplng
policy — more
finegrained and
balanced FSDP units.

Significantl
from transformers.models.t5.modeling_t5 import T5Block . Z J
improves
, , communication
transformer_auto_wrapper_policy = functools.partial( R
efficiency.

model =

dws
~—

transformer_auto_wrap_policy,

transformer_layer_cls={ 2x throughput

T5Block, # < ———— Your Transformer layer class .
lncrease
¥,
alternative to:
FSDP( sized_auto_wrap_policy = functools.partial(
mode -L , size_based_autowrap_policy, min_num_params=20000

)

auto_wrap_policy=transformer_auto_wrapper_policy,
#Default = FSDP puts the whoel module in one FSDP unit

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Activation Checkpointing:

# verify we have FSDP activation support ready by importing:

from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointImpl,
apply_activation_checkpointing_wrapper,

# first step — we have to make a check function to find what layers we want to checkpoint.
# For transformers, you'll want to use the same layers as you used for wrapping your transformer.

from transformers.models.t5.modeling_t5 import T5Block

# second create the submodule check function as a lambda:
check_fn = lambda submodule: isinstance(submodule, T5Block)

# create a non-reentrant wrapper.
# This 1is basically to provide some options for the checkpoint wrapper,
# and we use non-reentrant style for best performance.

non_reentrant_wrapper = partial(
checkpoint_wrapper,
offload_to_cpu=False,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,

# Important — the next step is actually to init your model with FSDP.
# Activation checkpointing is shard aware, so it must be done *x% after *k FSDP init:
model = FSDP (model)

# finally, we'll apply the checkpoint wrapper, and submodule check lamdba to your sharded model
# to complete the activation checkpointing process:

apply_activation_checkpointing_wrapper(
model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn
)

Generally save 30% memory

Reinvest 1in batch size -
~Ix throughput on DeepVit

FSDP Activation
checkpointing 1s shard
aware — use after FSDP
init.



Backward Prefetch:

# import FSDP and BackwardPrefetch class

from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
BackwardPrefetch,

# None (i.e. don't pass anything) = summon for next FSDP unit comes after the all_reduce for current layer gradients
# BackwardPrefetch.BACKWARD_POST = prefetch at the end of current FSDP unit computation, after params are dropped
# BackwardPrefetch.BACKWARD_PRE = prefetch at start of current FSDP unit computation (earliest, adds to peak memory)
prefetch_policy = BackwardPrefetch.BACKWARD_PRE # BackwardPrefetch.BACKWARD_POST or None
model = FSDP(

model,

backward_prefetch=prefetch_policy,
)

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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CPU Offloading

Leverage CPU Memory to
house ‘non-active’ parameters

Allows expansion beyond the
total sum of GPU memory.

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Saving your model - leverages CPU memory

if cfg.save_model: Avoid OOMs on rank0
# assembling model on rank® and stream it to cpu to avoid OOM GPU
save_policy = FullStateDictConfig(offload_to_cpu=True, rank@_only=True)
with FSDP.state_dict_type( LeveragemC
| model, StateDictType.FULL_STATE_DICT, save_policy — work for very
): large models ~ 20B

| cpu_state = model.state_dict()

if rank ==
print(f"-—> saving model ...")
currEpoch = "-" + str(epoch) + "-train.pt"

model_save_name = save_name + currEpoch

torch.save(cpu_state, model_save_name)

print(f"-—> saved {model_save_name} to disk")

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Example of auto-wrapping (just print the model to view!)

1 model = t5-large, sharded with 2000000 parameters per fsdp_unit
2
3
4 --> t5-large has 737.668096 Million params
5
6 model wrapping =
7 FullyShardedDataParallel(
8 (_fsdp_wrapped_module): FlattenParamsWrapper(
9 (_fpw_module): T5ForConditionalGeneration(
10 (shared): Embedding(32128, 1024)
11 (encoder): T5Stack(
12 (embed_tokens): Embedding(32128, 1024)
13 (block): ModuleList(
14 (0): T5Block(
15 (layer): ModuleList(
16 (@) : T5LayerSelfAttention(
17 (SelfAttention): T5Attentionl
18 (q): Linear(in_features=1024, out_features=1024, bias=False)
19 (k): Linear(in_features=1024, out_features=1024, bias=False)
20 (v): Linear(in_features=1024, out_features=1024, bias=False)
21 (0): Linear(in_features=1024, out_features=1024, bias=False)
aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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PyTorch FSDP implementation:

Highlights of the major sub-sections:

208 # ———— main FSDP init -————————-
209 model = FSDP(
210 model,
211 auto_wrap_policy=my_auto_wrap_policy,
212 mixed_precision=mp_policy,
213% backward_prefetch=prefetch_policy,
214 device_id=torch.cuda.current_device(),
215% sharding_strategy=ShardingStrategy.FULL_SHARD, # Sharding options ...
216% # SHARD_GRAD_OP = Zero2,
217 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ # NO_SHARD = DDP
2182 cpu_offload= cpu_policy,
219 forward_prefetch=True,
220 )
221’
222% if cfg.fsdp_activation_checkpointing:
223% fsdp_checkpointing(model)
224 if local_rank==0:
225 print(f'"--> FSDP activation checkpointing in use")
226
aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Some Best practices:

1 - BFloat16 increases training speed, 35% to 4x...and 32% memory reduction.

2 - Backward pre fetch via BACKWARD_PRE ...2 - 10% training speedup.

3 - Use the rank_0 cpu saving to avoid any OOM issues during large model saving.

4 - Use activation checkpointing - this frees up large amounts of memory during
training.

5 - Proper wrapping - For Transfomers use Transfomer wrapping policy

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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AnyPrecision Optimizer - run FSDP in pure BF16
Q - Why only mixed precision? Why not 100% BF16?

A - Pure BF16 doesn’t work...

Problem = weight stagnation due to small updates being lost

Accuracy
&

—W— 32-bit
—— Standard 16-bit-FPU

(@)
)

HK 10K 15K
[terations

Figure 1: Standard 16-bit-FPU training
shows lower training accuracy compared
to 32-bit training on a BERT model.?

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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BFloat16 training)



https://arxiv.org/abs/2010.06192

AnyPrecision Optimizer - run FSDP in pure BF16

Solution - AnyPrecision uses Kahan summation in the optimizer for weight updates.

Significant memory, speed improvements with pure BF16, while matching or exceeding FP32. (~ 48%
GPU memory reductions in initial testing vs FP32).

Drop in replacement for AdamW

Val Loss - Mixed Precision vs Pure BF16+Kahan Summation

== Mixed Precision == Pure BFloat16

Available in Torchdistx
https://github.com/pytorch/torchdistx

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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https://github.com/pytorch/torchdistx

Working with extremely large models

PyTorch has added several features to allow for instantiating models without having to
load the actual weights.

This allows extremely large models (think 175B+ that would OOM on CPU) to be loaded,
inspected and ultimately sharded as only the shapes, not the weights, are loaded.

This includes:

Meta device
Deferred initialization

Fake Tensor

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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META DEVICE

# 1. Initialize module on the meta device; all torch.nn.init ops have
# no-op behavior on the meta device.
m = nn.Linear(10, 5, device='meta')

Instantiate Module/
tensor onto a meta

device
# 2. Materialize an uninitialized (empty) form of the module on the CPU device.
# The result of this 1s a module instance with uninitialized parameters.

It has tensor shape, m.to_empty(device="'cpu')

does not allocate

any storage meta_tensor = torch.randn(100000, 100000, device="meta")

https://pytorch.org/tutorials/prototype/skip param init.html#implementation-details

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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https://pytorch.org/tutorials/prototype/skip_param_init.html#implementation-details

Deferred initialization

Deferred module init
1ES

deferred_init() ,
materialize_module()

’

materialize_tensor().

deferred_init() ,
construct model
without allocating
storage for their
tensors

materilize_module(),
materialize_tensor(),
fully or partially

materialize modules.

aws
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import torch

from torchdistx.deferred_init import deferred_init, materialize_module

class MyModule(torch.nn.Module):
def __init__ (self):
super().__init__()

self.param = torch.nn.Parameter(torch.ones([3], device="cpu"))

m = deferred_init(MyModule):
m.param

#Parameter containing:
#tensor(..., device='cpu', size=(10, 10),
materialize_module(m)

m.param

#Parameter containing:

#tensor([1., 1., 1.], requires_grad=True)

Available in Torchdistx
https://github.com/pytorch/torchdistx

requires_grad=True, fake=True)


https://github.com/pytorch/torchdistx

Fake Tensor

Similar to meta_tensors,
does not contain any
data

Fake tensors act as if
allocated to a real device

It has been meant
mostly to use a building
block for deferred

module init.

It can be useful to load
the model without
initializaing it with
data.

Available in Torchdistx
https://github.com/pytorch/torchdistx

import torch

from torchdistx.fake import fake_mode

# Meta tensors are always "allocated" on the "meta’ device.
a = torch.ones([10], device="meta")

a

#tensor(..., device='meta', size(10,))

a.device

#tdevice(type="'meta')

# Fake tensors are always "allocated" on the specified device.
with fake_mode():
b = torch.ones([10])

#tensor(..., size(10,), fake=True)

b.device

#device(type="'cpu') import torch

from transformers import BlenderbotModel, BlenderbotConfig
from torchdistx.fake import fake_mode
# Instantiate Blenderbot on a personal laptop with 8GB RAM.
with fake_mode():

m = BlenderbotModel(BlenderbotConfig())
# Check out the model layers and their parameters.

m
#BlenderbotModel(...)

https://pytorch.org/torchdistx/latest/fake tensor.htmi

aws © 2022 Amazon wiLELRS://D Xgorm.cgglglly:’clgl;cchcdujstx/latest/fake tensor_and_deferred_init.html
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https://github.com/pytorch/torchdistx
https://pytorch.org/torchdistx/latest/fake_tensor.html
https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html

Fake Tensor

Meta device work great
for skipping initialization

It might not work in all
case for materilization
when working in
deferred initialization
context.

some of pytorch
functions like zero_like,

refers to src.device

Fake tensor can solve

class MyModule(Module):
def _ init_ (self):
super().__init__ ()

self.bufl = torch.ones([3], device="cpu")
self.buf2 = torch.zeros_like(self.buf1l)
my_module = deferred_init(MyModule)

materialize_tensor(my_module.bufl)
#tensor([1., 1., 1.1)
materialize_tensor(my_module.buf2)
#tensor(..., device='meta')

this issue.
Available in Torchdistx
https://github.com/pytorch/torchdistx
https://pytorch.org/torchdistx/latest/fake tensor.html

aws 62022, Amazon wiLEERS:/ /P ¥;orm.cggtglly:’clgrmcchcdwistx/latest/fake tensor_and_deferred_init.html
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https://github.com/pytorch/torchdistx
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TorchSnapshot

Torchsnapshot offers highly optimized
checkpointing ~2x faster than save()

app_state = {"model": model, "optimizer": optimizer}

from torchsnapshot import StateDict

5x faster than saving a GPU on S3 compared ... ciate - statenict (iterations=o)

to SaVE()+fSSpeC app_state = {"model": model, "optimizer": optimizer, "extra_state": extra_state}
i . from torchsnapshot import Snapshot

Adaptive to the host memory — avoid OOMs

during checkpointing

snapshot = Snapshot.take(path="/path/to/my/snapshot', app_state=app_state)

snapshot.restore(app_state=app_state)

Can save/load GPU model using temporary
memory a fraction of the size of largest
tensor in the model

Load 20GB from storage to GPU with T00MB
temp memory

Supports S3, GCS

Available in Torchsnapshot
https://pytorch.org/torchsnapshot/

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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https://pytorch.org/torchsnapshot/

Inference at scale

aws © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Amazon EC2 accelerated compute for
ML inference

. G5: GPU compute instance
] 1| [eecoes e 3-4x ML inference performance
G>5 .. compared to previous generations

Inf1: Custom ML acceleration LU « 8x NVIDIA A10G 24 GB, 100 Gb/s

o

ny o Low cost per inference in the cloud
— - ™« Upto 2,000 TOPs with AWS-designed
e Inf1 :@: P . g
T T Inferentia accelerators
FTTTI 5 H
® g « Designed for high throughput and G4dn: GPU compute instance
low latency = « Up to 1,030 TOPs of compute with
0 ~Jeak 8x NVIDIA T4 GPUs
A I 5\3 .
j —2r e Low-cost GPU-based instances
aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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G5 vs. G4dn

aws

N1

bertbaseuncased, full_precision

bertbaseuncased, half precision

—e— gddn.4xlarge
g5.4xlarge

Throughput

Throughput

—e— gddn.4xlarge
g5.4xlarge

02
P95 Latency

0.075 0.100 0.150 0175
P95 Latency

The following graphs compare throughput and P95 latency at full and half precision for ResNet50.

resnet50, full_precision

—e— gddn.4xlarge
g5.4xlarge

Throughput
2

0.075 0.100
P95 Latency

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Cost performance

bertbaseuncased, full_precision resnet50, full_precision

mmm gddn.4dxlarge
g5.4xlarge

mmm g4dn.4xlarge
ag5.4xlarge
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With G5 instances, you can achieve consistently lower cost-per-inference compared to G4dn instances

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Amazon EC2 Inf1 instances

HIGH-PERFORMANCE, LOW-COST MACHINE LEARNING INFERENCE

« Featuring AWS Inferentia, the first ML chip designed by Amazon

* Low cost in the cloud for running deep-learning models, up to 70% lower
cost than GPU instances

» Up to 2.3x higher throughput than GPU-based instances

» Seamless software integration with ML frameworks like TensorFlow,
PyTorch, and MXNet for getting started quickly and with minimal code
changes

» Get started using DLC, DL AMls, Amazon EKS, Amazon ECS, or Amazon
SageMaker

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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High-performance machine leaming inference
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Fast and low-cost inference
in the cloud




Inf1 vs. G5 and G4dn

NATURAL LANGUAGE PROCESSING G4dn.4xlarge
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Inf1 vs. G5 and G4dn

NATURAL LANGUAGE PROCESSING
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Inf1 vs. G5 and G4dn
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Inf1 vs. G5 and G4dn

COMPUTER VISION G4dn.4xlarge

resnet50
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Proof of concept

BRINGING THE CREATIVE POTENTIAL OF Al TO EVERYONE

Startup requirements: Challenges:

Build personalized creative Al models for Low GPU utilization
mentorship, AMA, interactive NFTs, and more
High cost
9-10 models per user
High latency due to big models
Mostly NLP models
Proposed a solution with AWS Inferentia and

G4dn instances FastAPI
Need to load, unload, and infer models Impact:
in parallel

Customer is satisfied with the approach,
considering implementing in production

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Loading models in parallel

« One python process can be tied
to one Neuron Core with

NEURON_RT_VISIBLE_CORES P T Toe P
environment variable. 5 Server Worker Server Worker Server Worker Server Worker
- This allows one model server per @] Neuron [ Neuron HH Neuron HY Neuron

core0 M core1 HH core2 M core3
user or a set of users on one ¢t M " M Tt m Tt

Neuron Core.

- With this approach, we can load,
unload and infer models in
parallel while maintaining high
utilization of all 4 cores on an

AWS Inferentia chip. | | | |
Request 1 Request 2 Request 3 Request 4

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Amazon EKS
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aws-do-eks framework

Use aws-do-eks framework (https://qgithub.com/aws-samples/aws-do-eks)

Set up desired cluster using a conf file
Creates a docker container with all the tools needed to mange the cluster

Automatically sets up necessary IAM roles, VPC, security groups, autoscaling
groups, etc.

Provides various tools for setting up persistent volumes, GPU monitoring,
launching model training jobs, etc.

aWS © 2022, Amazon Web Services, Inc

or its affiliates. All rights reserved.
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https://github.com/aws-samples/aws-do-eks

How to set up an Amazon EKS cluster

New nodegroups can be added after a cluster is
created with eks-nodegroup-create.sh

Walkthrough config After a cluster is created:
Steps: .
Fill out config .

Build and run in a container
eks-create.sh: Create auto scaling groups

eks-scale.sh: Scale nodes to desired capacity

|AM roles are created for each node

roup but additional roles, like access
o Amazon S3 or Amazon CloudWatch,
may need to be added

Spot Instances
Custom AMIs

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Nodegroups can be scaled via eks-scale.sh or via
console.

Group size

Specify the size of the Auto Scaling group by changing the desired capacity. You can
also specify minimum and maximum capacity limits. Your desired capacity must be
within the limit range.

Desired capacity

2

Minimum capacity

0

Maximum capacity

10

Cancel



Shared file system

* Need a shared file system that all nodes in the cluster can access
 File system should be elastic and performant for large data

v

Amazon Elastic File System (EFS) Amazon FSx for Lustre
Can be deployed to 1 AZ

LT

» efs-create.sh — Creates security group and a new

Amazon EFS volume » Update fsx.conf file
* deploy.sh * Run deploy.sh - This will create the security group
* Gets existing file system ID that you need for FSx and also create the storage
» Deploys Amazon EFS CSI driver class
« If multiple volumes exist, takes the first one * Create the FSx filesystem from AWS console
given by aws efs describe-file-systems « Update fsx-pvc-static.yaml with the information
* Deploys file system on Amazon EKS from FSx console

» Kubectl apply fsx-pvc-static.yaml.

https://github.com/aws-samples/aws-do-eks/tree/main/Container-Root/eks/deployment/csi

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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https://github.com/aws-samples/aws-do-eks/tree/main/Container-Root/eks/deployment/csi

L

Serve 3,000 deep-learning models on Amazon
EKS with AWS Inferentia for under $50 an hour

(num x type) |(num) Response (ms) Response (ms) |(req/s) Load P90 (ms) |Cost ($/hr)
OO I (T A -

14 x
1008 26 -35 31—41 54 76
g4dn.12xl
32 xinf1.6xl +
- 24 - 45 119.91

40 x |nf1 .bxl
(With DNS
Caching)

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Setting up for success at AWS

Mission: Meet customers where they are, help them adopt and scale ML workloads on AWS with
Amazon EC2, key services, and open-source tools and frameworks (PyTorch, TensorFlow)

-

~

-

~

-~

~

-

~

Architecting
scalable solutions
using Amazon EC2,
Amazon EKS,
Amazon ECS, AWS
Batch, Spot,
KubeFlow, Ray,
PyTorch,

TensorFlow, etc.

N v

EC2 instance
selection

via benchmarking
for specific
models and
workloads (e.g.,
P4d for training,
G4dn, G5, Inf1 for

inference).
\_ /

Develop proof-
of-concepts

to show the art of
the possible,
unblock technical
challenges, and
advise on best
practices. Proof of

concept credits

Qvailable.

Guidance on
PyTorch
adoption, scaling,
roadmap dives
deep in three-
way discussions
with Meta (if
needed).

o

L/

Areas of interest: NLP, CV, distributed training, ML inference, MLOPs

“Meta and AWS will jointly help enterprises use PyTorch on AWS to bring deep learning

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

models from research into production faster and easier.”
— Meta/AWS Press Release, December 2021



https://press.aboutamazon.com/news-releases/news-release-details/meta-selects-aws-key-long-term-strategic-cloud-provider

Thank you!

Hamid Shojanazeri Ankur Srivastava

. hamidnazeri@meta.com . awsankur@amazon.com
. 4 @Nazeri2010 YW @ankur_rice

aws
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Architecture

Application

aws
~—
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| service

CodeCommit
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ECR




Moving data from Amazon S3 to Amazon EFS

Once a cluster and a file system is created,
you might need to:

Move compressed data from Amazon
S3 to Amazon EFS

Uncompress data in Amazon EFS
Preprocess data with shell scripts

Or, preprocess data with python code

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved
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FSDP Deep Dive: parameter level

Flattened params from model - 8 total

Typical ownership

Sharding strategy = FSDP Unit of 4 params, with
sequential shard ownership by ranks (GPU)

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Flattened params from model - 8 total




Forward pass on first FSDP Unit. Begin All-Gather.




Non locally owned params are dropped to free memory.
Activations (orange) can be checkpointed. Forward pass
continues until we complete model.




Backward Pass: another All-Gather, compute gradients.




Reduce and aggregate gradients.




Run new gradient in optimizer step.
Update params (FP32 Master Params).
Repeat entire cycle until training is complete.

iA Summed Gradients {
- Variance 32

Momentum 32




FSDP - network communication speed is very important

FSDP interleaves communication
with computation.

N
w

N
o

Thus, as communication speed
increases, FSDP accelerates.

-
W,

Enabled PO for
16B+ models

|

—
o

The Just in Time delivery of
parameters in FSDP allows huge
model scaling.

(&)

o)
o
©
[0
Q
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°
O
W
Q
n
R4
—
S
=
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w
=
—
W
4
v
(]
[SW

o

162M 405M 834M 1.4B 2.8B 6.8B 16B 34B 81B 101B

EFA on AWS enables higher speed Model Size
(400BG/S)

https://medium.com/pytorch/pytorch-data-parallel-best-practices-on-google-cloud-6c8da2be180d

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Integrations

FSDP is integrated into HuggingFace °

FSDP is integrated into Lightnining

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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https://huggingface.co/docs/accelerate/usage_guides/fsdp
https://pytorch-lightning.readthedocs.io/en/stable/advanced/model_parallel.html

TorchSnapshot

Highly optimized performance from

app_state = {"model": model, "optimizer": optimizer}
- Overlapped DtoH copy and StOI"age |/O from torchsnapshot import StateDict
N nghly parallellzed Storage I/O extra_state = StateDict(iterations=0)
- O Copy tensor Serialization app_state = {"model": model, "optimizer": optimizer, "extra_state": extra_state}
- (For data parallel only) evenly partitioning
the write workload across all ranks

from torchsnapshot import Snapshot

snapshot = Snapshot.take(path="/path/to/my/snapshot', app_state=app_state)

Our initial benchmark shows snapshot. restore(app_state=app_state)

- 2x faster than torch.save when saving GPU
model to local FS

- 5x faster than torch.save + fsspec + s3fs
when saving GPU model to S3

- For data parallel workload, up to
[NUM_DEVICES]x additional speed up

Available in Torchsnapshot
https://pytorch.org/torchsnapshot/

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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https://pytorch.org/torchsnapshot/

TorchSnapshot

Memory usage

app_state = {"model": model, "optimizer": optimizer}
- Removes the hard RAM requirement for from torchsnapshot import StateDict
SaVIng/lOadlng ChECkPOIntS’ RAM usage 1S extra_state = StateDict(iterations=0)
adaptive to available System resource and app_state = {"model": model, "optimizer": optimizer, "extra_state": extra_state}
bound, which greatly reduces the chance of
running out of RAM

from torchsnapshot import Snapshot

snapshot = Snapshot.take(path="/path/to/my/snapshot', app_state=app_state)

- When RAM is abundant, TorchSnapshot snapshot. restore(app_state=app_state)
can further reduce the time spent blocking

in checkpoint saving by staging the model

weights in RAM and flush the weights to

storage in background once training

resumes

Efficient checkpoint content access e B o Tl el

https://pytorch.org/torchsnapshot/

- Only read from storage what is needed
redditig’ d tefisor from a cliéckpoint)


https://pytorch.org/torchsnapshot/

DEBUGING DISTRIBUTED TRAINING

DEBUGGING DISTRIBUTED TRAINING



-

aws
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Monitored Barrier

e Alternative primitive to
torch.distributed.barrier()

e Mainly meant for debugging
e Option to set a custom timeout

e Rank O reports which rank did not enter
the barrier within given timeout

e All worker fail if one rank is missing

e Only available for GLOO backend

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

import os
from datetime import timedelta

import toxch
import torch.distributed as dist
import torch.multiprocessing as mp

def worker(rank):
dist.init prucess _Broup( rank-rank. world size-_)
¢ monitored barrier requ o Eroup to pe
group_ glco = dist new group(backend-
if rank not in [1]:
dist.monitored_barrier(group=group_gloo, timeout=timedelta(seconds=2))

RuntimeError:
Original exception:

[gloo/transpoxt/tcp/pair.cc:598] Connection closed by peer
[2401:dbOB:eef@:1100:3560:0:1c05:25d] :8594




-

Torch_DISTRIBUTED_DEBUG

e Enables additional debugging information

® TWO l‘evel‘s Of detall‘ I0607 16:10:35.739390 515217 logger.cpp:173] [Rank ©]: DDP Initialized with:
broadcast_buffe
e |INFO level bucket_cap_bytes: 26214400
find_unused_parameters: ©
. . o ege . . gradient_as_bucket_view: 0
® Prints info after initialization Only is_multi_device_module: 0
iteration: ©
num_parametexr_tensors: 2

e Enhanced crash logging due to e
rank: @
1 total_parameter_size_bytes: 440
unused parameter in model e T

backend_name: nccl

L DETAIL bucket_sizes: 440
cuda_visible_devices: N/A
device_ids: 0

e Print timing info during iterations dtypes: float

master_addx: localhost

= HaS impaCt on training effiCiency :::5::-5:;: ;:h;il.linLayerHet
oot . i nc:l_a;ync_errurfhandling: N/A
e Additional checks of synchronization necl_blocking wait: W/A

nccl_ib_timeout: N/A

and input of collective functions nccl_nthreads: N/A

nccl_socket_ifname: N/A
torch_distributed_debug: INFO

e Combine with
TORCH_SHOW_CPP_STACKTRACES: ﬁﬁﬁ::d:;,ai;m ) | )66 logger.cpp:344] [Rank © / 2] Training TwoLinLayexNet

Avg forward compute time
Avg backward compute tim

1 fOI‘ full CallstaCkS On Avg backward comm. time: 23

Avg backward comm/comp overlap time: 2234674

WS o0 AESYRCAEONIZALIOR cceneo.

N1



N C C L D E B U G ip-172-31-28-185:3669:3669 [@] NCCL INFO Bootstrap : Using ens3:172.31.28.185<0>
[ ]

ip-172-31-28-185:3669:3669 [@] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so),
ip-172-31-28-185:3669:3669 [@] NCCL INFO NET/IB : Mo device found.
ip-172-31-28-185:3669:3669 [@] NCCL INFO NET/Socket : Using [@]ens3:172.31.28.185<@>
ip-172-31-28-185:3669:3669 [@] NCCL INFO Using network Socket

MNCCL version 2.1@.3+cudall.3

ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel @@/32 :

4 ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel @1/32 :

L Set NCCL_DEBUG for addltlonal debug 1;1?2—31—28—185:3669:36?9 [@] NCCL INFO [hﬂ:::l @2/32 :
ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel @3/32 :

information ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel @4/32 :

ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 05/32 :

ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 06/32 :

ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 07/32 :

g VERSION ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 08/32 :
ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 09/32 :

H H ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 18/32 :

o Just prlnt the version at sta rtup ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 11/32 :
ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 12/32 :

ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 13/32 :

b WARN ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 14/32 :
. . ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 15/32 :

Y Lets NCCL pnnt more expl|c|t ip-172-31-28-185:3669:3679 [0] NCCL INFO Channel 16/32 :
ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 17/32 :

. ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 18/32 :

messages IN case Of an error ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 19/32 :
ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 28/32 :

ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 21/32 :

® IO ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 22/32 :
ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 23/32 :

. ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 24/32 :

( nghest leVEI, ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 25/32 :
ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 26/32 :

. . . . ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 27/32 :

® Prints excessive d@bug |nf0rmat|0n ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 28/32 :
ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 29/32 :

ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 3@/32 :

] Comm Channel availa bility ip-172-31-28-185:3669:3679 [@] NCCL INFO Channel 31/32 :

ip-172-31-28-185:3669:3679 [@] NCCL INFO Trees [@] -1/-1/-1-»>8->-1 [1] -1/-1/-1->8->-1

-~ -~~~ .~ I~ -~ -~ T~~~ T~ I~ -~ T~ -~ T~ I~~~ -~ -~ T~ -~~~ -~ -~ -~~~

=

4 1->@->-1 [16] -1/-1/-1->8->-1 [17] -1/-1/-1->8->-1 [18] -1/-1/-1->8->-1 [19] -1/-1/-1->
® Rlng Setup ip-172-31-28-185:3669:3679 [@] NCCL INFO Connected all rings
ip-172-31-28-185:3669:3679 [@] NCCL INFO Connected all trees
8 R ip-172-31-28-185:3669:3679 [@] NCCL INFO 32 coll channels, 32 pZp channels, 32 pZ2p chani
® Un /Normal termlnatlon ip-172-31-28-185:3669:3679 [@] NCCL INFO comm @x7f223c@@2f7@ rank @ nranks 1 cudaDev @ |
aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Pytorch Profiler

Comvmmennin Opeatoos S D

Total Sioe ttytes) Avg S2w (Dyles) Totul Latenicy (us) Avg Latancy (us) Feal Tine fon) Axyg Feal e ()
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Where does FSDP fit in (vs DDP)

Model scale and recommendations are network speed dependent:
With NVLink, 100M+ = FSDP! (universal training)

B ddp BN fsdp

/ Y VIR
/ﬁk ::E:;;E:?EE___

-"..-"... R N N Y O O
-"..."..-'.' B L

i E
P
o
=
W
-+
[1xd
Wl

AR, BN N .
A RO Y
FAAAY. BN B
AEEARTE RN CERERY LY

B . . N
B Y DY

162M 405M 834M 1.4B 2.8B 6.8B 16B 34B 81BE 101B
Model Size

AWS .00 NitRS/Lmedium.com/pytarch/pytorch-data-parallel-best-practices-on-google-cloud-6c8da2be180d
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Speedup over G4dn

Throughput A .
. . . . $/million Cost benefit
Batch size Precision (batch size X Latency (ms) inferences (on demand) (G5 over G4dn)
requests/sec)
G5 G4dn G5 G4dn G5 G4dn
32 Full 723 154 44 208 $0.6 $2.2 3.7X
Mixed 870 410 37 79 $0.5 $0.8 1.6X
Full 651 158 25 102 $0.7 $2.1 EH0).4
e SRS R Ue Mixed 762 376 21 43 $0.6 $0.9 1.5X
8 Full 642 142 13 57 $0.7 $2.3 3.3X
Mixed 681 350 12 23 $0.7 $1.0 1.4X
1 Full 160 116 6 9 $2.8 $2.9 1.0X
Mixed 137 102 7 10 $3.3 $3.3 1.0X
Full 941 397 34 82 $0.5 $0.8 1.6X
32 Mixed 1533 851 21 38 $0.3 $0.4 1.3X
Full 888 384 18 42 $0.5 $0.9 1.8X
ResNet50 16 Mixed 1474 819 11 20 $0.3 $0.4 1.3X
Full 805 340 10 24 $0.6 $1.0 1.7X
8 Mixed 1419 772 6 10 $0.3 $0.4 1.3X
1 Full 202 164 5 6 $2.2 $2 0.9X
Mixed 196 180 5 6 $2.3 $1.9 0.8X
aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Amazon EC2 G5 instances

Using NVIDIA A10G GPU with 24GB GPU memory
. 3-4x higher graphics and ML performance

. 80 2"d-gen RT cores

AMD Rome CPUs
. Up to 3.3GHz core frequency

1| G5

IJ;]
o

Instance size GPU vCPU M?21B<;ry GPU(nG1§;110ry Storage (GB) Netwon;lélI:?:)dmdth & I(aGaE;I:)wdth
G5.xlarge L 4 16 24 250 Upto 10 Up to 3.5
G5.2xlarge L 8 32 24 450 Up to 10 Up to 3.5
G5.4xlarge L 16 64 24 600 Up to 25 8
G5.8xlarge L 32 128 24 900 25 16
G5.16xlarge L 64 256 24 1900 25 16
G5.12xlarge 4 48 192 96 3800 40 16
G5.24xlarge 4 96 384 96 3800 50 19
G5.48xlarge 8 192 768 192 7600 100 19

aWS © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Technical details

- AWS Inferentia is 45% cheaper than g4dn instances and can achieve 3.5 times
the throughput for large NLP models.

- Compiled models have 5-6 times smaller memory footprint.

- Benchmarked throughput of models while loading and unloading in parallel on a

GPU, low GPU utilization because load and unload API calls given preference
than inference API.

- Similar default behavior with AWS Inferentia Neuron Cores; models get loaded
sequentially on Neuron Cores.

aWS © 2022, Amazon Web Services,

Inc. or its affiliates. All rights reserved.
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