AWS

\nvent

ARC206

Scaling on AWS for the first 10
million users

Chris Munns Skye Hart
Startup Tech Lead/Advisor Manager, Startup SA
Amazon Web Services Amazon Web Services

aws © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\-",

We start with the goal of launching a new app

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

What do we mean by an app?

In the context of this session, assume we mean the full stack necessary
to deliver a business’s core technology product

> Could be the entirety of a startup’s product

> Could be one of many products in a larger company

> For today: App = user-interfacing layer + business logic layer + data

storage

88%

Users

 —
Browser '

o

Mobile app

aws’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved

oye

Frontend

Backend

Data storage

...
Acknowledging current technology trends

Modern frontend frameworks built using
JavaScript or derivatives

Full-stack frameworks that more closely integrate 00
front and backend development

Movement away from self-managed/DIY
infrastructure to managed services

Potential for rapid scale (measured in hours, not Er 8 &
days)

No architecture is designed
for high scalability on day 1.
But we'll try.

Me
Today

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

@H Build Measure |~

Learn

|3 | —
l — | =
— —
aws’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. =

So let’s start from

Day

Users: >1

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Users: >1

Amazon Route 53

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\;’

Users >1: Traditional frontend hosting

Traditional frontend hosting would have you .
serve your frontend content (HTML, CSS, Ml L e e
JavaScript, images, and so on) off of a simple
web-serving stack. That stack would minimally be
composed of: [Region
- Hosting tier for the webserver app (Nginx, Crs
ApaCheI and SO On) Elastic Load Balancing (ELB)
Optionally, a shared storage layer =T i
* A load balancer i Auto Scaling group i
.+ A CDN for edge caching Iy
i_ EC2 instances :
_______ T
lni,

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. EFS Sta ndard

...
Users >1: With a modern frontend

With a modern frontend, developers are choosing
to deploy them to specialized hosting products

Why? A —

i User Amazon Route 53
 Greatly reduced operations overhead |
« Built-in scale/performance ! '
- Integrations with the modern frontend & Backend

HEINE S
AWS Amplify Hosting

- Aligned developer experience capabilities

The backend then becomes a different
component(s)

Amplify Hosting

DEPLOY AND HOST GLOBALLY USING AMAZON CLOUDFRONT

How it works

Connect your repository Configure build settings

GitHu
) GitHub l_\\

' Bitbucket

Q@ GitLab

-
%}ﬂ AWS CodeCommit

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Deploy your app
(e]

02

02

:33:00 Preparing repository
02:
02:
:34:57 Launch prep complete
02:

33:05 Reticulating splines
34:11 Launch prep initiated

35:03 Launch

AN— &

Amplify Hosting features

FEATURES FOR HOSTING MODERN WEB APPLICATIONS

Globally available

master.myapp.amplifyapp.com

dev.myapp.amplifyapp.com

Feature
branch deployments

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

"

L N

Easy custom
domain setup

Atomic deployments

@

BACKEND BUILD FRONTEND

Simplified continuous
workflows

Password protection

Amplify Hosting — Supporting modern frameworks

Client-side rendered (single-page application)

* Frontend application loaded as JavaScript and runs in the client browser

» JavaScript files containing application logic, Ul, and communication with
backend I

%
* Popular frameworks such as React, Anqular, and Vue c
p g = —— =G
Server-side rendered (SSR) C“f’\”ts
» Rendering on the server before sending page to browser
» Data fetched from a database or CMS
* Ideal for applications that have personalized content for each user
 Popular frameworks include Next, Nuxt, and Gatsby < 4
n_'_ M
Static site generators (SSGs) DQD
 Content generated at the build time CDN Microservices

* Ideal for sites where content does not need to be highly personalized
* Typically used in concert with a headless CMS and CDN
 Popular solutions such as Gatsby, Eleventy, Hugo, VuePress, and Jekyll

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

What about the backend?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Options for compute

i

Amazon EC2 Amazon ECS,
Amazon EKS, and
AWS Fargate

, _ Container management
Virtual server instances service for running

in the cloud Docker on a managed
cluster of EC2 instances

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

/)

AWS Lambda

Serverless compute
for stateless code execution in
response to triggers

'

Evaluating compute options

The instance-based model is still one possible
model for hosting your backend business logic :
and data tiers, but with clear disadvantages: &

- No failover —— Amazon Route 53

- No redundancy I | 1

 (Can’t scale individual components " e O
independently & Elastc P

- Constrained on technology choices for AWS Amplify Hosting l

individual components I

Instance

Too many eggs in one basket?

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

We can go far with this, but...

The downsides of starting out this way become

apparent quickly & "

Larger instance sizes address scale, but not failover g
or redundancy challenges

Management of the instance itself becomes a
challenge of conflicting resource usage

- Even with containerization on a single instance

- Different scaling challenges for databases
beyond just adding more compute/memory/
storage

AWS's guidance: Make use of managed compute
for your backend and
tier

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Amazon Route 53
1 vwe O
& Elastic IP
address
AWS Amplify Hosting \l/

Instance

Evaluating managed compute on AWS

More opinionated

AWS manages

AWS Lambda

Serverless functions

» Data source integrations

» Physical hardware, software, networking,
and facilities

* Provisioning

Customer manages

Application code

AWS Fargate

Serverless containers

» Container orchestration, provisioning

* Cluster scaling

» Physical hardware, host OS/kernel,
networking, and facilities

Application code

Data source integrations

Security config and updates, network config,
management tasks

Amazon ECS/
Amazon EKS

Container Management as a Service

» Container orchestration control plane
* Physical hardware software,
networking, and facilities

Application code

Data source integrations

Work clusters

Security config and updates, network config,
firewall, management tasks

Amazon EC2

Instance-based compute service

Less opinionated

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

* Physical hardware software,
networking, and facilities

Application code

Data source integrations

Scaling

Security config and updates, network config,
management tasks

Provisioning, managing scaling, and
patching of servers

Exposing business logic to the frontend

THREE OPTIONS FOR EXPOSING AN API

Amazon API Gateway Application Load Balancer AWS AppSync

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Picking an API fronting service cheat sheet

Complex API with multiple data sources or very unique queries against data?
« AWS AppSync
WebSockets?
« Amazon API| Gateway
Need transforms, throttling, usage tiers, flexible auth?
Amazon API| Gateway
Single API action/method, billions+ of requests per day?
Application Load Balancer
Typical API, with millions of requests per month?
Amazon APl Gateway

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved
S

AWS App Runner

AWS App Runner

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Build, deploy, and run containerized web
applications and API services

Simplified management reduces overall
operational overhead and need for deep
experience running containers

Built on ECS with Fargate, Auto Scaling,
Elastic Load Balancing (ELB), and Amazon
Elastic Container Repository (Amazon ECR)

Supports popular language runtimes such as
Node.js, Python, php, Go, Java, .NET, and
RENS

Both public and private applications

Users >1: With modern frontend and backend

. A —s
Developers are looking to leverage ey A o
managed compute to rapidly start |
building and deploying their backend [
applications %
Why? &

. AWS Amplify Hosting AWS App Runner
Greatly reduced operations overhead

Built-in scale/performance

Integrations with the modern backend
frameworks

Aligned developer experience capabilities

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

To NoSQL or not to NoSQL?

Start with SQL databases

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

| :
Why start with SQL?

« Established and well-known technology
- Lots of existing code, communities, books, and tools

- You aren't going to break SQL databases with your first millions of
users

= No, really, you won't*
Clear patterns to scalability

*Unless you are doing something super peculiar with the data or you have massive
amounts of it, but even then SQL will have a place in your stack

Ana!

You said, “massive amounts of data.”

That's me.

Multiple terabytes of data in year 1?

Incredibly data-intensive workload?

Okay!

You might need NoSQL

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved

...

Why else might you need NoSQL?

« Super low-latency applications

- Metadata-driven data sets

- Highly nonrelational data

« Need schema-less data constructs*

- Rapid ingestion of data (thousands of records per second)

- Massive amounts of data (again, in the multiple terabyte range)

*"Need" != “It's easier to do development without schemas”

But this isn’t most of you. So....

Start with SQL databases

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Amazon Aurora

UNPARALLELED HIGH PERFORMANCE AND AVAILABILITY AT GLOBAL SCALE WITH FULL MYSQL AND
POSTGRESQL COMPATIBILITY AT 1/10TH THE COST OF COMMERCIAL DATABASES

Performance &
scalability

5x throughput of standard
MySQL and 3x of standard
PostgreSQL

Scale out up to 15 read replicas

Decoupled storage and compute-
enabling cost optimization

Fast database cloning

Distributed, dynamically scaling
storage subsystem

Oe

Availability &
durability

99.99% availability with Multi-AZ

Data is durable across 3 AZs
within a Region
(Customers only pay for 1 copy)

Automatic, continuous,
incremental backups with point-
in-time recovery (PITR)

Failovers in < 10 seconds

Fault-tolerant, self-healing, auto-
scaling storage

Global database for disaster
recovery

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N\

v

N

N

Highly secure

Network isolation
Encryption at rest/in transit

Supports multiple secure
authentication mechanisms and
audit controls

Fully managed

» Automates time-consuming

management of administration
tasks like hardware provisioning,
database setup, patching, and
backups

= Serverless configuration options

|

Amazon Aurora Serverless v2

Applications
H SIS « Scales in fine-grained increments to provide
{:1 - 4t 1 E just the right amount of database capacity in
0 *° i 1

application’s events

e Scales instantly in a fraction of a second even

........ [, [[[P e
< [L T O >
0 0 for the most demanding applications

Groveeee Automatically grows and shrinks «««-----)

""" i i * Up to 90% cost savings when compared to
T I provisioning for peak load

1'rr|E i response to the demands of your

i « Full breadth of Aurora capabilities, including
BEERC R s | parallel query, global database, read replicas,

I
I

I

1 Grornren]

I [l 0B and multi-AZ support
: {Geomoae Automatically grows and shrinks «:-«:-::»

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Users >1:;

A —— 8

By leveraging managed services for frontend,
backend, and database we can start off day 1, user 1,
with a great foundation and little overhead

User

- No self-managed infrastructure

 Built-in scalability OR easy knobs to turn to
increase capacity as needed

« Built-in high availability (multi-AZ) in a single
Region

- Layers of security and access controls from the
start to establish good practices

- Aligned costs to value

From here we can go pretty far!

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Amazon Route 53

s

AWS Amplify Hosting AWS App Runner

|
VPC l

o
=5

Amazon Aurora
Serverless v2

Users: >100

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
"

Users: >1000

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
"

Users: >10,000

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
"

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

|
Users: >10,000 — What starts to go wrong?

The current stack will scale incredibly far, but o J—

the scaling of single tier/monolithic Jszt Amazon Route 53

applications can sometimes only go so far. |

You'll eventually run into issues common in !

most architectures: \1

» Varied needs of the product complicating A S
others AWS Amplify Hosting AWS App Runner

- Poor performance in one part impacting vPC J
other parts

s |
+

« Slowing queries in the database due to large @&
table sizes/index growth

Amazon Aurora
Serverless v2

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Let’s learn more

Amazon Route 53

AWS Amplify Hosting AWS App Runner

Amazon Aurora
Serverless v2

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Let’s learn more

Amazon Route 53

Frontend Backend

Data storage

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Before we go too much further

OO0

1

We can’t tune what

o we aren’t measuring

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS services for observability

Amazon AWS X-Ray
CloudWatch
Dashboards Traces
Logs Analytics
Metrics Service map
INEl S
Events

Synthetic Canaries
Real User Monitoring (RUM)

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

N Leverage machine learning
(ML) to assist you

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS services for ML-assisted DevOps

Amazon
DevOps Guru

Amazon
CodeGuru

Detect unusual
behavior, analyze
performance, and
drive correction of

issues

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Analyze application
code for common
issues, performance,
and cost
improvements

Tuning for scale

With data in hand, you can now
begin to tackle some of the most [

Slice DB Load by = Wait e

common pain points in scaling

{db.t4g.medium, 2 wCPUs)

your application: 10 0ov et .

Typically: DB load up to 0 AAS

10

- Slow database queries

- Slow API requests

Nov 10 Nov 10 Nov 10 Nov 10 Nov 10
16:50 16:55 17:00 17:05 17:10

Time (UTC)

« Failures due to increased traffic

B 10:XactSync [l IPC:BgWorkerShutdown [l IPC:ExecuteGather [l IPC:ParallelFinish == vCPUs
[0 Low severity anomaly
View In Performance Insights [

« Service-to-service
communication

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
"

Let’s learn more about the frontend tier

Amazon Route 53

Frontend

aws
A

Scaling the frontend -

Generally speaking, Amplify Hosting can scale

to meet customer needs Amazon CloudFront
Built on top of the 550+ Amazon CloudFront

PoPs globally A P .
Performance typically comes from AT < e

» Tuning frontend code \CPa

« Reducing the number of backend calls |
- Caching images/JavaScript/CSS effect|vely

Amazon CloudFront Points of
Presence (PoP)

Scaling the frontend

Generally speaking, Amplify Hosting can scale
to meet customer needs

Built on top of the 550+ Amazon CloudFront
PoPs globally

R

Performance typically comes from ooo
. Tuning frontend code customHeaders:
. Reducing the number of backend callsf 2. -

- key:
value:

- Caching images/JavaScript/CSS effect

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved

Amazon CloudFront

I/img/*l

'Cache-Control'

's-maxage=3600"

Let’s learn more about the data tier

Amazon Route 53

Data storage

aws’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved

Aurora Serverless v2: Scaling

« Scales in place in under a second by adding more CPU
and memory resources

- No impact due to scaling even when running hundreds
of thousands of transactions

- Compute fleet continuously monitored and scaled
horizontally for heat management

- Background movement of idling instances while
preserving state (e.g. buffer pool, connections)

- Up to 15x faster scale-downs

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

LLLLl
T

(g o {¢

e [0 [[) e

Automatically grows

e [0 [[) e

Aurora Serverless v2: Fine-grained
capacity adjustments

« Aurora Serverless capacity is measured in
Aurora capacity units (ACU)

« 1 ACU comes with 2 GiB of memory

- Starting capacity as small as 0.5 ACU (1 GiB)

« Maximum capacity is 128 ACU (256 GiB)

- Fine-grained scaling with 0.5 ACU increments

aws, © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved

Scale up

Scale down

Aurora Serverless v2: Scaling factors

« Scale-up rate is predictable and proportional
to current capacity - larger instances scale
up faster

 CPU utilization of both foreground and / B
background processes

(e.g. purge or vacuum)
_
- Memory utilization of internal data
structures (e.g. buffer pool)

« Network throughput is proportional to
capacity; capacity is scaled to match network
throughput needs

Aurora Serverless v2: Scaling with replicas

« Up to 15 read replicas act as Availability |

failover targets Zone 1

Tier O
writer

 All instances inherit capacity
configuration from the cluster

« Tier 0 and 1 read replicas match the
size of the primary instance

Availability
Zone 2

|T'er1 I |Tier14|
reader
reader

Availability
Zone 3

Tier 15
reader

« Deploy across separate AZs [
« Multi-AZ Aurora clusters supported

Cluster volume

by 99.99% uptime SLA

aWS} © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved

Amazon RDS Proxy

A FULLY MANAGED, HIGHLY AVAILABLE DATABASE PROXY FOR AMAZON RDS AND AMAZON AURORA

&n 0
D B B E

Pool and share DB Increase app Manage app data Fully managed DB
connections for availability and reduce security with DB proxy, compatible with
improved app scaling DB failover times access controls your database

Amazon RDS Proxy supports Aurora Serverless v2, including mixed configurations
with Aurora provisioned and serverless instances within a cluster

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Scaling Aurora Serverless v2

AWS App Runner

Amazon Route 53

AWS Amplify Hosting

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Amazon RO Amazon Aurora
Proxy Serverless v2
Amazon Amazon
Aurora l; Aurora
_ v
Amazon Aurora Amazon Aurora
read replica read replica

Scaling Aurora Serverless v2

Amazon

Aurora

Amazon Aurgra
read replicg

D

Amazon RD
Proxy

Amazon
Aurora !

Amazon Aurora
read replica

Amazon

Amazon Aurora
read replica

Amazon Aurora
Serverless v2

Amazon
Aurora

Amazon Aurora
read replica

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\;’

The best database queries are
the ones you never need to
make (often).

Me
Today

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon ElastiCache

Managed Memcached or Redis
Scale from one to many nodes

=] Self-healing (replaces dead
@ instance)
« Single-digit millisecond speeds
Amazon (usually)

ElastiCache Multi-AZ deployments for

availability

Add database caching with ElastiCache

aws
p

AWS App Runner

Amazon Route 53

AWS Amplify Hosting

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

ElastiCache for

Memcached
Amazon RO Amazon Aurora
proxy Serverless v2
Amazon Amazon
Aurora I‘; Aurora
N S N S
Amazon Aurora Amazon Aurora
read replica read replica

Scaling the data tier

Three main methods for scaling the data tier:
Increasing the size of the instance(s) used

Adding read replicas and a proxy to help
scale read queries

—

Amazon Route

Typically minor application changes

Using caches to remove queries from
even needing to be made

Requires more significant application changes
and new logic to handle

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS App Runner :

— A

AWS Amplify Hosting

-

ElastiCache for
Memcached

Amazon Aurora Amazon Aurora
read replica

read replica

Let’s learn more about the backend tier

Amazon Route 53

4)

aws
A

AWS App Runner: A closer look

AWS App Runner service accounts
ECS Fargate tasks
— (L]
HTTP
request o L7 Request
— 3 [T
>03o " Router
Clieris Internet
Internet-facing
— 1]
aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

"

App Runner: Scaling instance sizes

- Individual instances are configured for a
mix of CPU and memory (see table)

- Maximum number of concurrent requests

per instance: 200

- Maximum number of instances per
service: 25*

Current default limit of 5000 concurrent requests
per App Runner service (your deployed application)

*Default/soft limit which can be increased

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

ECS Fargate tasks

CPU Memory
0.25vCPU | 0.5GB
0.25vCPU | 1GB
0.5 vCPU 1GB

1 vCPU 2 GB

1 vCPU 3 GB

1 vCPU 4 GB
2 vCPU 4 GB
2 vCPU 6 GB
4 vCPU 8 GB
4 vCPU 10 GB
4 vCPU 12 GB

I App Runner: Scaling number of instances

- Scales by concurrent requests sent to an ECS Fargate tasks
“instance” Tra][

—

« Instances automatically added to the request
router L7 Request : ” ”

Router

« Instances not serving requests can go idle to
save costs

- Can specify a max for cost control e.qg., dev
environments

« When there are no requests, App Runner
scales down to 1 (default), and keeps memory
provisioned to minimize cold start latency —

idle

|
i EE e e

idle

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Scaling the backend tier

With basic default configuration you can hit 5000

concurrent requests

- For context, at 2 seconds per request you could
perform ~150K requests per minute

Application performance tuning remains key
- Reducing slow database queries

-« Profiling code with CodeGuru and similar tools for

costly/slow logic

- Caching in the edge/application client where

possible

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

"

Amazon Route
53

App Runner

A

AWS Amplify Hosting

ElastiCache for

N B

Amazon RI
Proxy

Amazon
Aurora
Serverless v2

Amazon
Aurora

S

Amazon Aurora Amazon Aurora
read replica read replica

Users: >100,000

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
"

Users: >1,000,000

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
"

Users: >1,000,000

At some point you will outgrow the
patterns we've discussed so far:

- Application complexity/feature
growth begins to necessitate new
infrastructure needs

Amazon Route 53

- Database writes begin to become a
bottleneck

- Development and operational tasks
weighed down by the monolithic app
structure

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

AWS App Runner

— A

AWS Amplify Hosting

l'll'll'lrl
_—

ElastiCache for

Memcached
\ @++‘

Amazon RI
Proxy

Amazon
Aurora
Serverless v2

Aurora
Amazon Aurora Amazon Aurora
read replica read replica

| Going the microservices route
Moving to a service-oriented or microservices-based

architecture is a refactor that requires deep planning
across all layers o @° @@ -

Start with with the easiest to cut away ® @0 @6 ®
features/capabilities that don’t involve too many ® ® @ @ @ o,
cross-function ties . .
® ®
_ . 0@ Q@2
Data domain mapping O @ @
= Business function mapping ® Y ®

« Good time to evaluate other compute technologies oo
for specific needs

« Will need to think about how to “glue” everything
together

aWS © 2023, Amazon Web Services, Inc . or its affiliates. All rights reserved 5
S

I D

atabase federation

Split up databases by function/purpose
- Repeat scaling patterns discussed previously for
each
- Can mix and match to align with specific business e iror,
n eed S read replica read replica
s
Users database §<>
Amazon \ Amazon Aurora
Harder to do cross-function queries S
Essentially delays sharding/NoSQL B
Amazon Aurora
Won't help with single huge queries or tables with | et
incredible amounts of data Products database ¢
« Often the result of misaligned workloads to the gliazonuror

technology, e.q. data warehouse workloads on
RDBMSes

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Shifting functionality to NoSQL

« Leverage managed services such
as DynamoDB

é . Supports massive scale with
: ﬂ consistent low latency
« Example use cases:
Amazon = “Hot" tables
DynamoDB » Metadata/lookup tables

= Leaderboards/scoring
= Temporary data needs (cart data)

Breaking up the backend tier

Breaking up the backend can mirror the data tier

« Split the application into new federated services
aligned to data patterns

 Revisit which managed compute best aligns

Explore what business logic can move to internal
services

- Internal facing APIl-based services
- Moving from sync to async

- Leveraging queues, topics, buses, and streams to
build event-driven architectures

Microservices complexity grows at a factor of scale

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

AWS Amplify Hosting Amazon API Gateway

jusers

AWS App Runner Lambda function

Thinking asynchronously

Client Service A Service B Client Service A Service B
Synchronous Asynchronous
commands events
aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

"

Asynchronous APIs

aws

"

C—=
Client

C—=
Client

2023, Amazon Web Services, Inc. or its

IONI

/order
—

201

Get
/invoilice

affiliates. All rights reserved.

POST
/invoice

“The time spent to try making a
process async will pay for itself
In you gaining deeper
understanding of what is really
happening with your data.”

Me
Right now

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Topics, streams, queues, and buses

Amazon Simple Amazon Simple Queue Amazon EventBridge Amazon Kinesis
Notification Service Service (Amazon SQS) Data Streams
(Amazon SNS)

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Async service decider cheat sheet

Massive throughput/ordering/multiple consumers/replay?

- Amazon Kinesis Data Streams

One to mostly one or minimal fanout, direct to Lambda/HTTP target?
« Amazon SNS

Buffer requests until they can be consumed, whether ordered or not?
« Amazon SQS

One to many fanout, lots of different consumer targets, schema
matching, granular target rules?

- Amazon EventBridge

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved
S

The microservices architecture

5,

Amazon Kinesis S3 Standard
ata Firehose

Lambda function

0y

Lambda
function

Amazon API
Gateway

4l

Amazon CloudFront

Amazon Queue AWS App Runner
DynamoDB
table

RDS
Proxy

Amazon Route 53

AWS App Runner

AWS App Runner

EI:I
L['rl:j Amazon RIS Amazon Aurora Bl [
Proxy Serverless v2 [| m—
Lambda Amazon
; ; ElastiCache for (; function DynamoDB
AWS Amplify Hosting Memcached Amzrgn ﬁu"'r‘;'fr‘;" I table

L8 LB

Amazon Aurora Amazon Aurora
read replica read replica

AWS App Runner

Amazon Aurora

aws : o -
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
) 9 Serverless v2

Users: >10,000,000

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
"

Users: >10 million

« More distribution of features/functionality

across internal microservices
« Deeply analyze your entire stack’s
performance and continue to find areas to l
iImprove
o Start to build on self-managed compute /
4

« Evaluating how to improve caching at all
tiers

To infinity...

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
"

| In closing

We're in such a better place in being able to scale out of the box than we were even
5 years ago

- Built-in scalability for many tiers that goes far toward meeting *most* needs

- There are more resources available throughout the stack: bandwidth, CPU,
memory, storage

The bulk of scaling wins come from doing less

« Caching at both the edge and origin

- Reducing scope of database queries and data processed
Evaluate refactoring cautiously

« Federating data can still be an easy way to win

- Look for “best fit" technologies based on need

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

I ' [wareres] Please complete
hank you. _Diz@ survey in the m

Chris Munns Skye Hart

aws © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\-",

	intro
	Slide 1
	Slide 2: Scaling on AWS for the first 10 million users
	Slide 3
	Slide 4: What do we mean by an app?
	Slide 5: Acknowledging current technology trends
	Slide 6: No architecture is designed for high scalability on day 1. But we’ll try.
	Slide 7

	the 2 tier day 1
	Slide 8: So let’s start from
	Slide 9
	Slide 10: Users: >1
	Slide 11: Users >1: Traditional frontend hosting
	Slide 12: Users >1: With a modern frontend
	Slide 13: Amplify Hosting
	Slide 14: Amplify Hosting features
	Slide 15: Amplify Hosting – Supporting modern frameworks
	Slide 16
	Slide 17: Options for compute
	Slide 18: Evaluating compute options
	Slide 19: We can go far with this, but . . .
	Slide 20: Evaluating managed compute on AWS
	Slide 21: Exposing business logic to the frontend
	Slide 22: Picking an API fronting service cheat sheet
	Slide 23: AWS App Runner
	Slide 24: Users >1: With modern frontend and backend
	Slide 25: To NoSQL or not to NoSQL?
	Slide 26: Start with SQL databases
	Slide 27: Why start with SQL?
	Slide 28
	Slide 29: Multiple terabytes of data in year 1? Incredibly data-intensive workload? Okay! You might need NoSQL
	Slide 30: Why else might you need NoSQL?
	Slide 31: But this isn’t most of you. So . . .
	Slide 32: Start with SQL databases
	Slide 33: Amazon Aurora
	Slide 34: Amazon Aurora Serverless v2
	Slide 35: Users >1:
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	tools to help us scale
	Slide 40: Users: >10,000 – What starts to go wrong?
	Slide 41: Let’s learn more
	Slide 42: Let’s learn more
	Slide 43: Before we go too much further
	Slide 44: We can’t tune what we aren’t measuring
	Slide 45: AWS services for observability
	Slide 46: Leverage machine learning (ML) to assist you
	Slide 47: AWS services for ML-assisted DevOps
	Slide 48: Tuning for scale
	Slide 49: Let’s learn more about the frontend tier
	Slide 50: Scaling the frontend
	Slide 51: Scaling the frontend

	db-tuning
	Slide 52: Let’s learn more about the data tier
	Slide 53: Aurora Serverless v2: Scaling
	Slide 54: Aurora Serverless v2: Fine-grained capacity adjustments
	Slide 55: Aurora Serverless v2: Scaling factors
	Slide 56: Aurora Serverless v2: Scaling with replicas
	Slide 57: Amazon RDS Proxy
	Slide 58: Scaling Aurora Serverless v2
	Slide 59: Scaling Aurora Serverless v2
	Slide 60: The best database queries are the ones you never need to make (often).
	Slide 61: Amazon ElastiCache
	Slide 62: Add database caching with ElastiCache
	Slide 63: Scaling the data tier

	backend-tuning
	Slide 64: Let’s learn more about the backend tier
	Slide 65: AWS App Runner: A closer look
	Slide 66: App Runner: Scaling instance sizes
	Slide 67: App Runner: Scaling number of instances
	Slide 68: Scaling the backend tier
	Slide 69

	100k+
	Slide 70
	Slide 71: Users: >1,000,000
	Slide 72: Going the microservices route
	Slide 73: Database federation
	Slide 74: Shifting functionality to NoSQL
	Slide 75: Breaking up the backend tier
	Slide 76: Thinking asynchronously
	Slide 77: Asynchronous APIs
	Slide 78: “The time spent to try making a process async will pay for itself in you gaining deeper understanding of what is really happening with your data.”
	Slide 79: Topics, streams, queues, and buses
	Slide 80: Async service decider cheat sheet
	Slide 81: The microservices architecture

	million+
	Slide 82
	Slide 83: Users: >10 million

	closing
	Slide 84
	Slide 85: In closing
	Slide 86

