
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deploying egress traffic controls
in production environments

Software Engineer, Security

Robinhood

Houston Hopkins (he/him)

Sr. Staff Security Engineer

Robinhood

Graham Zulauf (he/him)

Principal Solutions Architect

AWS

S E C 3 1 2

Kevin Park (he/him)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

Why we need additional egress controls

AWS Network Firewall primer

Where we were

Our roadmap to the solution

Key steps we took and decisions we made

How we solved the problem

Where we are today

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why restrict egress?

• Zero-days Log4j (1)

• C2 frameworks Cobalt Strike (2) (3) (4)

• Ransomware Data exfiltration/double extortion (5)

1. https://aws.amazon.com/blogs/security/using-aws-security-services-to-protect-against-detect-and-respond-to-the-log4j-vulnerability/

2. https://attack.mitre.org/software/S0154/

3. https://blog.talosintelligence.com/2020/09/CTIR-quarterly-trends-Q4-2020.html

4. https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike

5. https://www.cybereason.com/blog/rise-of-double-extortion-shines-spotlight-on-ransomware-prevention

https://aws.amazon.com/blogs/security/using-aws-security-services-to-protect-against-detect-and-respond-to-the-log4j-vulnerability/
https://attack.mitre.org/software/S0154/
https://blog.talosintelligence.com/2020/09/CTIR-quarterly-trends-Q4-2020.html
https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike
https://www.cybereason.com/blog/rise-of-double-extortion-shines-spotlight-on-ransomware-prevention
https://aws.amazon.com/blogs/security/using-aws-security-services-to-protect-against-detect-and-respond-to-the-log4j-vulnerability/
https://attack.mitre.org/software/S0154/
https://blog.talosintelligence.com/2020/09/CTIR-quarterly-trends-Q4-2020.html
https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike
https://www.cybereason.com/blog/rise-of-double-extortion-shines-spotlight-on-ransomware-prevention

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Network Firewall

AWS managed deep packet inspection firewall

Managed infrastructure for high availability

Flexible protection through fine-grained controls

Consistent policy across VPCs and AWS accounts

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network Firewall is built for the cloud

Deep packet inspection

AWS managed IPS
signatures and

threat intelligence

No upfront commitments and pay only for what you use

Scales automatically, AWS

managed infrastructure
Centrally managed policies,

real-time monitoring,
increased visibility

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Centrally control with

AWS Firewall Manager

Deploy and route

traffic to firewall

endpoint
Customer

Create firewall policy

and rules, select

AWS managed

IPS signatures

AWS
Automatically scales

with traffic

Backend software

updates and patches

Resilient with SLA

of 99.99%

Managed zonal affinity

and session symmetry

100 Gbps

throughput performance

per endpoint

Network Firewall at a glance

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network Firewall features

Advanced filtering

• Domain filtering

• Suricata IDS/IPS rules

• AWS managed threat signatures

• Protocol detection and

enforcement

• Large-scale 5-tuple rules

Central management

• Cross-account management

and rule visibility using

AWS Firewall Manager

• AWS CloudFormation and

Terraform templates

Visibility

and reporting

• Amazon CloudWatch rule metrics

• Full network flow logs

• Event, rule-based logs

• Log collection to Amazon S3,

Amazon CloudWatch Logs, or

Amazon Kinesis Data Firehose

• Amazon CloudWatch

Contributor Insights

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network Firewall top customer use cases

Egress security

• Software supply chain security

• Domain/FQDN filtering

• DenyListing Known-Bad and
AllowListing of Known-Good

• FQDNs (HTTP, HTTPS, DNS)

• CIDRs

• ccTLDs

• TLS JA3/S hashes

• TLS server certs fingerprint

• Ports (e.g., 1389, 4444)

• Ensure ports are used only by their
legitimate protocol

• Block vulnerable versions of TLS

• Block direct to IP communications

• Threat hunting/reverse
stack ranking

Intrusion prevention

• Running IDS/IPS signatures from
open-source repositories,
partners, or both

• AWS managed IPS rules

• Auto block IPs seen brute forcing
by Amazon GuardDuty

Environment
segmentation

• VPC to VPC

• Prod to dev, dev to prod

• VPC to on premises, on premises
to VPC

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The journey

Problem: proliferation of unique point solutions (proxies) for egress filtering and
desire for centralized security tooling for detection and response

Solution: complementary to existing cloud security capabilities

Flexible implementation: guardrail approach, prevent the known bad, reduce risk

Evolve rapidly; don’t break prod

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Egress control requirements

Capable

North-South inspection

Flexible rules engine

Deep packet inspection

Centralized
orchestration options

Reliable

Multi-AZ, multi-Region

Cellular architecture

Managed infrastructure

Scalable

Pay as you go

Infrastructure-as-code
support

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Evaluation

Network Firewall Third-party appliance w/GWLB NACLs and security groups

Centralized orchestration partial

Managed capabilities n/a

AWS integration partial

Pay as you go (no contract) partial

Quotas documented unknown documented

Ruleset transparency medium low high

Management low high high

Automatically inherit future

capabilities
low high

Domain level filtering

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Phased goals for egress controls

Enhance visibility

Deploy firewalls

Implement telemetry

Dashboards

Blocking

and tackling

Establish runbooks,
playbooks

Templates for
blocking in incident
response scenarios

Approval chains

Gracefully move
towards positive
security model

Deny Known-Bad

Mining data for allow
list for egress traffic

Further isolation of
nonconforming traffic

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Implementation

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Implementation goals

Capture, monitor all egress traffic

Provide insight into all outgoing traffic

Packet inspection shows protocol details

Block known malicious traffic ASAP

Scalable

Must not be a major bottleneck

Non-goal

Monitor, capture ingress traffic

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Option 1 – Centralized

Pros

One firewall deployment

Single point of management

Requires fewer FW
endpoints, saves costs

Reduce number of NAT GWs

Cons

All traffic goes through a
single set of choke points

Greater dependency on
centralized components

Network Firewall

endpoint

Network Firewall

endpoint

NAT gateway

NAT gateway

K8s nodes K8s nodes

K8s nodes K8s nodes

Internet

gateway

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Option 2 – Distributed

Pros

Firewall is deployed in place

1–1 scaling

Phased rollout of the firewall and rules

Cons

Multiple deployments, managed components

More complex firewall rule management

Network Firewall

endpoint

Network Firewall

endpoint

Network Firewall

endpoint

Network Firewall

endpoint

NAT gateway

NAT gateway

NAT gateway

NAT gateway

K8s nodes

K8s nodes

K8s nodes

K8s nodes

Internet

gateway

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Winner: Distributed

Max bandwidth

NAT – 45 Gbps

Network Firewall endpoint – 100 Gbps

Robinhood

We almost maxed 45 Gbps NAT limit

Now, each K8s cluster has its own NAT per AZ

Centralized model does not meet our scaling needs, but in
most cases it is a good fit

Network Firewall

endpoint

Network Firewall

endpoint

Network Firewall

endpoint

Network Firewall

endpoint

NAT gateway

NAT gateway

NAT gateway

NAT gateway

K8s nodes

K8s nodes

K8s nodes

K8s nodes

Internet

gateway

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Our infrastructure
R O B I N H O O D W I T H O U T T H E F I R E W A L L

Example of our Kubernetes cluster

Public subnets: NAT gateways and load balancers
Private subnets: K8s nodes (Amazon EC2 instances)

Some key details

One NAT gateway per Availability Zone

Public LBs and the NAT gateway live in same subnets

Public subnets route directly to IGW

Private subnets route through NATs

K8s nodes

K8s nodes

K8s nodes

K8s nodes

K8s nodes

K8s nodes

NAT gateway

NAT gateway

Internet

gateway

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Robinhood and Network Firewall
R O B I N H O O D W I T H T H E F I R E W A L L

One Network Firewall endpoint per
Availability Zone

Aligns with our scaling needs of
1 NAT → 1 Network Firewall endpoint

Due to NAT and LBs sharing a subnet,
firewall sits in between public and private subnets

Captures some internal traffic within same AZ
heading to NLB

Why not place the firewall after NAT (before IGW)?

Makes the routing simpler but . . .

The source IP of the K8s nodes would be masked by the NAT

Logs would simply display the NAT IP as the source

NAT gateway

K8s nodes

K8s nodes

K8s nodes

Network Firewall

endpoint

Internet

gateway

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network symmetry
A S Y M M E T R I C R O U T E = B A D D A Y

The return path must be symmetric

If traffic in one direction passes through a firewall
endpoint, then the return traffic must also pass
through the same firewall endpoint

Otherwise, firewall simply drops the packet

Example on the right

Public Subnet ← Firewall ← Private Subnet
Public Subnet → Firewall → Private Subnet

K8s nodes

K8s nodes

K8s nodes

NAT gateway

Network Firewall

endpoint

Internet

gateway

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network symmetry
G R A N U L A R R O U T E S S A V E T H E D A Y

Solution – more granular routes

Use “More Specific Route” to explicitly define
target subnets CIDR range and desired target
into the route tables

NAT gateway

Network Firewall

endpoint

K8s nodes

K8s nodes

K8s nodes

Internet

gateway

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deployment
R E P L I C A T I N G D E P L O Y M E N T S A C R O S S E N V I R O N M E N T S

One Terraform module to rule all deployment

Automatically creates

● Subnets for the firewall endpoints
● New route tables for public, private, firewall subnets
● Proper routes to NAT gateways
● Logging rules and destination

Network Firewall – pay for what you use

With a conditional flag
Only deploy in environments where it is needed

Why create new set of route tables for both
public and private subnets? 🤔

Why duplicate route tables just to add firewall routes?

module "firewall" {

Create conditionally
count = var.firewall_enabled ? 1 : 0
source = "modules/network_firewall"
is_k8s = true # For resource naming convention

name = var.name
vpc_id = var.vpc_id
target_cidr = var.cidr_block

firewall_subnets = local.firewall_subnets
public_subnets = local.public_subnets
private_subnets = local.private_subnets

tags = {
"kubernetes.io/cluster/${var.name}" = "firewall"
KubernetesCluster = var.name

}

}

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deployment
D E P L O Y W I T H Z E R O P R O D U C T I O N D O W N T I M E

Inserting a firewall into a live production system is tricky

One mistake in the route table
can bring the production down

How did we solve this?

Create all necessary resources in advance

Duplicate all routes and route tables

This allows us to verify once more
before taking the system live

Once ready, set the Boolean switch to true
Then, execute a final terraform apply

This updates route table associations of all
affected subnets simultaneously

resource "aws_route_table_association" "public" {

count = length(local.public_subnets)

subnet_id = local.public_subnets[count.index].subnet_id
route_table_id = var.firewall_route_enabled ? (

local.firewall_route_table_ids[count.index] # Via firewall
) : (

local.public_route_table_id # Bypass firewall
)

}

resource "aws_route_table_association" "private" {

count = length(local.private_subnets)

subnet_id = local.private_subnets[count.index].subnet_id
route_table_id = var.firewall_route_enabled ? (

local.firewall_route_table_ids[count.index] # Via firewall
) : (

local.private_route_tables[count.index].id # Bypass firewall
)

}

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fail-safe
W H A T H A P P E N S I F T H E F I R E W A L L F A I L S ?

Imagine a rare outage scenario . . .
where an AWS shared cell with our firewall endpoint fails

The same switch mechanism doubles as a fail-safe

● A simple Terraform Boolean value change (true → false)
● Reverts route table associations back to the original
● Bypasses the firewall in matter of seconds

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Monitoring and alerting
K E E P I N G A N E Y E O N T H E F I R E W A L L

If the firewall traffic drops significantly
due to being

● Disabled
● Bypassed

CloudWatch provides the necessary operational metrics

If there is a surge in dropped packets
due to one of the following

● Hitting bandwidth limits
● Firing blocking rule

We would get alerted on Slack and paged on our phones

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Logging and visibility
C A P T U R I N G T H E V A L U A B L E D A T A

Valuable application layer insights

For example,

TLS information provides additional context into
the network traffic

Whereas just an IP address is difficult to
understand and investigate

Can reverse stack-rank JA3 hashes or clients to
find outliers

Built-in flow logs without need for VPC Flow Logs

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Logging and visibility
C A P T U R I N G T H E V A L U A B L E D A T A

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Interesting discoveries

1. Lots of things going to the internet that aren’t malicious but are unnecessary
a. Quickly identified VPC endpoint opportunities for AWS traffic
b. Robinhood internal traffic routing to the internet

2. Measure the top and bottom
a. Early stages: look for highest count domains, accessed by highest count clients, to add to

AllowList
b. Identify and investigate rare and outlier domains; could be malicious, could be misconfig
c. Remove outliers to form a baseline; is there a middle?

3. Deeper segmentation opportunities
a. Some applications may not fit a positive security model

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Further improvements

Move NAT gateways into own subnets

Recall where firewall subnet is sandwiched
between private and public subnets

This captures some internal to internal traffic, which

● Does not aid in egress control
● Adds noise to our logging capabilities
● Takes up firewall bandwidth and adds cost

Simplifies routes in route tables

Doable with zero production downtime

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

Please complete the session
survey in the mobile app

