
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling ML training and inference
workloads on Amazon EC2 and PyTorch

ML Engineer, Applied AI team

Meta

Ankur Srivastava

Sr. Solution Architect, AWS

AWS

C M P 4 0 1

Hamid Shojanazeri

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The AWS ML Stack
B R O A D S E T O F M A C H I N E L E A R N I N G C A P A B I L I T I E S

SELF-MANAGED ML
Deep learning

AMIs and containers
GPUs AWS Inferentia AWS Trainium FPGA

AI SERVICES

Vision

Amazon

Rekognition

Speech

Amazon Polly

Amazon Transcribe

Chatbots

Amazon Lex

Contact centers

Contact Lens for Amazon Connect

Amazon Connect Voice ID

Code + DevOps

Amazon CodeGuru

Amazon DevOps Guru

Text

Amazon Comprehend

Amazon Translate

Amazon Textract

Business tools

Amazon Personalize

Amazon Forecast

Amazon Fraud Detector

Amazon Lookout for Metrics

Search

Amazon Kendra

Industrial

AWS Panorama Appliance SDK

Amazon Monitron

Amazon Lookout for Equipment

Amazon Lookout for Vision

Healthcare

Amazon HealthLake

Amazon Comprehend Medical

Amazon Transcribe Medical

Label

data

Data

collection prep

Store

features

Detect bias

and explain

predictions

Visualize in

notebooks
Pick

algorithm

Manage

and

monitor

Train

models faster

Deploy in

production

Tune

parameters

Manage edge

devices

SAGEMAKER STUDIO IDE

CI/CD

AMAZON

SAGEMAKER

Habana Gaudi

Accelerators

ML Frameworks WWSO helps customers developing custom ML

PyTorch, the PyTorch logo and any related marks are trademarks of Facebook, Inc.

TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What are we talking about today?

The scaling problem and where PyTorch FSDP comes in

What is FSDP exactly?

Code snippets

Details: Activation Checkpointing, Sharding Strategies

Additional new PyTorch features for extremely large models

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling problem: Strong payoff from increasing model size

Performance improves smoothly as you increase model size, compute time and dataset size.
(power law or power law + constant)

*OpenAI - Scaling Laws for Neural Language Models https://arxiv.org/abs/2106.09488

* Scaling laws for Acoustic models https://arxiv.org/abs/2106.09488

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thus, AI models have gone up 10,000x in size
(but… GPU memory has only gone up ~10x)

*Harmony: Overcoming the hurdles of GPU memory capacity to train massive DNN models on commodity servers

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

FSDP (Fully Sharded Data Parallel)

Train a much larger model with same resources

Resource efficiency : Significantly reduce memory footprint on each GPU

Compute efficiency : Overlapping compute and communication

Ease of use : Lightweight config, just few knobs

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

FSDP compared to DDP. DDP = sharding batch

Distributed Data

Parallel = models

are duplicated on

multiple GPUs.

Data is sharded

and submitted,

each GPU

processes.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fully Sharded Data Parallel (FSDP)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

With sufficient inter-node communication speed, scaling with FSDP can be linear.

https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PyTorch FSDP Sharding Strategy Details:

Fast network →

full-shard

Slower network →

experiment with

Zero2 and DDP

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling benefits with FSDP - 4x larger models can be trained, same hardware
with no other changes.
(Adding in Activation Checkpointing and CPU offloading can go 21x+)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fine grained Mixed Precision control via Policies

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fine grained Mixed Precision control via Policies

BF16 is only available

on Ampere GPUs. V100 may

not complain but results

in slowdowns.

Make sure if using FP 16

use ShardedGradScaler

from FSDP

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

BFloat16 can deliver up to 4x training speed vs FP32

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Transformer wrapping policy :

alternative to:

Transformer Wrapping

policy → more

finegrained and

balanced FSDP units.

Significantly

improves

communication

efficiency.

2x throughput

increase

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Activation Checkpointing:
Generally save 30% memory

Reinvest in batch size →

~7x throughput on DeepVit

FSDP Activation

checkpointing is shard

aware → use after FSDP

init.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Backward Prefetch:

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CPU Offloading

Leverage CPU Memory to
house ‘non-active’ parameters

Allows expansion beyond the
total sum of GPU memory.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Saving your model - leverages CPU memory

Avoid OOMs on rank0

GPU

Leverage CPU memory

→ work for very

large models ~ 20B

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example of auto-wrapping (just print the model to view!)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PyTorch FSDP implementation:

Highlights of the major sub-sections:

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Some Best practices:

1 - BFloat16 increases training speed, 35% to 4x...and 32% memory reduction.

2 - Backward pre fetch via BACKWARD_PRE …2 - 10% training speedup.

3 - Use the rank_0 cpu saving to avoid any OOM issues during large model saving.

4 - Use activation checkpointing - this frees up large amounts of memory during
training.

5 - Proper wrapping - For Transfomers use Transfomer wrapping policy

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AnyPrecision Optimizer - run FSDP in pure BF16

Q - Why only mixed precision? Why not 100% BF16?
A - Pure BF16 doesn’t work…
Problem = weight stagnation due to small updates being lost

Paper - https://arxiv.org/abs/2010.06192 (Revisiting
BFloat16 training)

https://arxiv.org/abs/2010.06192

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AnyPrecision Optimizer - run FSDP in pure BF16

Solution - AnyPrecision uses Kahan summation in the optimizer for weight updates.

Significant memory, speed improvements with pure BF16, while matching or exceeding FP32. (~ 48%
GPU memory reductions in initial testing vs FP32).

Drop in replacement for AdamW

Available in Torchdistx

https://github.com/pytorch/torchdistx

https://github.com/pytorch/torchdistx

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working with extremely large models

PyTorch has added several features to allow for instantiating models without having to
load the actual weights.

This allows extremely large models (think 175B+ that would OOM on CPU) to be loaded,
inspected and ultimately sharded as only the shapes, not the weights, are loaded.

This includes:

Meta device

Deferred initialization

Fake Tensor

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

META DEVICE

Instantiate Module/

tensor onto a meta

device

It has tensor shape,

does not allocate

any storage

https://pytorch.org/tutorials/prototype/skip_param_init.html#implementation-details

https://pytorch.org/tutorials/prototype/skip_param_init.html#implementation-details

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deferred initialization

Deferred module init

has

deferred_init() ,

materialize_module()

,

materialize_tensor().

deferred_init() ,

construct model

without allocating

storage for their

tensors

materilize_module(),

materialize_tensor(),

fully or partially

materialize modules.

Available in Torchdistx

https://github.com/pytorch/torchdistx

https://github.com/pytorch/torchdistx

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fake Tensor

Similar to meta_tensors,

does not contain any

data

Fake tensors act as if

allocated to a real device

It has been meant

mostly to use a building

block for deferred

module init.

It can be useful to load

the model without

initializaing it with

data.

Available in Torchdistx

https://github.com/pytorch/torchdistx

https://pytorch.org/torchdistx/latest/fake_tensor.html

https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html

https://github.com/pytorch/torchdistx
https://pytorch.org/torchdistx/latest/fake_tensor.html
https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fake Tensor

Meta device work great

for skipping initialization

It might not work in all

case for materilization

when working in

deferred initialization

context.

some of pytorch

functions like zero_like,

refers to src.device

Fake tensor can solve

this issue.

Available in Torchdistx

https://github.com/pytorch/torchdistx

https://pytorch.org/torchdistx/latest/fake_tensor.html

https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html

https://github.com/pytorch/torchdistx
https://pytorch.org/torchdistx/latest/fake_tensor.html
https://pytorch.org/torchdistx/latest/fake_tensor_and_deferred_init.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

TorchSnapshot

Torchsnapshot offers highly optimized

checkpointing ~2x faster than save()

5x faster than saving a GPU on S3 compared

to save()+fsspec

Adaptive to the host memory – avoid OOMs

during checkpointing

Can save/load GPU model using temporary

memory a fraction of the size of largest

tensor in the model

Load 20GB from storage to GPU with 100MB

temp memory

Supports S3, GCS
Available in Torchsnapshot

https://pytorch.org/torchsnapshot/

https://pytorch.org/torchsnapshot/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Inference at scale

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon EC2 accelerated compute for
ML inference

Inf1: Custom ML acceleration

• Low cost per inference in the cloud

• Up to 2,000 TOPs with AWS-designed

Inferentia accelerators

• Designed for high throughput and

low latency

G5: GPU compute instance

• 3–4x ML inference performance

compared to previous generations

• 8x NVIDIA A10G 24 GB, 100 Gb/s

G4dn: GPU compute instance

• Up to 1,030 TOPs of compute with

8x NVIDIA T4 GPUs

• Low-cost GPU-based instances

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

G5 vs. G4dn

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cost performance

With G5 instances, you can achieve consistently lower cost-per-inference compared to G4dn instances

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon EC2 Inf1 instances
H I G H - P E R F O R M A N C E , L O W - C O S T M A C H I N E L E A R N I N G I N F E R E N C E

• Featuring AWS Inferentia, the first ML chip designed by Amazon

• Low cost in the cloud for running deep-learning models, up to 70% lower

cost than GPU instances

• Up to 2.3x higher throughput than GPU-based instances

• Seamless software integration with ML frameworks like TensorFlow,

PyTorch, and MXNet for getting started quickly and with minimal code

changes

• Get started using DLC, DL AMIs, Amazon EKS, Amazon ECS, or Amazon

SageMaker

AWS Inferentia
High-performance machine learning inference

chip, custom designed by AWS

EC2 Inf1 instances
Fast and low-cost inference

in the cloud

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Inf1 vs. G5 and G4dn
N A T U R A L L A N G U A G E P R O C E S S I N G

G5.4xlarge

Inf1.2xlarge

G4dn.4xlarge

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Inf1 vs. G5 and G4dn
N A T U R A L L A N G U A G E P R O C E S S I N G

G5.4xlarge

Inf1.2xlarge

G4dn.4xlarge

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Inf1 vs. G5 and G4dn
C O M P U T E R V I S I O N

G5.4xlarge

Inf1.2xlarge

G4dn.4xlarge

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Inf1 vs. G5 and G4dn
C O M P U T E R V I S I O N

G5.4xlarge

Inf1.2xlarge

G4dn.4xlarge

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Proof of concept

Startup requirements:

Build personalized creative AI models for
mentorship, AMA, interactive NFTs, and more

9–10 models per user

Mostly NLP models

G4dn instances

Need to load, unload, and infer models
in parallel

B R I N G I N G T H E C R E A T I V E P O T E N T I A L O F A I T O E V E R Y O N E

Challenges:

Low GPU utilization

High cost

High latency due to big models

Proposed a solution with AWS Inferentia and
FastAPI

Impact:

Customer is satisfied with the approach,
considering implementing in production

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Loading models in parallel

• One python process can be tied

to one Neuron Core with

NEURON_RT_VISIBLE_CORES

environment variable.

• This allows one model server per

user or a set of users on one

Neuron Core.

• With this approach, we can load,

unload and infer models in

parallel while maintaining high

utilization of all 4 cores on an

AWS Inferentia chip.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon EKS

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws-do-eks framework

Use aws-do-eks framework (https://github.com/aws-samples/aws-do-eks)

Set up desired cluster using a conf file

Creates a docker container with all the tools needed to mange the cluster

Automatically sets up necessary IAM roles, VPC, security groups, autoscaling
groups, etc.

Provides various tools for setting up persistent volumes, GPU monitoring,
launching model training jobs, etc.

https://github.com/aws-samples/aws-do-eks

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How to set up an Amazon EKS cluster
Walkthrough config

Steps:

Fill out config

Build and run in a container

eks-create.sh: Create auto scaling groups

eks-scale.sh: Scale nodes to desired capacity

IAM roles are created for each node
group but additional roles, like access
to Amazon S3 or Amazon CloudWatch,
may need to be added

Spot Instances

Custom AMIs

After a cluster is created:

• New nodegroups can be added after a cluster is

created with eks-nodegroup-create.sh

• Nodegroups can be scaled via eks-scale.sh or via

console.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shared file system

• Need a shared file system that all nodes in the cluster can access

• File system should be elastic and performant for large data

Amazon Elastic File System (EFS) Amazon FSx for Lustre

• efs-create.sh – Creates security group and a new

Amazon EFS volume

• deploy.sh

• Gets existing file system ID

• Deploys Amazon EFS CSI driver

• If multiple volumes exist, takes the first one

given by aws efs describe-file-systems

• Deploys file system on Amazon EKS

https://github.com/aws-samples/aws-do-eks/tree/main/Container-Root/eks/deployment/csi

• Can be deployed to 1 AZ

• Update fsx.conf file

• Run deploy.sh – This will create the security group

that you need for FSx and also create the storage

class

• Create the FSx filesystem from AWS console

• Update fsx-pvc-static.yaml with the information

from FSx console

• Kubectl apply fsx-pvc-static.yaml.

https://github.com/aws-samples/aws-do-eks/tree/main/Container-Root/eks/deployment/csi

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serve 3,000 deep-learning models on Amazon
EKS with AWS Inferentia for under $50 an hour

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Setting up for success at AWS

Architecting

scalable solutions

using Amazon EC2,

Amazon EKS,

Amazon ECS, AWS

Batch, Spot,

KubeFlow, Ray,

PyTorch,

TensorFlow, etc.

EC2 instance

selection

via benchmarking

for specific

models and

workloads (e.g.,

P4d for training,

G4dn, G5, Inf1 for

inference).

Develop proof-

of-concepts

to show the art of

the possible,

unblock technical

challenges, and

advise on best

practices. Proof of

concept credits

available.

Mission: Meet customers where they are, help them adopt and scale ML workloads on AWS with

Amazon EC2, key services, and open-source tools and frameworks (PyTorch, TensorFlow)

Guidance on

PyTorch

adoption, scaling,

roadmap dives

deep in three-

way discussions

with Meta (if

needed).

Areas of interest: NLP, CV, distributed training, ML inference, MLOPs

“Meta and AWS will jointly help enterprises use PyTorch on AWS to bring deep learning

models from research into production faster and easier.”

– Meta/AWS Press Release, December 2021

https://press.aboutamazon.com/news-releases/news-release-details/meta-selects-aws-key-long-term-strategic-cloud-provider

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

Please complete the session
survey in the mobile app

Hamid Shojanazeri Ankur Srivastava

awsankur@amazon.com

@Nazeri2010

hamidnazeri@meta.com

@ankur_rice

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architecture

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Moving data from Amazon S3 to Amazon EFS

Once a cluster and a file system is created,
you might need to:

Move compressed data from Amazon
S3 to Amazon EFS

Uncompress data in Amazon EFS

Preprocess data with shell scripts

Or, preprocess data with python code

Prepare shell or python

script

Dockerfile

Build and push to

Amazon ECR

Apply Yaml file

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

FSDP Deep Dive: parameter level

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

FSDP - network communication speed is very important

FSDP interleaves communication
with computation.

Thus, as communication speed
increases, FSDP accelerates.

The Just in Time delivery of
parameters in FSDP allows huge
model scaling.

EFA on AWS enables higher speed

(400BG/S)

https://medium.com/pytorch/pytorch-data-parallel-best-practices-on-google-cloud-6c8da2be180d

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integrations

FSDP is integrated into HuggingFace

FSDP is integrated into Lightnining

https://huggingface.co/docs/accelerate/usage_guides/fsdp
https://pytorch-lightning.readthedocs.io/en/stable/advanced/model_parallel.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

TorchSnapshot

Highly optimized performance from

- Overlapped DtoH copy and storage I/O

- Highly parallelized storage I/O

- 0 copy tensor serialization

- (For data parallel only) evenly partitioning

the write workload across all ranks

Our initial benchmark shows

- 2x faster than torch.save when saving GPU

model to local FS

- 5x faster than torch.save + fsspec + s3fs

when saving GPU model to S3

- For data parallel workload, up to

[NUM_DEVICES]x additional speed up

Available in Torchsnapshot

https://pytorch.org/torchsnapshot/

https://pytorch.org/torchsnapshot/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

TorchSnapshot

Memory usage

- Removes the hard RAM requirement for

saving/loading checkpoints. RAM usage is

adaptive to available system resource and

bound, which greatly reduces the chance of

running out of RAM

- When RAM is abundant, TorchSnapshot

can further reduce the time spent blocking

in checkpoint saving by staging the model

weights in RAM and flush the weights to

storage in background once training

resumes

Efficient checkpoint content access

- Only read from storage what is needed

(e.g. reading a tensor from a checkpoint)

Available in Torchsnapshot

https://pytorch.org/torchsnapshot/

https://pytorch.org/torchsnapshot/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DEBUGGING DISTRIBUTED TRAINING

DEBUGING DISTRIBUTED TRAINING

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

● Alternative primitive to

torch.distributed.barrier()

● Mainly meant for debugging

● Option to set a custom timeout

● Rank 0 reports which rank did not enter

the barrier within given timeout

● All worker fail if one rank is missing

● Only available for GLOO backend

Monitored Barrier

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

● Enables additional debugging information

● Two levels of detail

● INFO level

● Prints info after initialization only

● Enhanced crash logging due to

unused parameter in model

● DETAIL

● Print timing info during iterations

● Has impact on training efficiency

● Additional checks of synchronization

and input of collective functions

● Combine with

TORCH_SHOW_CPP_STACKTRACES=

1 for full callstacks on

desynchronization

Torch_DISTRIBUTED_DEBUG

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

● Set NCCL_DEBUG for additional debug

information

● VERSION

● Just print the version at startup

● WARN

● Lets NCCL print more explicit

messages in case of an error

● INFO

● Highest level

● Prints excessive debug information

● Comm channel availability

● Ring setup

● Un-/Normal termination

NCCL_DEBUG

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pytorch Profiler

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Where does FSDP fit in (vs DDP)

Model scale and recommendations are network speed dependent:
With NVLink, 100M+ = FSDP! (universal training)

https://medium.com/pytorch/pytorch-data-parallel-best-practices-on-google-cloud-6c8da2be180d

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Speedup over G4dn

Model Batch size Precision

Throughput

(batch size X

requests/sec)

Latency (ms)
$/million

inferences (on demand)

Cost benefit

(G5 over G4dn)

G5 G4dn G5 G4dn G5 G4dn

Bert-base-uncased

32
Full 723 154 44 208 $0.6 $2.2 3.7X

Mixed 870 410 37 79 $0.5 $0.8 1.6X

16
Full 651 158 25 102 $0.7 $2.1 3.0X

Mixed 762 376 21 43 $0.6 $0.9 1.5X

8
Full 642 142 13 57 $0.7 $2.3 3.3X

Mixed 681 350 12 23 $0.7 $1.0 1.4X

1 Full 160 116 6 9 $2.8 $2.9 1.0X

Mixed 137 102 7 10 $3.3 $3.3 1.0X

ResNet50

32

Full 941 397 34 82 $0.5 $0.8 1.6X

Mixed 1533 851 21 38 $0.3 $0.4 1.3X

16

Full 888 384 18 42 $0.5 $0.9 1.8X

Mixed 1474 819 11 20 $0.3 $0.4 1.3X

8

Full 805 340 10 24 $0.6 $1.0 1.7X

Mixed 1419 772 6 10 $0.3 $0.4 1.3X

1 Full 202 164 5 6 $2.2 $2 0.9X

Mixed 196 180 5 6 $2.3 $1.9 0.8X

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon EC2 G5 instances

Using NVIDIA A10G GPU with 24GB GPU memory

• 3–4x higher graphics and ML performance

• 80 2nd-gen RT cores

AMD Rome CPUs

• Up to 3.3GHz core frequency

Instance size GPU vCPU
Memory

(GB)

GPU memory

(GB)
Storage (GB)

Network bandwidth

(Gb/s)

EBS bandwidth

(Gb/s)

G5.xlarge 1 4 16 24 250 Up to 10 Up to 3.5

G5.2xlarge 1 8 32 24 450 Up to 10 Up to 3.5

G5.4xlarge 1 16 64 24 600 Up to 25 8

G5.8xlarge 1 32 128 24 900 25 16

G5.16xlarge 1 64 256 24 1900 25 16

G5.12xlarge 4 48 192 96 3800 40 16

G5.24xlarge 4 96 384 96 3800 50 19

G5.48xlarge 8 192 768 192 7600 100 19

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Technical details

• AWS Inferentia is 45% cheaper than g4dn instances and can achieve 3.5 times

the throughput for large NLP models.

• Compiled models have 5–6 times smaller memory footprint.

• Benchmarked throughput of models while loading and unloading in parallel on a

GPU, low GPU utilization because load and unload API calls given preference

than inference API.

• Similar default behavior with AWS Inferentia Neuron Cores; models get loaded

sequentially on Neuron Cores.

