re:Invent

NOV. 27 - DEC. 1, 2023 | LAS VEGAS, NV

AIM209-S

SPONSORED BY NVIDIA

Simplifying the adoption of generative AI for enterprises

Jiahong Liu

Senior Solution Architect NVIDIA

Peter Dykas

Senior Solution Architect NVIDIA

Speakers

Jiahong Liu

Peter Dykas

Agenda

01 NVIDIA and AWS collaboration **05** Acceleration with TensorRT

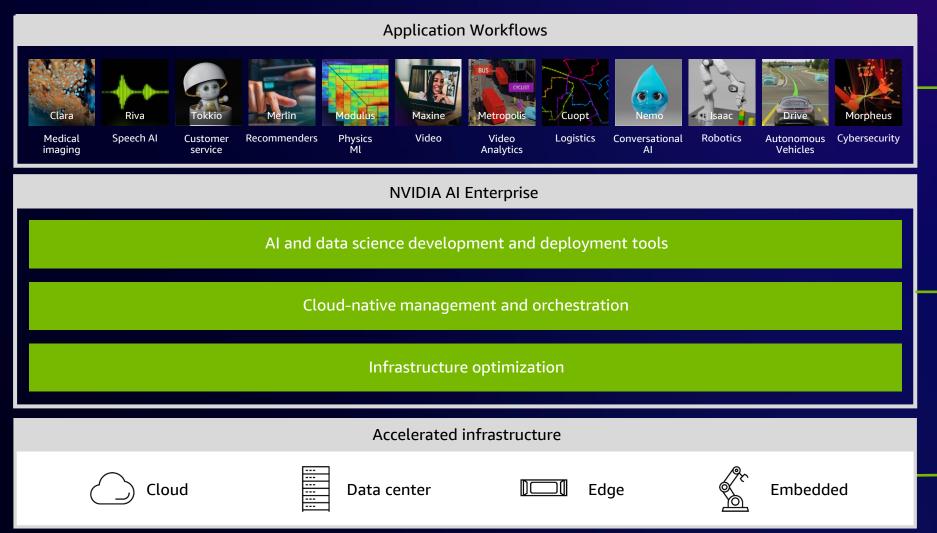
NVIDIA AI on AWS Call to action and conclusion

03 At-scale training on AWS

04 Deployment with Triton

NVIDIA AI

END-TO-END OPEN PLATFORM FOR PRODUCTION AI



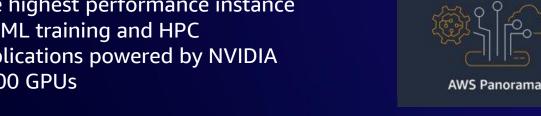
NVIDIA Launchpad

Hands-on labs

NVIDIA and AWS collaboration

GPU power from the cloud to the edge

The highest performance instance for ML training and HPC applications powered by NVIDIA H100 GPUs



Improve your operations with computer vision at the edge powered by NVIDIA Jetson

High-performance instances for graphics-intensive applications and ML inference powered by **NVIDIA A10G GPUs**

Spot defects with automated quality inspection powered by **NVIDIA Jetson**

The best price performance in Amazon EC2 for graphics workloads powered by NVIDIA T4G GPUs

NVIDIA GPU-optimized software available for free in the AWS Marketplace

Deploy fast and scalable AI with **NVIDIA** Triton Inference Server in Amazon SageMaker

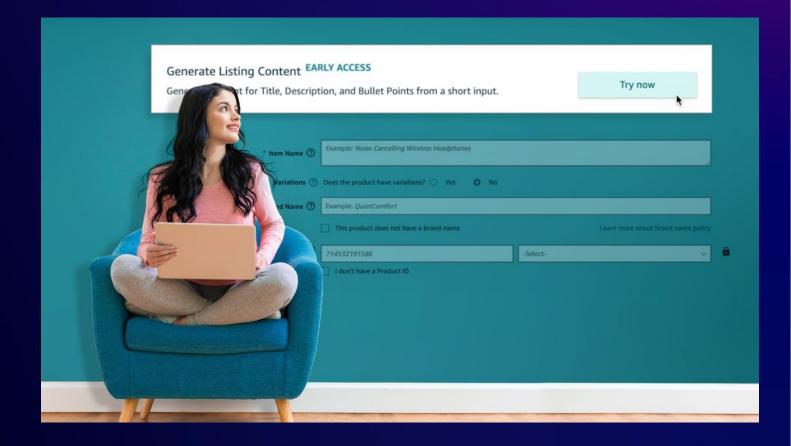
Amazon Catalog

Automatically generate product listings for sellers

Using NVIDIA Tensor Core GPUs, NVIDIA Triton Inference Server, and NVIDIA TensorRT, the Amazon Catalog team achieved

- 50% CO2 reduction
- 3x latency improvement
- 2x throughput improvement

toward generative AI for the product listing program

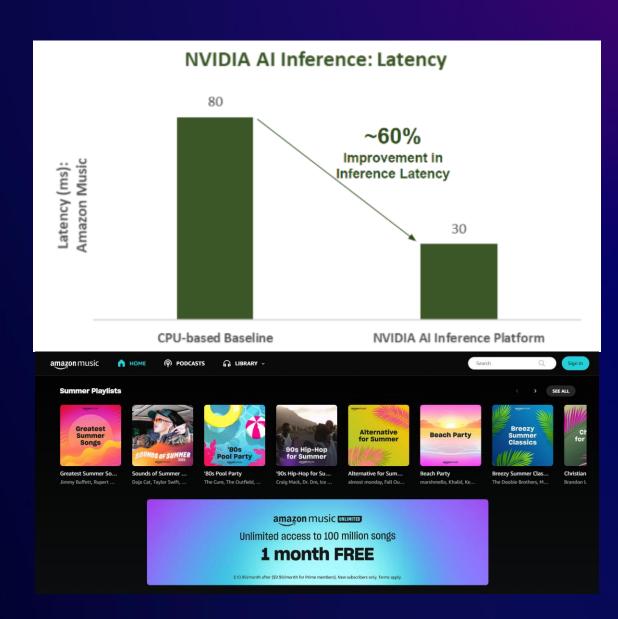


Amazon Music

Corrects misspelled words in music search

Using NVIDIA Tensor Core GPUs, NVIDIA Triton Inference Server, and NVIDIA TensorRT, Amazon Music achieved:

- 12x reduction in training time by optimizing GPU utilization
- 63% reduction in inference latency vs. CPUs
- 73% reduction in inference cost vs. CPUs
- 25 ms end-to-end latency at peak traffic



Amazon Search

Real-time spell check for product search

- One of the most visited e-commerce websites
- Deep learning (DL) AI model for automatic spell correction to search effortlessly
- Triton and TensorRT meets sub-50 ms latency target and delivers 5X throughput for DL model on GPUs on AWS
- Triton Model Analyzer reduced time to find optimal configuration from weeks to hours

NVIDIA AI on AWS

NGC

PORTAL TO AI SERVICES, SOFTWARE, AND SUPPORT

NGC Catalog

Cloud services

Tested across GPU-accelerated platforms

Al Services for NLP, biology, speech

AI workflow management and support

Performance-optimized

End-to-end AI development

Monthly sw container updates

SOTA models

Fully transparent

Quickly find/deploy the right software

Detailed security scan reports

Model resumes

Accelerates development

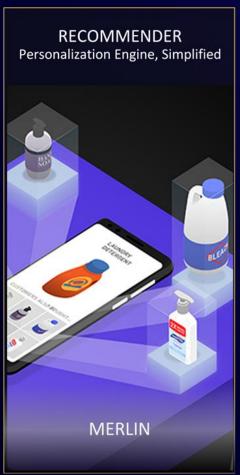
Focus on building, not setup

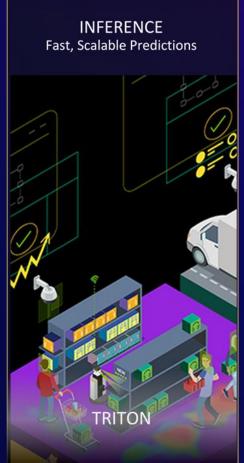
One-click deploy from NGC

Develop once; deploy anywhere with NVIDIA VMI

Accelerating the next wave of Al

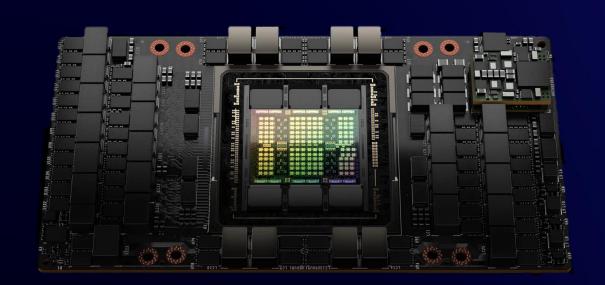
AI PLATFORM UPDATES



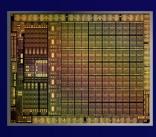


NVIDIA H100

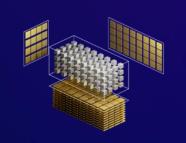
THE NEW ENGINE OF THE WORLD'S AI INFRASTRUCTURE



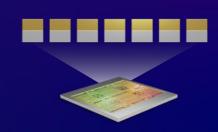
Powering next generation of GPU systems in AWS



World's most advanced chip



Transformer engine

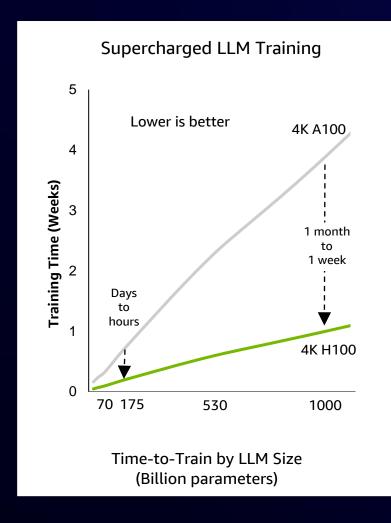


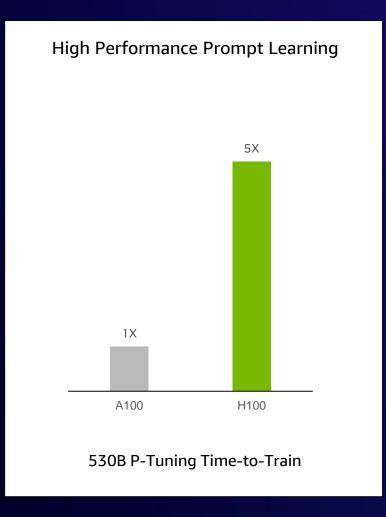
2nd-gen MIG

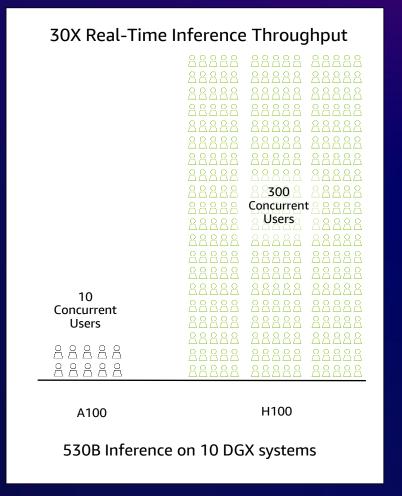
Confidential computing

NVIDIA H100 supercharges LLMs

HOPPER ARCHITECTURE ADDRESSES LLM NEEDS AT SCALE





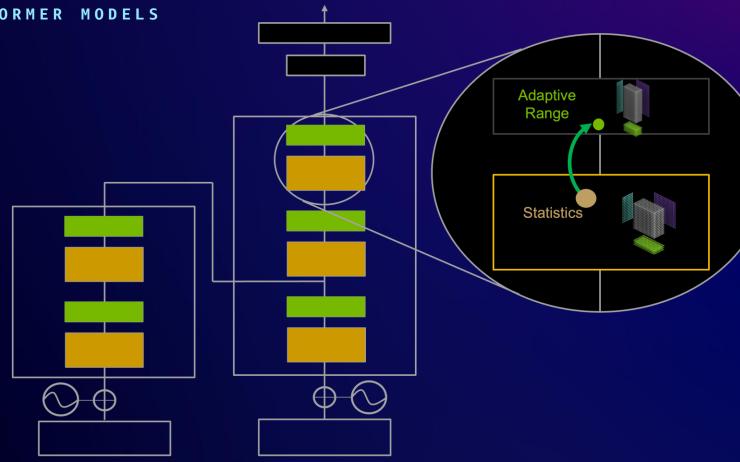


Transformer engine

TENSOR CORE OPTIMIZED FOR TRANSFORMER MODELS

- 6x faster training and inference of transformer models
- NVIDIA tuned adaptive range optimization across 16-bit and 8-bit math
- Configurable macro blocks deliver performance without accuracy loss

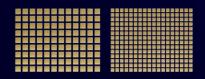
• Why is this important for your model training?



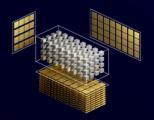
Statistics and Adaptive Range Tracking

NVIDIA A100

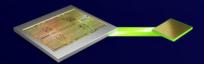
SUPERCHARGING THE WORLD'S HIGHEST PERFORMING AI SUPERCOMPUTING GPU



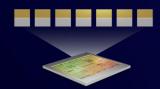
80GB HBM2e For largest datasets and models



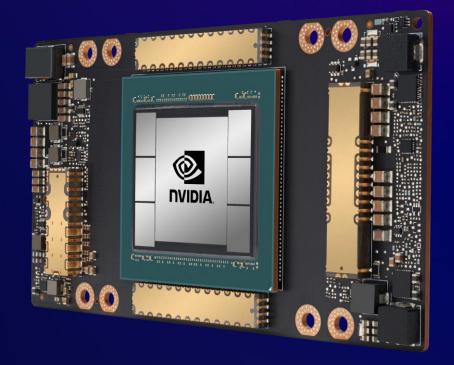
3rd-gen Tensor Core



2 TB/s +
World's highest memory bandwidth
To feed the world's fastest GPU



Multi-instance GPU



*Powering AWS P4d/P4de Instances

Amazon EC2 instance powered by NVIDIA GPUs

ACCESSIBLE VIA AWS, AWS MARKETPLACE, AND AWS SERVICES

NVIDIA GPU	AWS Instance	GA	Use Case Recommendations	Regions	GPU Memory	GPUs	On-Demand Price/Hour
Т4	G4	9/2019	The universal GPU ML inference, training, remote visualization workstations, rendering, video transcoding * Includes Quadro Virtual Workstation	20+	16 GB	1, 4, 8	\$0.52 - \$7.82
T4G	G5g	11/2021	Graphic workloads such as Android game streaming, ML inference, graphics rendering, and AV simulation	5	16 GB	1, 2	\$0.42
A10G	G5	11/2021	Best performance for graphics, HPC and cost-effective ML inference	3	24 GB	1, 4, 8	\$1.00
A100	P4d, P4de	11/2020	ML training, HPC across industries	8	40, 80 GB	8	\$32.77
H100	P5	7/26/202 3	Best performance, ML training, HPC across industries	2	80 GB	8	\$98.32

EC2 G5g is now available in US East (N. Virginia), US West (Oregon), and Asia Pacific (Tokyo ,Seoul and Singapore) regions; on-demand, reserved and spot pricing available

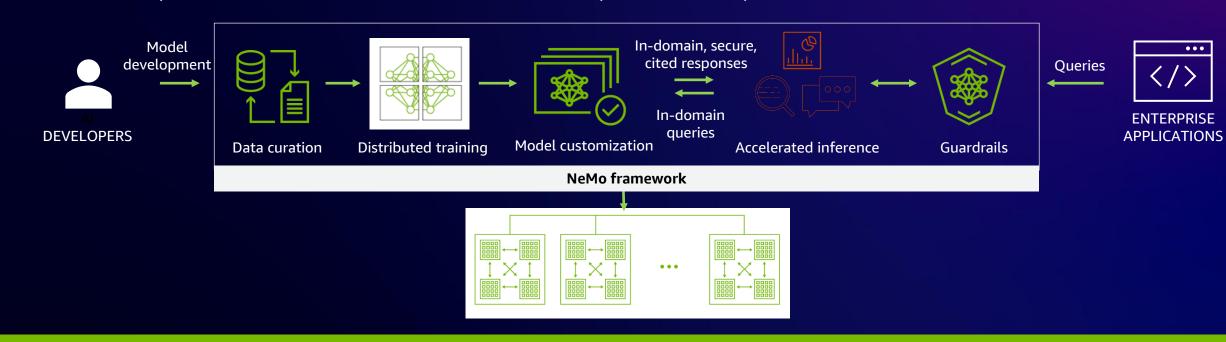
EC2 G5 is now available in US East (N. Virginia), US West (Oregon), and Europe (Ireland) regions; on-demand, reserved, spot or as part of savings plans

EC2 P4d is now available in US East (N. Virginia and Ohio), US West (Oregon), Europe (Ireland and Frankfurt), and Asia Pacific (Tokyo and Seoul) regions; on-demand, reserved, spot, dedicated host or savings plan availability

Training

NeMo Framework

END-TO-END, CLOUD-NATIVE FRAMEWORK TO BUILD, CUSTOMIZE, AND DEPLOY GENERATIVE AI MODELS



Multi-modality support

Build language, image, generative AI models

Data Curation @ Scale

Extract, deduplicate, and filter info from large unstructured data at scale

Optimized Training

Accelerate training and throughput by parallelizing the model and the training data across 1,000s of nodes

Model Customization

Easily customize with Ptuning, SFT, Adapters, RLHF, AliBi

Deploy at-scale Anywhere

Run optimized inference at scale anywhere

Guardrails

Keep applications aligned with safety and security requirements using NeMo Guardrails

Support

NVIDIA AI Enterprise and experts by your side to keep projects on track

Now in general availability with NVIDIA AI Enterprise

Multi-modal available via early access now

Model architecture support across modalities

NEMO FRAMEWORK NOW SUPPORTS TRAINING AND DEPLOYMENT OF POPULAR MODEL ARCHITECTURES

Language models

GPT T5, mT5, T5-MoE BERT

Text-to-image models

Prompt: A 'sks' dog mecha robot

Stable Diffusion v1.5/v2.0 Imagen Vision Transformers CLIP

Image-to-image models

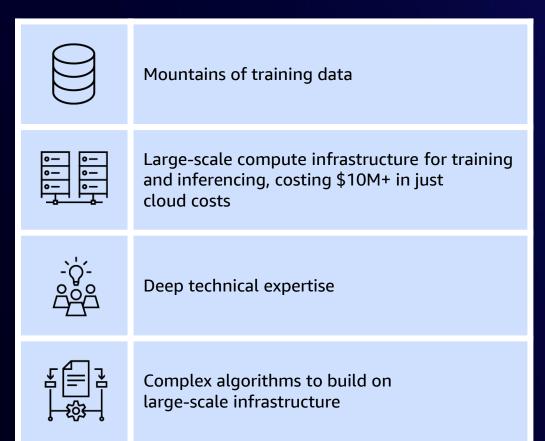
Instruction: Make it on a beach

Dreambooth
InstructPix2Pix

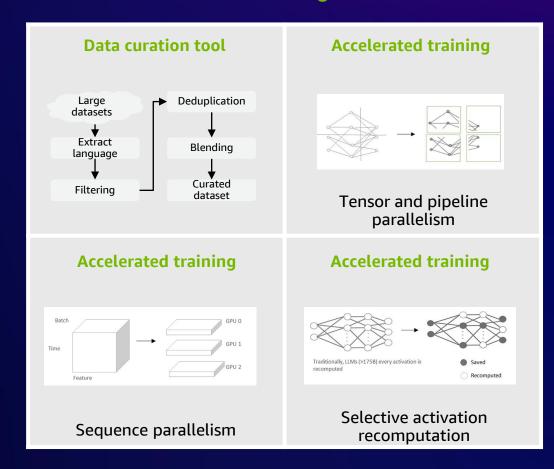
Building generative AI foundation models

EFFICIENTLY AND QUICKLY TRAINING MODELS USING NEMO

Challenges of building foundation models



Accelerated training with NeMo



Solving pain points across the stack

UNMET NEEDS

NEMO ADDRESSING NEEDS

Large-scale data processing

Data curation & preprocessing tools

Multilingual data processing & training

 \longrightarrow

Relative positional embedding (RPE) – multilingual support

Finding optimal hyperparameters

Hyperparameter tool

Convergence of models

Verified recipes for large GPT and T5-style models

Scaling on clouds

Scripts/configs to run on Azure, OCI, and AWS

Deploying for inference

Model navigator and export to FT functionalities

Deployment at scale

Quantization to accelerate inferencing

Evaluating models in industry standard benchmarks

Productization evaluation harness

Differing infrastructure setups

Full-stack support with FP8 and Hopper support

Lack of expertise

Documentation

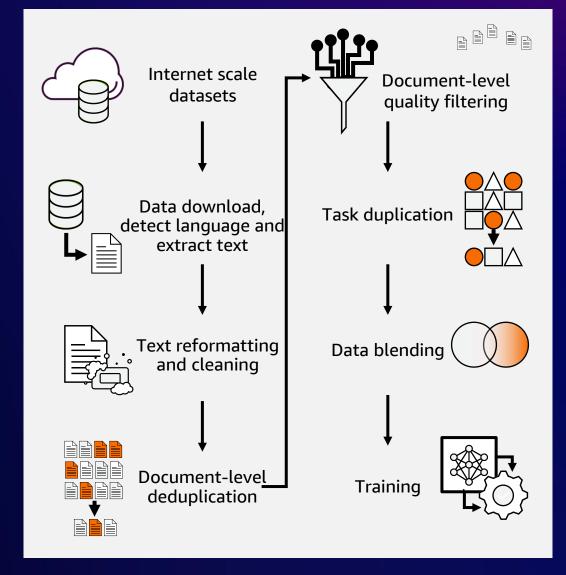
Data curation improves model performance

NEMO DATA CURATOR ENABLING LARGE-SCALE HIGH-QUALITY DATASETS FOR LLMS

- Reduce the burden of combing through unstructured data sources
- Download data and extract, clean, deduplicate, and filter documents at scale

NeMo Data Curator steps:

- Data download, language detection and text extraction HTML and LaTeX files
- 2. Text reformatting and cleaning Bad Unicode, newline, repetition
- 3. GPU-accelerated document-level deduplication
 - Fuzzy deduplication
 - Exact deduplication
- 4. Document-level quality filtering
 - Classifier-based filtering
 - Multilingual heuristic-based filtering
- 5. Task Deduplication Performs intra-document deduplication



Megatron core

TRANSFORMER PARALLELISM

PyTorch-based library for scaling transformer training

Core building blocks needed for a LLM FW

Tensor and pipeline parallelism

Distributed optimizer

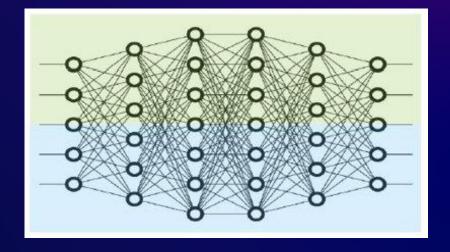
Expert parallelism (MoE)

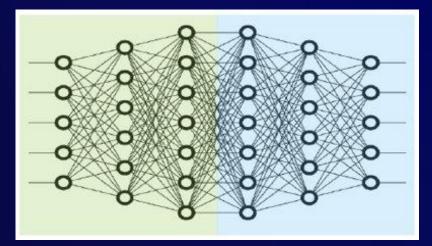
Distributed checkpointing

Modular transformer layer

GPT, BERT, T5, Models

Datasets



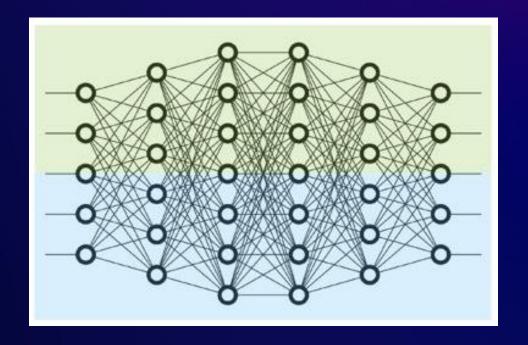


Tensor parallelism for training

TRAINING MODELS AT SCALE

Tensor (intra-layer) parallelism

- Split individual layers across multiple GPUs
- Devices compute different parts of Layers 0,1,2,3,4,5
- Reduces amount of computation on each worker
- Allows scaling of layer size, for bigger models, weakscale, potential perf improvements with strongscaling

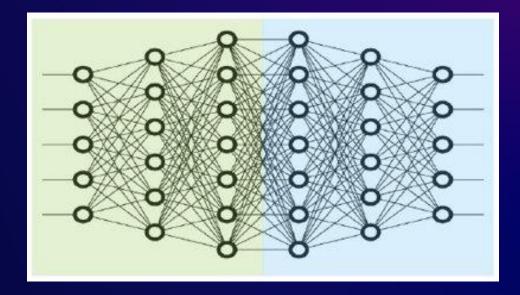


Pipeline parallelism for training

TRAINING MODELS AT SCALE

Pipeline (inter-layer) parallelism

- Split contiguous sets of layers across multiple GPUs
- Layers 0,1,2 and layers 3,4,5 are on different GPUs
- Support for interleaved scheduling to reduce pipeline bubbles
- More difficult to implement for wide range of models then tensor parallelism





Sequence parallelism for training

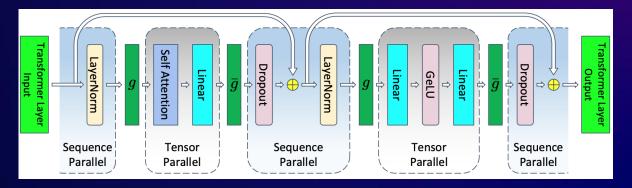
TRAINING MODELS AT SCALE

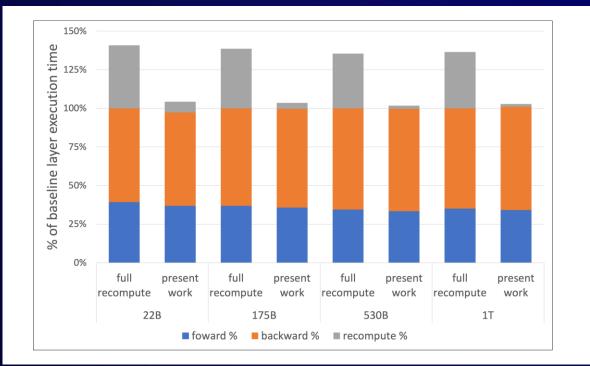
SEQUENCE PARALLELISM

- Splits tensors across the time/sequence dimension
- Reduce memory consumption of activation tensors to reduce recomputation of activations during back-prop

SELECTIVE ACTIVATION RECOMPUTATION

- Choose activations to calculate based on compute-memory tradeoff
- Lower memory footprint of activations and increase throughput of network





Impact of high cost of training LLMs

NEED FOR FASTER AND MORE EFFICIENT WAYS OF TRAINING LARGE MODELS

Economic impact

- Billions of parameters may cost millions of dollars if models are trained inefficiently
- Source: <u>The Cost Of Training</u> <u>NLP Models</u>
- \$2.5k \$50k (110 million parameter model)
- \$10k \$200k (340 million parameter model)
- \$80k \$1.6m (1.5 billion parameter model)
- The cost of one training run, and a typical fullyloaded cost with hyper-parameter tuning and multiple runs per setting
- The following figures are based on internal AI21
 Labs data The figures also assume the use of cloud
 solutions such as GCP or AWS, and on-premise
 implementations are sometimes cheaper. Still, the
 figures provide a general sense of the costs.

Environmental impact

- Significant CO2 emissions resulting per kilowatt of compute energy used
- Source: <u>Energy and Policy</u> <u>Considerations for Deep</u> <u>Learning in NLP</u>

Consumption	CO ₂ e (lbs)						
Air travel, 1 passenger, NY↔SF	1984						
Human life, avg, 1 year	11,023						
American life, avg, 1 year	36,156						
Car, avg incl. fuel, 1 lifetime	126,000						
Training one model (GPU)							
NLP pipeline (parsing, SRL)	39						
w/ tuning & experimentation	78,468						
Transformer (big)	192						
w/ neural architecture search	626,155						
Table 1: Estimated CO ₂ emissions from training com-							

mon NLP models, compared to familiar consumption.¹

Barrier to entry

 Startups, non-profits, and small colleges have limited accessibility to SOTA models due to unaffordable costs

Resource contention on large clusters

- Limited compute budget with multiple teams and projects on a shared cluster
- Limited scope of making corrections to a trained model

Other concerns

 Language inclusion, toxicity, profanity, etc. (ongoing separate research— will not be addressed in this talk)

What drives the cost of training LLMs

EXTREMELY HIGH COST OF EXPERIMENTATION

Hidden cost of training LLMs

 Besides the direct cost drivers such as dataset size, model size and training volume, there are inefficiencies in how we approach experiments that escalate the overall cost of experimentation

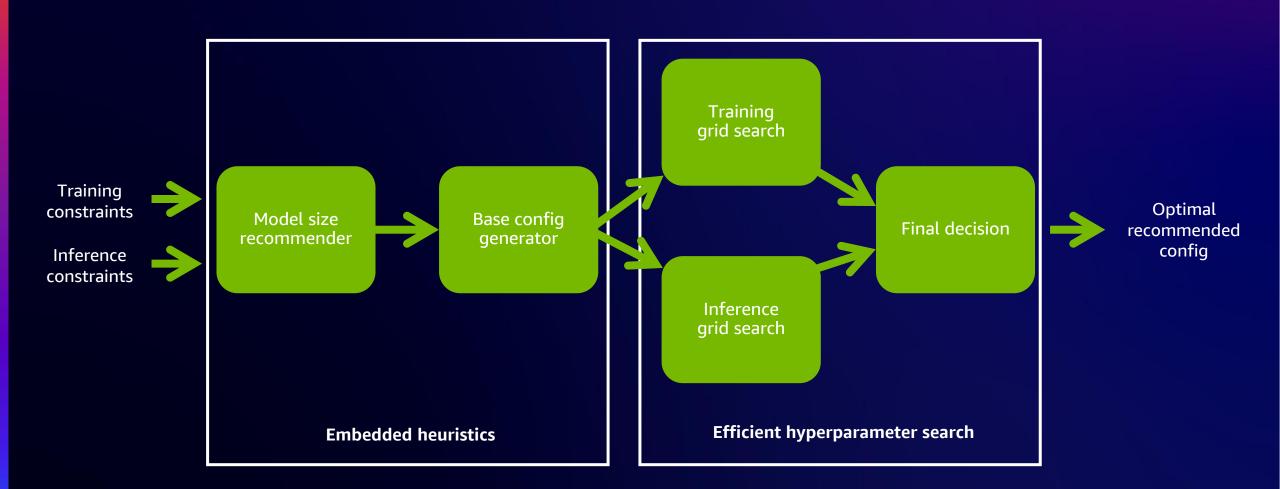
Multiple runs to train meaningful models

- Multiple runs to arrive at stable hyperparameter configuration
- Multiple runs to achieve high scaling efficiency during training
- Multiple inference tests to achieve high throughput and low latency
- Repeat the above steps multiple times for different model sizes
- This reduces or eliminates the scope of making corrections or changes to an already trained model

- What is the right model size for my hardware?
- Which hyperparameters are the most sensitive to convergence?
- How should I improve the throughput of my training runs?
- Which hyperparameters should I change when we add more GPUs?
- How can I use my existing compute optimally?

AutoConfigurator tool

EFFICIENT HYPERPARAMETER SEARCH WITH EMBEDDED HEURISTICS



AutoConfigurator inputs

MAKING NEMO FRAMEWORK FAST AND EASY TO USE

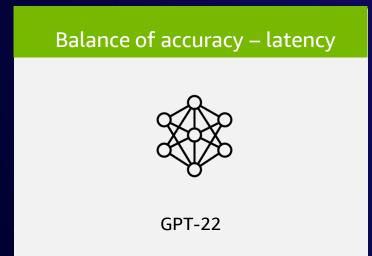
- The user only needs to set some minimal parameters:
 - Model type and optionally size (i.e., GPT-3, 20B params)
 - Number of GPUs to use (i.e., 32 nodes with 8 GPUs each)
 - Vocab size (i.e., 51200 for GPT-3)
 - Number of tokens to run for (i.e., 300B tokens for GPT-3)
 - Grid search training run parameters such as max steps to train
- The tool also allows the user to provide the training constraints instead of the model size for users who don't know what size to use:
 - GPT-3 with 16 nodes for 6 days → 5B parameter model

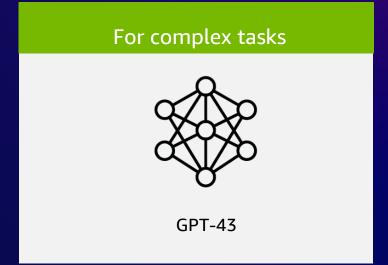
NVIDIA NeMo works with powerful generative foundation models

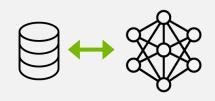
SUITE OF GENERATIVE FOUNDATION LANGUAGE MODELS BUILT FOR ENTERPRISE HYPER-PERSONALIZATION

Fastest Responses

GPT-8







Community-built models

Falcon LLM

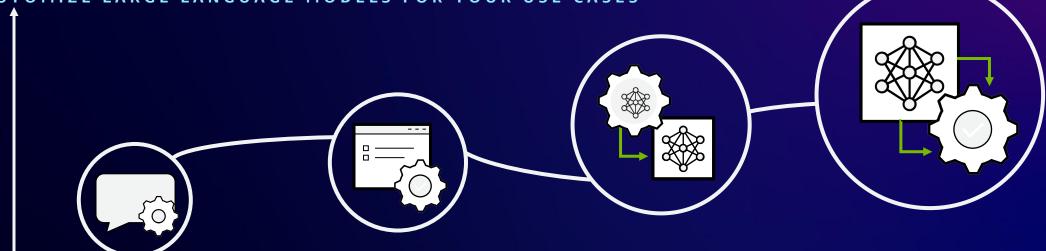
Llama

MPT

StarCoder

Suite of model customization tools in NeMo

WAYS TO CUSTOMIZE LARGE LANGUAGE MODELS FOR YOUR USE CASES



PROMPT LEARNING

- Prompt tuning
- P-tuning

Adapters

- LoRA
- IA3

Accuracy for specific use cases

SFT

RLHF

 Good results leveraging pretrained LLMs

PROMPT ENGINEERING

Chain-of-thought reasoning

Few-shot learning

System prompting

- Lowest investment
- Least expertise
- Cannot add as many skills or domain specific data to pretrained LLM
- Better results leveraging pretrained LLMs
- Lower investment
- Will not forget old skills
- Best results leveraging pretrained LLMs

PARAMETER EFFICIENT FINE-TUNING

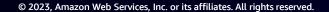
- Will not forget old skills
- Best results leveraging pretrained LLMs

INSTRUCTION TUNING

- Change all model parameters
- Medium investment May forget old skills
 - Large investment
 - Most expertise needed

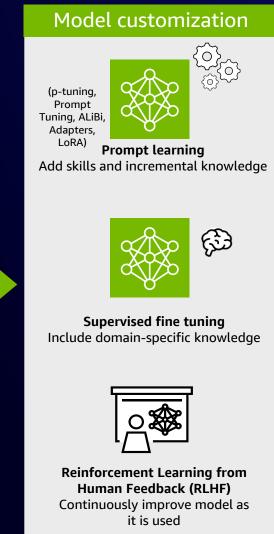
• Less comprehensive ability to change all model parameters

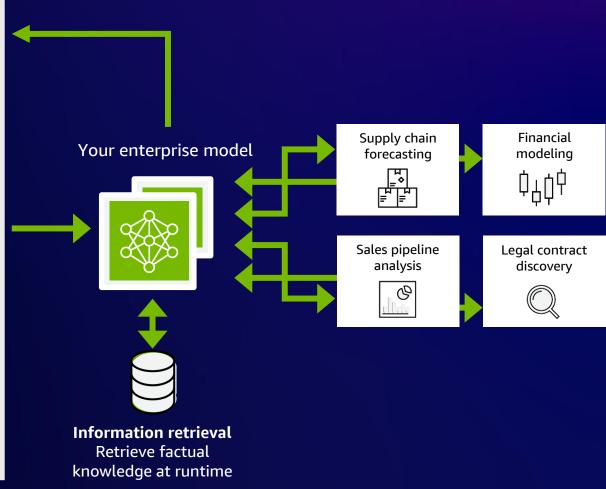
 Takes longer to train More expertise needed



Model customization for enterprise-ready LLMs

CUSTOMIZATION TECHNIQUES TO OVERCOME THE CHALLENGES OF USING FOUNDATION MODELS





Foundation model

Reinforcement from human feedback

OPEN-SOURCE, SCALABLE, AND DISTRIBUTED LIBRARY TO FINE-TUNE LLMS OF ANY SIZE USING RLHF

1

Supervised fine tuning of LLM

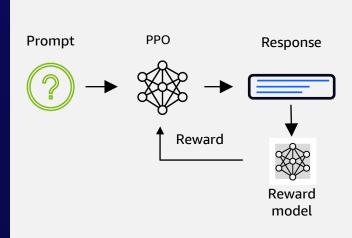
2

Train reward model with human feedback

Humans rating responses Reward (preference) model

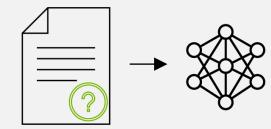
100K-1M responses ranked and rated reward model – trained to mimic human feedback of model generated responses to prompts Reinforcement learning pipeline with human feedback

3



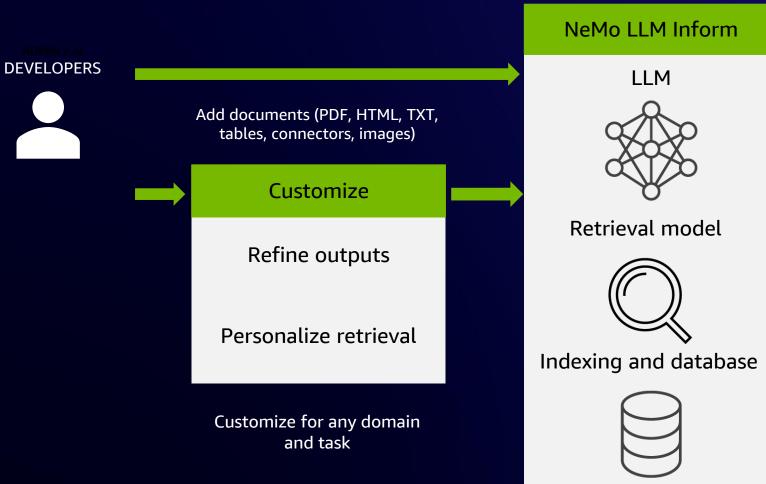
Build pipeline with RLHF to continuously improve model over time

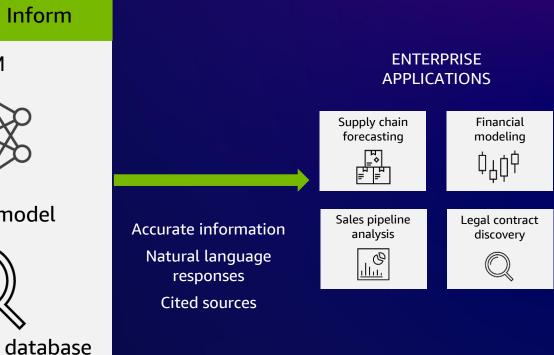
4 models: PPO Policy Network, PPO Value Network, Reward Model, Initial Policy



~10K-100K prompt-responses as input Fine-tune LLM using prompt and responses

Retrieval augmented models





Guardrails can keep LLMs on track

ENSURE ACCURACY, APPROPRIATENESS, AND SECURITY IN LLMS

Topical guardrails

Focus interactions within a specific domain

Safety guardrails

Prevent hallucinations, toxic, or misinformative content

Security guardrails

Prevent executing malicious calls and handing power to a third-party app

Get started with NeMo framework

Download now - language

Apply now - multimodal

Web pages

- NVIDIA Generative AI Solutions
- NVIDIA NeMo Framework
- NeMo Guardrails TechBlog

Blogs

- What are Large Language Models?
- What Are Large Language Models Used For?
- What are Foundation Models?
- How To Create A Custom Language Model?
- Adapting P-Tuning to Solve Non-English Downstream Tasks
- NVIDIA AI Platform Delivers Big Gains for Large Language Models
- The King's Swedish: Al Rewrites the Book in Scandinavia
- <u>eBook Asset</u>
- No Hang Ups With Hangul: KT Trains Smart Speakers, Customer Call Centers With NVIDIA AI

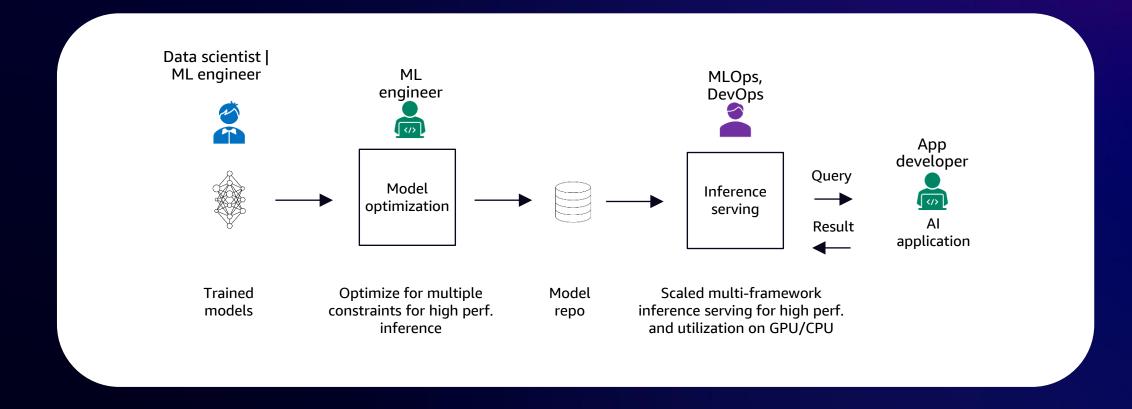
GTC sessions

- How to Build Generative AI for Enterprise Usecases
- Leveraging Large Language Models for Generating Content
- Power Of Large Language Models: The Current
 State and Future Potential
- Generative AI Demystified
- Efficient At-Scale Training and Deployment of
 Large Language Models GTC Session
- Hyperparameter Tool GTC Session

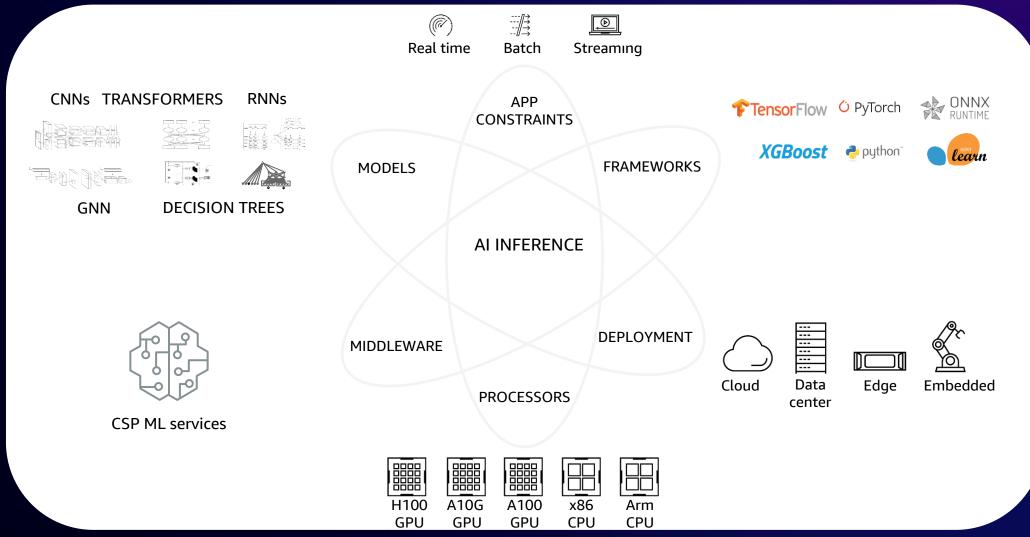
Deployment with Triton Inference Server

Al inference workflow

TWO-PART PROCESS IMPLEMENTED BY MULTIPLE PERSONAS



Challenges In AI inference



NVIDIA Triton Inference Server

OPEN-SOURCE SOFTWARE FOR FAST, SCALABLE, SIMPLIFIED INFERENCE SERVING

Any framework

Any query type

Any platform

DevOps and MLOps

Performance and utilization

C

Supports multiple framework backends natively e.g., TensorFlow, PyTorch, TensorRT, XGBoost, ONNX, Python, and more

Optimized for real time, batch, streaming, ensemble inferencing X86 CPU | Arm CPU | NVIDIA GPUs | MIG

Linux | Windows | Virtualization

Public cloud, data center and edge/embedded (Jetson) Integration with Kubernetes, KServe, Prometheus, and Grafana

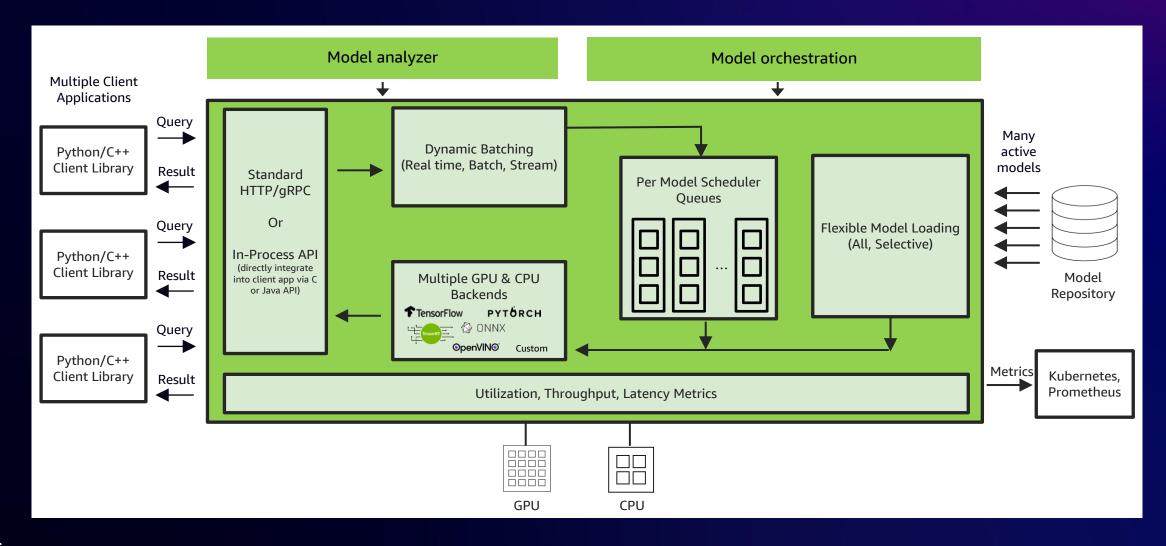
Available across all major cloud AI platforms

Model analyzer for optimal configuration

Optimized for high GPU/CPU utilization, high throughput and low latency

Triton's architecture

DELIVERING HIGH PERFORMANCE ACROSS FRAMEWORKS



Inference with many natively supported backends

TensorFlow 1.x/2.x

Any Model SavedModel | GraphDef

PyTorch

Any model

JIT/Torchscript | Python

TensorRT

All TensorRT optimized models

TF-TensorRT & TorchTRT

Any TensorFlow and PyTorch model

Forest Inference Library (FIL)

Tree-based models (e.g., XgBoost, Scikit-learn RandomForest)

ONNX RT

ONNX converted models

Python

Custom code in Python e.g. pre/post processing, any Python model.

TensorRT-LLM

Multi-GPU, multi-node inferencing for large language models (LLM)

OpenVINO

OpenVINO optimized models on Intel architecture

Custom C++ Backend

Custom framework in C++

DALI

Pre-processing logic using DALI operators

NVTabular

Feature engineering and preprocessing library for tabular data

HugeCTR

Recommender model with large embeddings

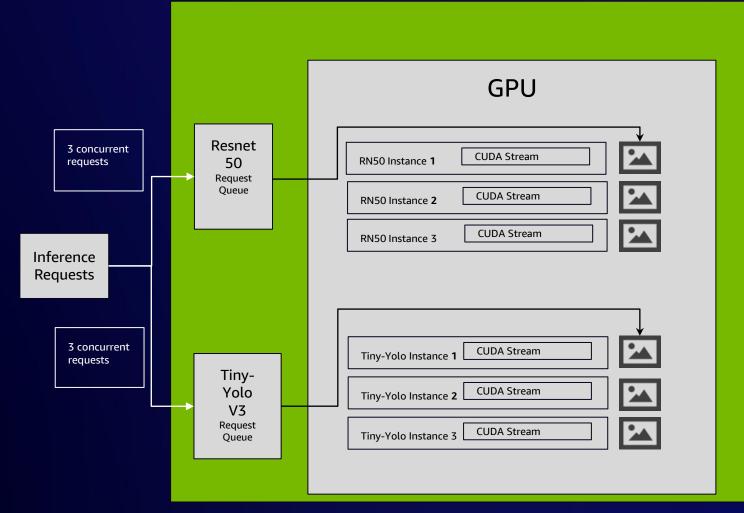
Concurrent model execution

INCREASE THROUGHPUT AND UTILIZATION

Triton can run concurrent inference on:

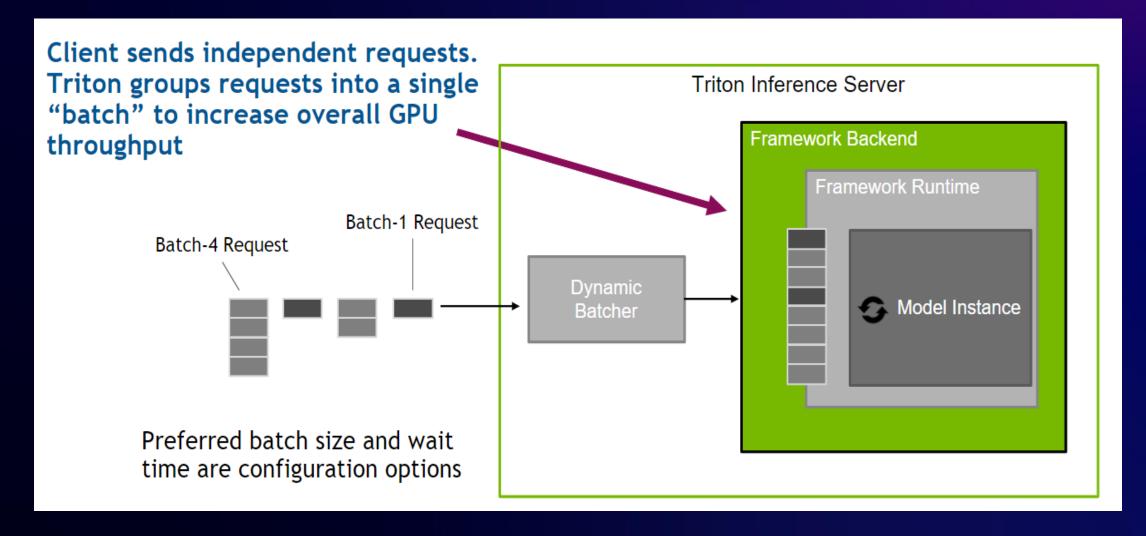
- 1) Multiple different models
- And/or multiple copies of the same model in parallel on the same system

Maximizes GPU utilization, enabling better performance and lowering the cost of inference



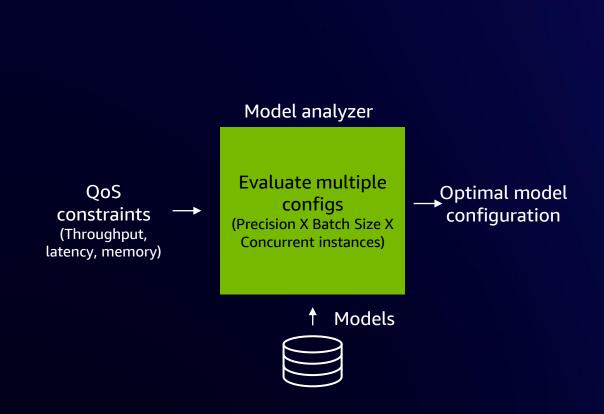
Dynamic batching scheduler

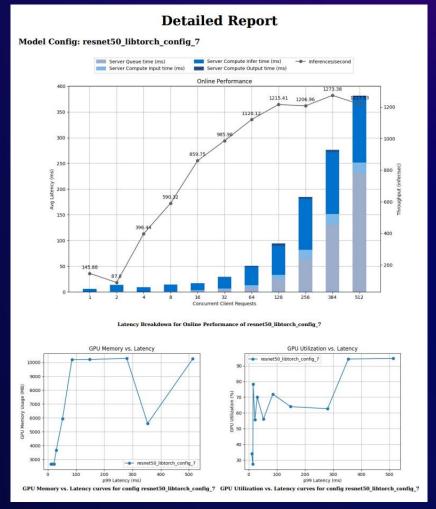
GROUP REQUESTS TO FORM LARGER BATCHES AND INCREASE GPU UTILIZATION



Optimal model configuration

USING THE MODEL ANALYZER CAPABILITY



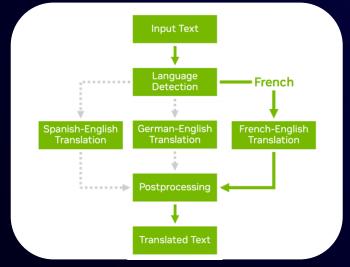


GitHub repo and docs: https://github.com/triton-inference-server/model_analyzer

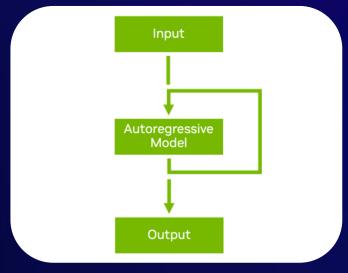
Model pipelines with business logic scripting

CONTROL FLOW AND LOOPS IN MODEL ENSEMBLES

- Model ensembles beyond simple pipelines:
 Enables arbitrary ordering of models with conditionals, loops, and other custom control flow
- Call any other backend from the Python or C++ backend:
 Triton will efficiently pass data to and from the other backend



Conditional model execution

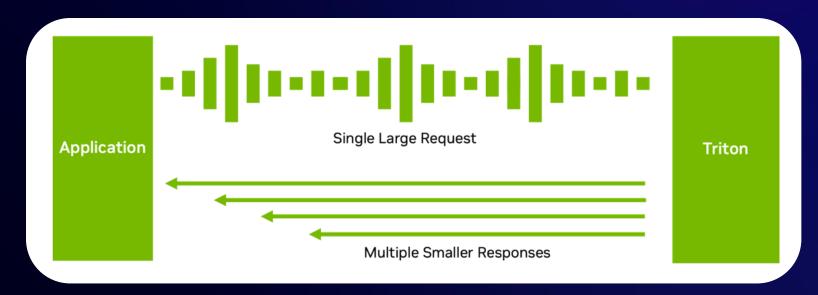


Looping execution for autoregressive models

Decoupled models

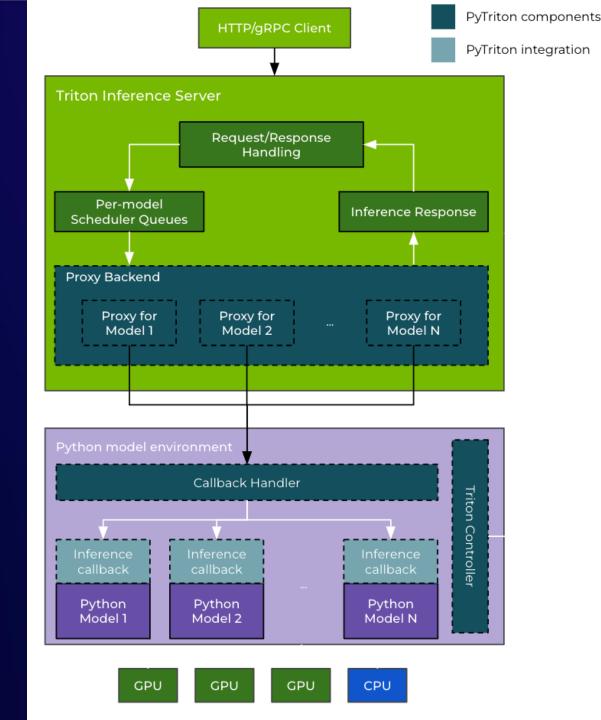
ALLOWS 0, 1, OR 1+ RESPONSES PER REQUEST

- For situations where requests and responses are not strictly 1-to-1
 e.g., automated speech recognition use cases
- Supported in C++ and Python back-end
- Requires use of gRPC bi-directional streaming API or in-process C/Java API



PyTriton

- Provides a more "Flask-like experience" for users
 - No need for model repo and config.pbxt file
 - Enables faster prototyping
- Ease of integration into existing codebase with a python interface
 - Integrate Triton directly into training container/environment
 - Requires a simple pip install rather installing large container
 - All Triton dependencies included
- Unlocks new use cases
 - e.g., online training
- Easily deploy any Python model/function
 - JAX, PyTorch models that don't export (e.g. DGL), RAPIDS, Numpy
- Enables rich set of preprocessing capabilities without need for custom backend
 - e.g., emulate dynamic batching for models that don't support it



Delivering value across industries

Search & ads

Grammar check

Multiple use cases

Retail product Identification

Payment fraud detection

Meeting transcription

Digital copyright management

Document translation

Medical imaging

Image

classification and recommendation

Text to speech for smart speaker

> **SIEMENS** energy

Preventive maintenance

Image processing for autonomous driving

Defect detection

Tencent 腾讯

Contact center speech analytics

Financial fraud detection

Package analytics

Clinical notes analytics

ByteDance Volcengine ML Platform

co:here

NLP Services

Fraud. fintech

Coding assistant

Similar image search

ΑI character generation

Learn more and download

For more information:

https://developer.nvidia.com/nvidia-triton-inference-server

Get the ready-to-deploy container with monthly updates from the NGC catalog: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver

Open-source GitHub repository: https://github.com/NVIDIA/triton-inference-server

Latest release information: https://github.com/triton-inference-server/server/releases

Quick start guide:

https://github.com/triton-inference-server/server/blob/main/docs/quickstart.md

Triton Inference Server on Amazon SageMaker

A Triton Inference Server Container developed with NVIDIA, includes NVIDIA Triton Inference Server along with useful environment variables to tune performance (e.g., set thread count) on SageMaker

Use with Amazon SageMaker Python SDK to deploy your models on scalable, cost-effective SageMaker endpoints without worrying about Docker

Code examples to find readily usable code samples using Triton Inference Server with popular machine learning frameworks on Amazon SageMaker

Benefits of Triton Inference Server on Amazon SageMaker

Cost-effective – SageMaker optimizes scale and performance to reduce costs

MLOps-ready – Includes metadata persistence, model management, logging metrics to Amazon CloudWatch, and monitoring data drift and performance

Flexible – Ability to run real-time inference for low latency, offline inference on batch data, and asynchronous inference for longer inference times

Secure – High-bar on security, with available mechanisms including encryption at rest and in transit, VPC connectivity, and fine-grained IAM permissions

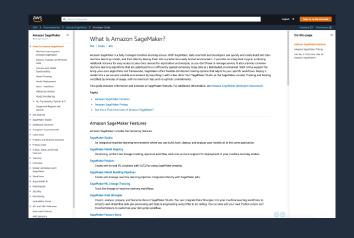
Less heavy lifting – No container registry management, no custom installation of libraries, no extra SDK configuration

Get started with Triton Inference Server on Amazon SageMaker

Sample notebooks

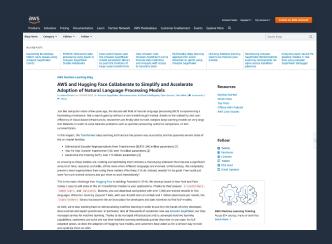
Access GitHub

Documentation



AWS Documentation

Launch blog



Read the blog

Amazon SageMaker and Triton technical resources

Triton on SageMaker:

Amazon announces new NVIDIA Triton Inference Server on Amazon SageMaker

Use Triton Inference Server with Amazon SageMaker

Host ML models on Amazon SageMaker using Triton: Python backend

Host ML models on Amazon SageMaker using Triton: TensorRT models

Hosting ML Models on Amazon SageMaker using Triton: XGBoost, LightGBM, and Treelite Models

Run multiple deep learning models on GPU with Amazon SageMaker multi-model endpoints

Achieve low-latency hosting for decision tree-based ML models on NVIDIA Triton Inference Server on Amazon SageMaker

Achieve hyperscale performance for model serving using NVIDIA Triton Inference Server on Amazon SageMaker

Deploy fast and scalable AI with NVIDIA Triton Inference Server in Amazon SageMaker

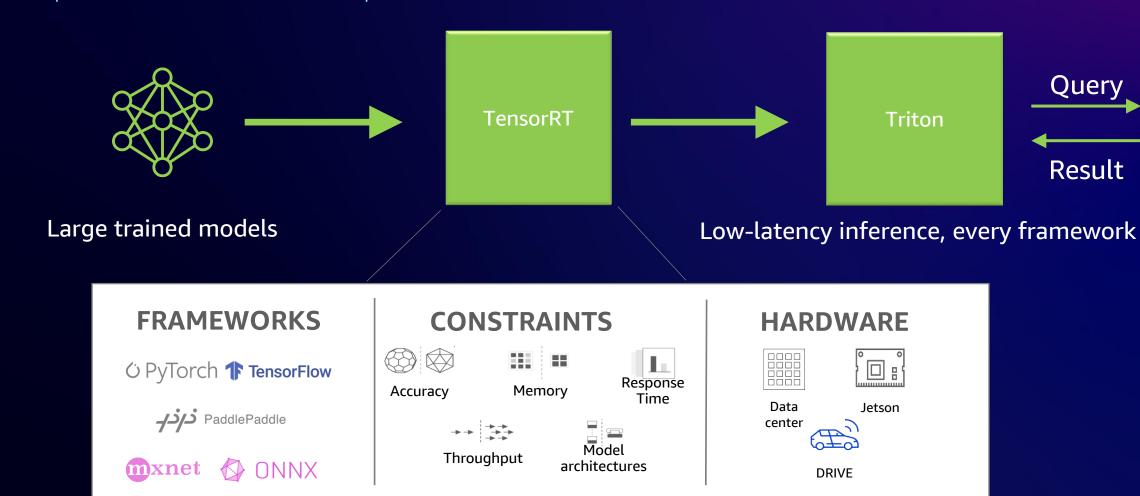
Getting the Most Out of NVIDIA T4 on AWS G4 Instances

How Amazon Search achieves low-latency, high-throughput T5 inference with NVIDIA Triton on AWS

Acceleration with TensorRT

Inference is complex

REAL TIME | COMPETING CONSTRAINTS | RAPID UPDATES



World-leading inference performance

TENSORRT ACCELERATES EVERY WORKLOAD

BEST-IN-CLASS RESPONSE TIME AND THROUGHPUT VS. CPUs

36X

Computer vision < 7ms

10X

Reinforcement learning

583X

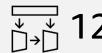
Speech recognition < 100ms

178X

Text-to-speech < 100ms

21X

NLP < 50ms



Recommenders < 1 sec

NVIDIA TensorRT

SDK FOR HIGH-PERFORMANCE DEEP LEARNING INFERENCE

Optimize and deploy neural networks in production.

Maximize throughput for latency-critical apps with compiler and runtime; optimize every network, including CNNs, RNNs, and Transformers

- 1. Reduced mixed precision: FP32, TF32, FP16, and INT8
- 2. Layer and tensor fusion: Optimizes use of GPU memory bandwidth
- 3. Kernel auto-tuning: Select best algorithm on target GPU
- 4. Dynamic tensor memory: Deploy memory-efficient apps
- 5. Multi-stream execution: Scalable design to process multiple streams
- 6. Time fusion: Optimizes RNN over time steps

Trained DNN

TensorRT Optimizer

TensorRT Runtime

Embedded

Automotive

Data center

Jetson

Drive

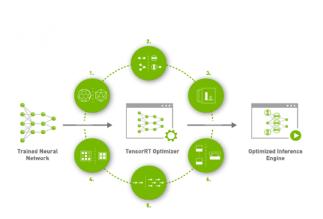
Data Center GPUs

Download TensorRT today

TensorRT

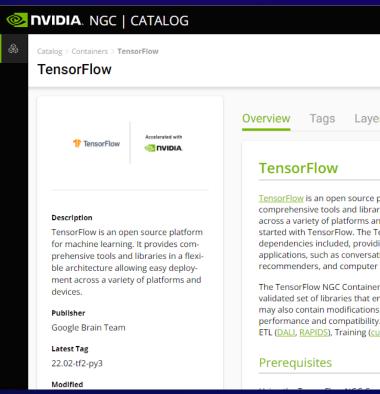
NVIDIA TensorRT NVIDIA® TensorRT™, an SDK for high-performance deep learning inference, includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for inference applications.

GET STARTED



Torch-TensorRT

TensorFlow-TensorRT



Large language model ecosystem

RAPID EXPANSION IN LLMS, INFERENCE IMPORTANCE INCREASING

LLM ecosystem expanding rapidly

- Increase in the rate of performant community LLMs
 - LLaMa, Dolly, Falcon, Starcoder, ChatGLM, MPT
- Many new operators, fine tuning, and quantization
- More and more companies deploying LLMs

Inference importance increasing

- Need good inference deployments for production
- Performance decreases costs and improves user experience
- Large model sizes drives costs and complexity of deployment

Need performant, extensible, and robust solution

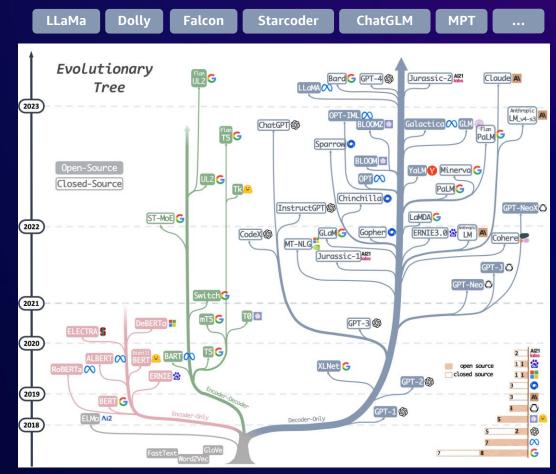


Image from Mooler0410/LLMsPracticalGuide

Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., ... Hu, X. (2023). Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. arXiv [Cs.CL]. Retrieved from http://arxiv.org/abs/2304.13712

Current ecosystem for LLMs

IMPROVING ON NV LLM INFERENCE OPTIMIZATION TO MEET ECOSYSTEM DEMAND

FasterTransformer

- 33x speedup over CPU, 6x over PyTorch GPU
 - Multi-gpu/node inference
 - Open-source kernels and models on GitHub
- Extension is difficult C++ & CUDA w/ no concrete API
- Lacks the support of a formal product
 - Docs, QA, CI/CD, release cadence, etc.

Performant

Goals for LLM inference

- Preserve performance, MGMN, and open-source
- Developers **enabled to extend and** support models directly
- Confidence to **deploy in production** as a full NV product



Extendable

Robust

TensorRT-LLM optimizing LLM inference

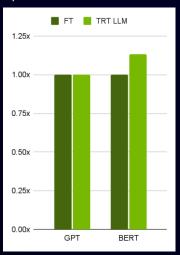
SOTA PERFORMANCE FOR LARGE LANGUAGE MODELS FOR PRODUCTION DEPLOYMENTS

•TensorRT-LLM is an open-source library for optimal performance on the latest Large Language Models for inference on NVIDIA GPUs

•TensorRT-LLM wraps TensorRT's Deep Learning Compiler, optimized kernels from FasterTransformer, pre/post processing, and MGMN communication in a simple open-source Python API for defining, optimizing, and executing LLMs for inference in production

SoTA performance

Leverage TensorRT compilation & kernels from FasterTransformer, CUTLASS, OAI Triton, ++



Ease extension

Add new operators or models in Python to quickly support new models & operators in LLMs with optimized performance

```
# define a new activation
def silu(input: Tensor) → Tensor:
    return input * sigmoid(input)

#implement models like in DL FWs
class BertModel(Module)
def __init__(...)
self.layers = ModuleList([...])

def forward (...)
hidden = self.embedding(...)

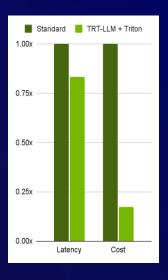
for layer in self.layers:
hidden_states = layer(hidden)
return hidden
```

MultiGPU-MultiNode

Seamlessly run pre-partition models across multiple GPUs or multiple nodes. Manually or auto-partition new models

LLM batching with Triton

Maximize throughput & GPU utilization through new scheduling techniques for LLMs

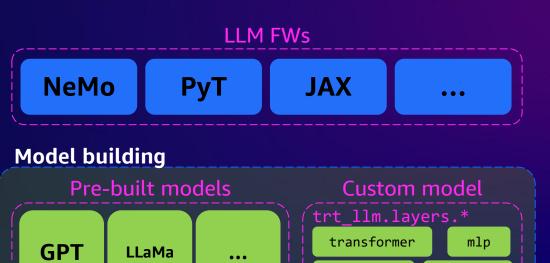


TensorRT-LLM overview

USAGE AND IMPLEMENTATION

TensorRT-LLM Inference

- PyTorch/TE-like building blocks for transformers
 - e.g., fMHA, layerNorm, activations, etc.
 - Built on top of <u>TensorRT Python API</u>
- Build arbitrary LLM or deploy pre-built implementations
 - e.g., GPT, LLaMa, BERT, etc.
- MGMN inference
 - Leverages NCCL plugins for multi-device communication
 - Long term will be OOTB in TRT
 - Pre-segmented graphs in pre-built models
 - User can manually segment for custom models
 - Future will allow automatic segmentation across GPUs
- Combines TRT layers, NCCL plugins, perf plugins, & pre/post processing ops into a single object
 - o Include tokenization and sampling (e.g., Beam search)



TensorRT-LLM Backend

TRT Primatives F I Kernels NCCL Comm.

attention

Pre/Post Processing

Model Execution

TensorRT-LLM Runtime

TRT Runtime

C++/Py Runtime

TensorRT-LLM usage

CREATE, BUILD, EXECUTE

- Instantiate model and load the weights
 - Load pre-built models or define via TRT-LLM Python APIs
- Build and serialize the engines
 - Compile to optimized implementations via TensorRT
 - Saved as a serialized engine
- Load the engines and run optimized inference
 - Execute in Python, C++, or Triton

0. Trained model in FW

NeMo, HuggingFace, or from DL Frameworks

1. Model initialization

Load example model, or create one via python APIs

2. Engine building

Optimized model via TRT and custom kernels

TRT-LLM Engine

TRT Engine

Kernel plugins

3. Execution

Load & execute engines in Python, C++, or Triton

LLM specific serving via Triton

MAXIMIZE GPU UTILIZATION & THROUGHPUT

- TensorRT LLM and Triton together will allow for new LLM specific batch scheduling to optimize throughput and GPU utilization
- Triton backend for TRT LLM
- Inflight batch updates Orca
 - Replace elements as completed with new requests
 - Significantly improves GPU utilitizionat and throughput for heterogeneous sequence length batches
- Up to 50% faster and 6x lower cost
- Stream output tokens for better UX



Batch Elements

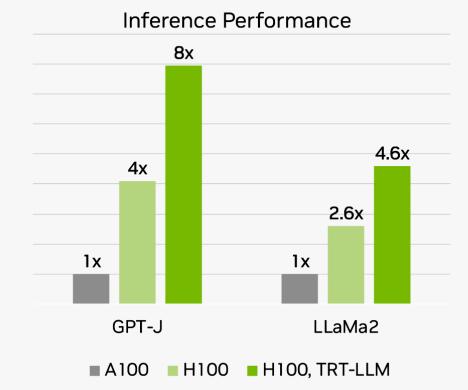
Inflight Batching

Inference performance

TENSORRT-LLM HAS SPEED-OF-LIGHT PERFORMANCE

- **8x** faster performance
 - Custom MHAs, Inflight-batching, paged attention, quantized KV cache, and more drive inference performance
- **5x** reduction in TCO
 - FP8 and Inflight-batching performance allows for H100 to improve TCO significantly
- **5x** reduction in energy
 - Performance allows for reduction of energy/inference, allowing for more efficient use of datacenters

 $\underline{https://developer.nvidia.com/blog/nvidia-tensorrt-llm-supercharges-large-language-model-inference-on-nvidia-h100-gpus/large-language-lang$

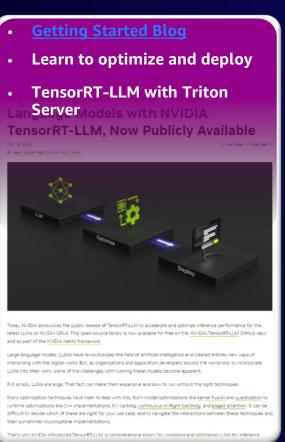


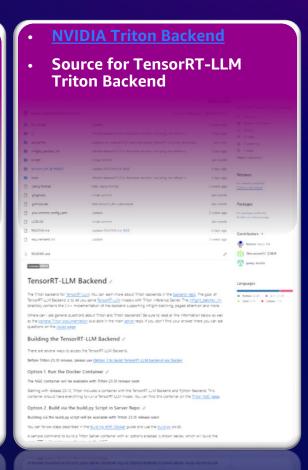
H100 FP8 w/ IFB in TRT-LLM vs A100 FP16 PyTorch

GPT-J LLaMa2 Total Cost of Ownership

TensorRT-LLM Available Now!

KEY RESOURCES FOR TENSORRT-LM





Call to action and conclusions

Conclusions

WHAT DID WE LEARN TODAY?

- NVIDIA GPUs power the most compute intensive workloads from computer vision to speech to language and many more
- NVIDIA NeMo Framework is a source open toolkit for large language model training and deployment
- NVIDIA Triton is an inference server for deploying your models
- NVIDIA TensorRT is an SDK for optimizing deep learning models
- NVIDIA TensorRT-LLM supercharges large language model inference

NVIDIA AI enterprise support

NVIDIA EXPERTS SUPPORTING YOUR AI POWERED BUSINESS

Starting from scratch
Expert guidance

Prioritizing with NVIDIAClose connection with product and engineering teams

Expanding a proof of conceptDeep Al knowledge

Using best practices to deploy GPUs
Real world experience across industries

Keeping ecommerce up and running

Fast response time

Thank you!

Please complete the session survey in the mobile app

Jiahong Liu
Jiahongl@nvidia.com

Peter Dykas wdykas@nvidia.com

