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The AWS ML Stack
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What are we talking about today?

The scaling problem and where PyTorch FSDP comes in

What is FSDP exactly?  

Code snippets

Details:  Activation Checkpointing, Sharding Strategies

Additional new PyTorch features for extremely large models
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Scaling problem:  Strong payoff from increasing model size

Performance improves smoothly as you increase model size, compute time and dataset size. 
(power law or power law + constant)

*OpenAI - Scaling Laws for Neural Language Models    https://arxiv.org/abs/2106.09488

* Scaling laws for Acoustic models                                      https://arxiv.org/abs/2106.09488
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Thus, AI models have gone up 10,000x in size
(but… GPU memory has only gone up ~10x)

*Harmony: Overcoming the hurdles of GPU memory capacity to train massive DNN models on commodity servers
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FSDP ( Fully Sharded Data Parallel) 

Train a much larger model with same resources

Resource efficiency :  Significantly reduce memory footprint on each GPU

Compute efficiency : Overlapping compute and communication 

Ease of use : Lightweight config, just few knobs
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FSDP compared to DDP.  DDP = sharding batch

Distributed Data 

Parallel = models 

are duplicated on 

multiple GPUs.

Data is sharded 

and submitted, 

each GPU 

processes. 
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Fully Sharded Data Parallel (FSDP)
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With sufficient inter-node communication speed, scaling with FSDP can be linear. 

https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff
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PyTorch FSDP Sharding Strategy Details:

Fast network → 

full-shard

Slower network → 

experiment with 

Zero2 and DDP
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Scaling benefits with FSDP - 4x larger models can be trained, same hardware 
with no other changes.  
(Adding in Activation Checkpointing and CPU offloading can go 21x+)
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Fine grained Mixed Precision control via Policies
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Fine grained Mixed Precision control via Policies

BF16 is only available 

on Ampere GPUs. V100 may 

not complain but results 

in slowdowns.

Make sure if using FP 16 

use ShardedGradScaler 

from FSDP
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BFloat16 can deliver up to 4x training speed vs FP32  
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Transformer wrapping policy :

alternative to:

Transformer Wrapping 

policy → more 

finegrained and 

balanced FSDP units.

Significantly 

improves 

communication 

efficiency.

2x throughput 

increase
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Activation Checkpointing:
Generally save 30% memory

Reinvest in batch size → 

~7x throughput on DeepVit

FSDP Activation 

checkpointing is shard 

aware → use after FSDP 

init.



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Backward Prefetch:
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CPU Offloading

Leverage CPU Memory to 
house ‘non-active’ parameters

Allows expansion beyond the 
total sum of GPU memory.
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Saving your model - leverages CPU memory

Avoid OOMs on rank0 

GPU

Leverage CPU memory 

→ work for very 

large models ~ 20B
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Example of auto-wrapping (just print the model to view!)
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PyTorch FSDP implementation:

Highlights of the major sub-sections:
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Some Best practices:

1 - BFloat16 increases training speed, 35% to 4x...and 32% memory reduction. 

2 - Backward pre fetch via BACKWARD_PRE …2 - 10% training speedup.  

3 - Use the rank_0 cpu saving to avoid any OOM issues during large model saving. 

4 - Use activation checkpointing - this frees up large amounts of memory during 
training. 

5 - Proper wrapping - For Transfomers use Transfomer wrapping policy
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AnyPrecision Optimizer - run FSDP in pure BF16

Q - Why only mixed precision?  Why not 100% BF16? 
A - Pure BF16 doesn’t work…
Problem = weight stagnation due to small updates being lost

Paper  - https://arxiv.org/abs/2010.06192 (Revisiting 
BFloat16 training)

https://arxiv.org/abs/2010.06192
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AnyPrecision Optimizer - run FSDP in pure BF16

Solution - AnyPrecision uses Kahan summation in the optimizer for weight updates. 

Significant memory, speed improvements with pure BF16,  while matching or exceeding FP32.  (~ 48% 
GPU memory reductions in initial testing vs FP32).  

Drop in replacement for AdamW  

Available in Torchdistx

https://github.com/pytorch/torchdistx

https://github.com/pytorch/torchdistx
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Working with extremely large models

PyTorch has added several features to allow for instantiating models without having to 
load the actual weights.  

This allows extremely large models (think 175B+ that would OOM on CPU) to be loaded, 
inspected and ultimately sharded as only the shapes, not the weights, are loaded.

This includes:

Meta device 

Deferred initialization 

Fake Tensor
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META DEVICE

Instantiate Module/ 

tensor onto a meta 

device

It has tensor shape, 

does not allocate 

any storage

https://pytorch.org/tutorials/prototype/skip_param_init.html#implementation-details

https://pytorch.org/tutorials/prototype/skip_param_init.html#implementation-details
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Deferred initialization 

Deferred module init 

has 

deferred_init() , 

materialize_module()

, 

materialize_tensor().

deferred_init() , 

construct model 

without allocating 

storage for their 

tensors

materilize_module(), 

materialize_tensor(), 

fully or partially 

materialize modules.

Available in Torchdistx

https://github.com/pytorch/torchdistx

https://github.com/pytorch/torchdistx
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Fake Tensor

Similar to meta_tensors, 

does not contain any 

data

Fake tensors act as if 

allocated to a real device

It has been meant 

mostly to use a building 

block for deferred 

module init.

It can be useful to load 

the model without  

initializaing it with 

data.

Available in Torchdistx

https://github.com/pytorch/torchdistx

https://pytorch.org/torchdistx/latest/fake_tensor.html

https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html

https://github.com/pytorch/torchdistx
https://pytorch.org/torchdistx/latest/fake_tensor.html
https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html
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Fake Tensor

Meta device work great 

for skipping initialization

It might not work in all 

case for materilization 

when working in 

deferred initialization 

context.

some of pytorch 

functions like zero_like, 

refers to src.device

Fake tensor can solve 

this issue. 

Available in Torchdistx

https://github.com/pytorch/torchdistx

https://pytorch.org/torchdistx/latest/fake_tensor.html

https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html

https://github.com/pytorch/torchdistx
https://pytorch.org/torchdistx/latest/fake_tensor.html
https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html
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TorchSnapshot

Torchsnapshot offers highly optimized 

checkpointing ~2x faster than save()

5x faster than saving a GPU on S3 compared 

to save()+fsspec

Adaptive to the host memory – avoid OOMs 

during checkpointing

Can save/load GPU model using temporary 

memory a fraction of the size of largest 

tensor in the model

Load 20GB from storage to GPU with 100MB 

temp memory 

Supports S3, GCS
Available in Torchsnapshot

https://pytorch.org/torchsnapshot/

https://pytorch.org/torchsnapshot/


© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Inference at scale



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon EC2 accelerated compute for 
ML inference

Inf1: Custom ML acceleration

• Low cost per inference in the cloud

• Up to 2,000 TOPs with AWS-designed 

Inferentia accelerators

• Designed for high throughput and 

low latency

G5: GPU compute instance

• 3–4x ML inference performance 

compared to previous generations 

• 8x NVIDIA A10G 24 GB, 100 Gb/s

G4dn: GPU compute instance

• Up to 1,030 TOPs of compute with 

8x NVIDIA T4 GPUs

• Low-cost GPU-based instances
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G5 vs. G4dn
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Cost performance

With G5 instances, you can achieve consistently lower cost-per-inference compared to G4dn instances
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Amazon EC2 Inf1 instances
H I G H - P E R F O R M A N C E ,  L O W - C O S T  M A C H I N E  L E A R N I N G  I N F E R E N C E

• Featuring AWS Inferentia, the first ML chip designed by Amazon

• Low cost in the cloud for running deep-learning models, up to 70% lower 

cost than GPU instances

• Up to 2.3x higher throughput than GPU-based instances

• Seamless software integration with ML frameworks like TensorFlow, 

PyTorch, and MXNet for getting started quickly and with minimal code 

changes

• Get started using DLC, DL AMIs, Amazon EKS, Amazon ECS, or Amazon 

SageMaker

AWS Inferentia
High-performance machine learning inference 

chip, custom designed by AWS

EC2 Inf1 instances
Fast and low-cost inference 

in the cloud
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Inf1 vs. G5 and G4dn
N A T U R A L  L A N G U A G E  P R O C E S S I N G

G5.4xlarge

Inf1.2xlarge

G4dn.4xlarge
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Inf1 vs. G5 and G4dn
N A T U R A L  L A N G U A G E  P R O C E S S I N G

G5.4xlarge

Inf1.2xlarge

G4dn.4xlarge
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Inf1 vs. G5 and G4dn
C O M P U T E R  V I S I O N

G5.4xlarge

Inf1.2xlarge

G4dn.4xlarge
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Inf1 vs. G5 and G4dn
C O M P U T E R  V I S I O N

G5.4xlarge

Inf1.2xlarge

G4dn.4xlarge
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Proof of concept

Startup requirements: 

Build personalized creative AI models for 
mentorship, AMA, interactive NFTs, and more

9–10 models per user

Mostly NLP models

G4dn instances

Need to load, unload, and infer models 
in parallel

B R I N G I N G  T H E  C R E A T I V E  P O T E N T I A L  O F  A I  T O  E V E R Y O N E

Challenges:

Low GPU utilization

High cost

High latency due to big models

Proposed a solution with AWS Inferentia and 
FastAPI

Impact: 

Customer is satisfied with the approach, 
considering implementing in production
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Loading models in parallel

• One python process can be tied 

to one Neuron Core with 

NEURON_RT_VISIBLE_CORES 

environment variable.

• This allows one model server per 

user or a set of users on one 

Neuron Core. 

• With this approach, we can load, 

unload and infer models in 

parallel while maintaining high 

utilization of all 4 cores on an 

AWS Inferentia chip.
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Amazon EKS
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aws-do-eks framework

Use aws-do-eks framework (https://github.com/aws-samples/aws-do-eks)

Set up desired cluster using a conf file

Creates a docker container with all the tools needed to mange the cluster

Automatically sets up necessary IAM roles, VPC, security groups, autoscaling 
groups, etc.

Provides various tools for setting up persistent volumes, GPU monitoring, 
launching model training jobs, etc.

https://github.com/aws-samples/aws-do-eks
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How to set up an Amazon EKS cluster
Walkthrough config

Steps:

Fill out config

Build and run in a container

eks-create.sh: Create auto scaling groups

eks-scale.sh: Scale nodes to desired capacity

IAM roles are created for each node 
group but additional roles, like access 
to Amazon S3 or Amazon CloudWatch, 
may need to be added

Spot Instances

Custom AMIs

After a cluster is created:

• New nodegroups can be added after a cluster is 

created with eks-nodegroup-create.sh

• Nodegroups can be scaled via eks-scale.sh or via 

console.
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Shared file system

• Need a shared file system that all nodes in the cluster can access

• File system should be elastic and performant for large data

Amazon Elastic File System (EFS) Amazon FSx for Lustre

• efs-create.sh – Creates security group and a new 

Amazon EFS volume

• deploy.sh

• Gets existing file system ID

• Deploys Amazon EFS CSI driver

• If multiple volumes exist, takes the first one 

given by aws efs describe-file-systems

• Deploys file system on Amazon EKS

https://github.com/aws-samples/aws-do-eks/tree/main/Container-Root/eks/deployment/csi

• Can be deployed to 1 AZ

• Update fsx.conf file

• Run deploy.sh – This will create the security group 

that you need for FSx and also create the storage 

class

• Create the FSx filesystem from AWS console

• Update fsx-pvc-static.yaml with the information 

from FSx console

• Kubectl apply fsx-pvc-static.yaml.

https://github.com/aws-samples/aws-do-eks/tree/main/Container-Root/eks/deployment/csi
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Serve 3,000 deep-learning models on Amazon 
EKS with AWS Inferentia for under $50 an hour
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Setting up for success at AWS

Architecting 

scalable solutions 

using Amazon EC2, 

Amazon EKS, 

Amazon ECS, AWS 

Batch, Spot, 

KubeFlow, Ray, 

PyTorch, 

TensorFlow, etc.

EC2 instance 

selection 

via benchmarking 

for specific 

models and 

workloads (e.g., 

P4d for training, 

G4dn, G5, Inf1 for 

inference).

Develop proof-

of-concepts 

to show the art of 

the possible, 

unblock technical 

challenges, and 

advise on best 

practices. Proof of 

concept credits 

available.

Mission: Meet customers where they are, help them adopt and scale ML workloads on AWS with 

Amazon EC2, key services, and open-source tools and frameworks (PyTorch, TensorFlow)

Guidance on 

PyTorch 

adoption, scaling, 

roadmap dives 

deep in three-

way discussions 

with Meta (if 

needed).

Areas of interest: NLP, CV, distributed training, ML inference, MLOPs

“Meta and AWS will jointly help enterprises use PyTorch on AWS to bring deep learning 

models from research into production faster and easier.”

– Meta/AWS Press Release, December 2021

https://press.aboutamazon.com/news-releases/news-release-details/meta-selects-aws-key-long-term-strategic-cloud-provider
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Thank you!

Please complete the session 
survey in the mobile app

Hamid Shojanazeri Ankur Srivastava

awsankur@amazon.com

@Nazeri2010

hamidnazeri@meta.com

@ankur_rice
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Architecture
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Moving data from Amazon S3 to Amazon EFS

Once a cluster and a file system is created, 
you might need to:

Move compressed data from Amazon 
S3 to Amazon EFS

Uncompress data in Amazon EFS

Preprocess data with shell scripts

Or, preprocess data with python code

Prepare shell or python 

script

Dockerfile

Build and push to 

Amazon ECR

Apply Yaml file
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FSDP Deep Dive:  parameter level
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FSDP - network communication speed is very important

FSDP interleaves communication 
with computation.

Thus, as communication speed 
increases, FSDP accelerates. 

The Just in Time delivery of 
parameters in FSDP allows huge 
model scaling.

EFA on AWS enables higher speed 

(400BG/S)

https://medium.com/pytorch/pytorch-data-parallel-best-practices-on-google-cloud-6c8da2be180d
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Integrations 

FSDP is integrated into HuggingFace  

FSDP is integrated into Lightnining

https://huggingface.co/docs/accelerate/usage_guides/fsdp
https://pytorch-lightning.readthedocs.io/en/stable/advanced/model_parallel.html
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TorchSnapshot

Highly optimized performance from

- Overlapped DtoH copy and storage I/O

- Highly parallelized storage I/O

- 0 copy tensor serialization

- (For data parallel only) evenly partitioning 

the write workload across all ranks 

Our initial benchmark shows

- 2x faster than torch.save when saving GPU 

model to local FS

- 5x faster than torch.save + fsspec + s3fs 

when saving GPU model to S3

- For data parallel workload, up to 

[NUM_DEVICES]x additional speed up

Available in Torchsnapshot

https://pytorch.org/torchsnapshot/

https://pytorch.org/torchsnapshot/
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TorchSnapshot

Memory usage

- Removes the hard RAM requirement for 

saving/loading checkpoints. RAM usage is 

adaptive to available system resource and 

bound, which greatly reduces the chance of 

running out of RAM

- When RAM is abundant, TorchSnapshot 

can further reduce the time spent blocking 

in checkpoint saving by staging the model 

weights in RAM and flush the weights to 

storage in background once training 

resumes

Efficient checkpoint content access

- Only read from storage what is needed 

(e.g. reading a tensor from a checkpoint)

Available in Torchsnapshot

https://pytorch.org/torchsnapshot/

https://pytorch.org/torchsnapshot/
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DEBUGGING DISTRIBUTED TRAINING

DEBUGING DISTRIBUTED TRAINING
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● Alternative primitive to 

torch.distributed.barrier()

● Mainly meant for debugging

● Option to set a custom timeout

● Rank 0 reports which rank did not enter 

the barrier within given timeout

● All worker fail if one rank is missing

● Only available for GLOO backend

Monitored Barrier
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● Enables additional debugging information

● Two levels of detail

● INFO level

● Prints info after initialization only

● Enhanced crash logging due to 

unused parameter in model

● DETAIL 

● Print timing info during iterations

● Has impact on training efficiency

● Additional checks of synchronization 

and input of collective functions

● Combine with 

TORCH_SHOW_CPP_STACKTRACES=

1 for full callstacks on 

desynchronization

Torch_DISTRIBUTED_DEBUG
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● Set NCCL_DEBUG for additional debug 

information

● VERSION 

● Just print the version at startup

● WARN 

● Lets NCCL print more explicit 

messages in case of an error

● INFO 

● Highest level  

● Prints excessive debug information 

● Comm channel availability

● Ring setup

● Un-/Normal termination

NCCL_DEBUG
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Pytorch Profiler
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Where does FSDP fit in (vs DDP)

Model scale and recommendations are network speed dependent:   
With NVLink, 100M+ = FSDP! (universal training)

https://medium.com/pytorch/pytorch-data-parallel-best-practices-on-google-cloud-6c8da2be180d



© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Speedup over G4dn

Model Batch size Precision

Throughput

(batch size X 

requests/sec)

Latency (ms)
$/million 

inferences (on demand)

Cost benefit 

(G5 over G4dn)

G5 G4dn G5 G4dn G5 G4dn

Bert-base-uncased

32
Full 723 154 44 208 $0.6 $2.2 3.7X

Mixed 870 410 37 79 $0.5 $0.8 1.6X

16
Full 651 158 25 102 $0.7 $2.1 3.0X

Mixed 762 376 21 43 $0.6 $0.9 1.5X

8
Full 642 142 13 57 $0.7 $2.3 3.3X

Mixed 681 350 12 23 $0.7 $1.0 1.4X

1 Full 160 116 6 9 $2.8 $2.9 1.0X

Mixed 137 102 7 10 $3.3 $3.3 1.0X

ResNet50

32

Full 941 397 34 82 $0.5 $0.8 1.6X

Mixed 1533 851 21 38 $0.3 $0.4 1.3X

16

Full 888 384 18 42 $0.5 $0.9 1.8X

Mixed 1474 819 11 20 $0.3 $0.4 1.3X

8

Full 805 340 10 24 $0.6 $1.0 1.7X

Mixed 1419 772 6 10 $0.3 $0.4 1.3X

1 Full 202 164 5 6 $2.2 $2 0.9X

Mixed 196 180 5 6 $2.3 $1.9 0.8X
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Amazon EC2 G5 instances

Using NVIDIA A10G GPU with 24GB GPU memory

• 3–4x higher graphics and ML performance

• 80 2nd-gen RT cores

AMD Rome CPUs 

• Up to 3.3GHz core frequency

Instance size GPU vCPU
Memory 

(GB)

GPU memory 

(GB)
Storage (GB)

Network bandwidth 

(Gb/s)

EBS bandwidth 

(Gb/s)

G5.xlarge 1 4 16 24 250 Up to 10 Up to 3.5

G5.2xlarge 1 8 32 24 450 Up to 10 Up to 3.5

G5.4xlarge 1 16 64 24 600 Up to 25 8

G5.8xlarge 1 32 128 24 900 25 16

G5.16xlarge 1 64 256 24 1900 25 16

G5.12xlarge 4 48 192 96 3800 40 16

G5.24xlarge 4 96 384 96 3800 50 19

G5.48xlarge 8 192 768 192 7600 100 19
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Technical details

• AWS Inferentia is 45% cheaper than g4dn instances and can achieve 3.5 times 

the throughput for large NLP models.

• Compiled models have 5–6 times smaller memory footprint.

• Benchmarked throughput of models while loading and unloading in parallel on a 

GPU, low GPU utilization because load and unload API calls given preference 

than inference API.

• Similar default behavior with AWS Inferentia Neuron Cores; models get loaded 

sequentially on Neuron Cores.


