
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling on AWS for the first 10
million users

Chris Munns

A R C 2 0 6

Startup Tech Lead/Advisor

Amazon Web Services

Skye Hart

Manager, Startup SA

Amazon Web Services

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

We start with the goal of launching a new app

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do we mean by an app?

In the context of this session, assume we mean the full stack necessary
to deliver a business’s core technology product

➢ Could be the entirety of a startup’s product

➢ Could be one of many products in a larger company

➢ For today: App = user-interfacing layer + business logic layer + data
storage

Users

Browser

Mobile app Frontend Backend Data storage

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Acknowledging current technology trends

• Modern frontend frameworks built using
JavaScript or derivatives

• Full-stack frameworks that more closely integrate
front and backend development

• Movement away from self-managed/DIY
infrastructure to managed services

• Potential for rapid scale (measured in hours, not
days)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

No architecture is designed
for high scalability on day 1.
But we’ll try.

Me

Today

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Measure

Learn

Build

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

So let’s start from

Day 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >1

User

Amazon Route 53

BackendFrontend

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users >1: Traditional frontend hosting

Traditional frontend hosting would have you
serve your frontend content (HTML, CSS,
JavaScript, images, and so on) off of a simple
web-serving stack. That stack would minimally be
composed of:

• Hosting tier for the webserver app (Nginx,
Apache, and so on)

• Optionally, a shared storage layer

• A load balancer

• A CDN for edge caching

Amazon CloudFrontAmazon Route 53

Auto Scaling group

EC2 instances

Elastic Load Balancing (ELB)

EFS Standard

Region

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users >1: With a modern frontend

With a modern frontend, developers are choosing
to deploy them to specialized hosting products

Why?

• Greatly reduced operations overhead

• Built-in scale/performance

• Integrations with the modern frontend
frameworks

• Aligned developer experience capabilities

The backend then becomes a different
component(s)

User Amazon Route 53

AWS Amplify Hosting

Backend

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amplify Hosting
D E P L O Y A N D H O S T G L O B A L L Y U S I N G A M A Z O N C L O U D F R O N T

Configure build settings

2

02:33:00 Preparing repository
02:33:05 Reticulating splines
02:34:11 Launch prep initiated
02:34:57 Launch prep complete
02:35:03 Launch

Deploy your app

3

How it works

Connect your repository

1

AWS CodeCommit

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amplify Hosting features
F E A T U R E S F O R H O S T I N G M O D E R N W E B A P P L I C A T I O N S

Globally available
Easy custom

domain setup
Simplified continuous

workflows

Feature
branch deployments

Atomic deployments Password protection

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amplify Hosting – Supporting modern frameworks
Client-side rendered (single-page application)

• Frontend application loaded as JavaScript and runs in the client browser

• JavaScript files containing application logic, UI, and communication with

backend

• Popular frameworks such as React, Angular, and Vue

Server-side rendered (SSR)

• Rendering on the server before sending page to browser

• Data fetched from a database or CMS

• Ideal for applications that have personalized content for each user

• Popular frameworks include Next, Nuxt, and Gatsby

Static site generators (SSGs)

• Content generated at the build time

• Ideal for sites where content does not need to be highly personalized

• Typically used in concert with a headless CMS and CDN

• Popular solutions such as Gatsby, Eleventy, Hugo, VuePress, and Jekyll

Clients

CDN Microservices

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What about the backend?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Options for compute

Amazon EC2

Virtual server instances
in the cloud

Amazon ECS,
Amazon EKS, and

AWS Fargate

Container management
service for running

Docker on a managed
cluster of EC2 instances

AWS Lambda

Serverless compute
for stateless code execution in

response to triggers

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Evaluating compute options

The instance-based model is still one possible
model for hosting your backend business logic
and data tiers, but with clear disadvantages:

• No failover

• No redundancy

• Can’t scale individual components
independently

• Constrained on technology choices for
individual components

Too many eggs in one basket?

VPC

User
Amazon Route 53

Elastic IP

address

Instance

AWS Amplify Hosting

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

We can go far with this, but . . .

The downsides of starting out this way become
apparent quickly

Larger instance sizes address scale, but not failover
or redundancy challenges

Management of the instance itself becomes a
challenge of conflicting resource usage

• Even with containerization on a single instance

• Different scaling challenges for databases
beyond just adding more compute/memory/
storage

AWS’s guidance: Make use of managed compute
for your backend and managed databases for your
data tier

VPC

User
Amazon Route 53

Elastic IP

address

Instance

AWS Amplify Hosting

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Evaluating managed compute on AWS

AWS Lambda
Serverless functions

AWS Fargate
Serverless containers

Amazon ECS/

Amazon EKS
Container Management as a Service

Amazon EC2
Instance-based compute service

More opinionated

Less opinionated

AWS manages Customer manages

• Data source integrations
• Physical hardware, software, networking,

and facilities

• Provisioning

• Application code

• Container orchestration, provisioning
• Cluster scaling

• Physical hardware, host OS/kernel,
networking, and facilities

• Application code
• Data source integrations

• Security config and updates, network config,
management tasks

• Container orchestration control plane
• Physical hardware software,

networking, and facilities

• Application code
• Data source integrations

• Work clusters
• Security config and updates, network config,

firewall, management tasks

• Physical hardware software,
networking, and facilities

• Application code
• Data source integrations

• Scaling
• Security config and updates, network config,

management tasks
• Provisioning, managing scaling, and

patching of servers

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Exposing business logic to the frontend
T H R E E O P T I O N S F O R E X P O S I N G A N A P I

AWS AppSyncAmazon API Gateway Application Load Balancer

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Picking an API fronting service cheat sheet

Complex API with multiple data sources or very unique queries against data?

• AWS AppSync

WebSockets?

• Amazon API Gateway

Need transforms, throttling, usage tiers, flexible auth?

• Amazon API Gateway

Single API action/method, billions+ of requests per day?

• Application Load Balancer

Typical API, with millions of requests per month?

• Amazon API Gateway

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS App Runner

• Build, deploy, and run containerized web
applications and API services

• Simplified management reduces overall
operational overhead and need for deep
experience running containers

• Built on ECS with Fargate, Auto Scaling,
Elastic Load Balancing (ELB), and Amazon
Elastic Container Repository (Amazon ECR)

• Supports popular language runtimes such as
Node.js, Python, php, Go, Java, .NET, and
Rails

• Both public and private applications

AWS App Runner

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users >1: With modern frontend and backend

Developers are looking to leverage
managed compute to rapidly start
building and deploying their backend
applications

Why?

• Greatly reduced operations overhead

• Built-in scale/performance

• Integrations with the modern backend
frameworks

• Aligned developer experience capabilities

User
Amazon Route 53

AWS Amplify Hosting AWS App Runner

Database

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

To NoSQL or not to NoSQL?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Start with SQL databases

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why start with SQL?

• Established and well-known technology

• Lots of existing code, communities, books, and tools

• You aren’t going to break SQL databases with your first millions of
users

▪ No, really, you won’t*

• Clear patterns to scalability

*Unless you are doing something super peculiar with the data or you have massive
amounts of it, but even then SQL will have a place in your stack

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aha!

You said, “massive amounts of data.”

That’s me.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multiple terabytes of data in year 1?

Incredibly data-intensive workload?

Okay!
You might need NoSQL

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why else might you need NoSQL?

• Super low-latency applications

• Metadata-driven data sets

• Highly nonrelational data

• Need schema-less data constructs*

• Rapid ingestion of data (thousands of records per second)

• Massive amounts of data (again, in the multiple terabyte range)

*”Need” != “It’s easier to do development without schemas”

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

But this isn’t most of you. So . . .

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Start with SQL databases

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora
U N P A R A L L E L E D H I G H P E R F O R M A N C E A N D A V A I L A B I L I T Y A T G L O B A L S C A L E W I T H F U L L M Y S Q L A N D

P O S T G R E S Q L C O M P A T I B I L I T Y A T 1 / 1 0 T H T H E C O S T O F C O M M E R C I A L D A T A B A S E S

▪ 5x throughput of standard

MySQL and 3x of standard

PostgreSQL

▪ Scale out up to 15 read replicas

▪ Decoupled storage and compute-

enabling cost optimization

▪ Fast database cloning

▪ Distributed, dynamically scaling

storage subsystem

Performance &

scalability

▪ 99.99% availability with Multi-AZ

▪ Data is durable across 3 AZs

within a Region

(Customers only pay for 1 copy)

▪ Automatic, continuous,

incremental backups with point-

in-time recovery (PITR)

▪ Failovers in < 10 seconds

▪ Fault-tolerant, self-healing, auto-

scaling storage

▪ Global database for disaster

recovery

Availability &

durability

▪ Network isolation

▪ Encryption at rest/in transit

▪ Supports multiple secure

authentication mechanisms and

audit controls

Highly secure

▪ Automates time-consuming

management of administration

tasks like hardware provisioning,

database setup, patching, and

backups

▪ Serverless configuration options

Fully managed

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora Serverless v2

• Scales in fine-grained increments to provide

just the right amount of database capacity in

response to the demands of your

application’s events

• Scales instantly in a fraction of a second even

for the most demanding applications

• Up to 90% cost savings when compared to

provisioning for peak load

• Full breadth of Aurora capabilities, including

parallel query, global database, read replicas,

and multi-AZ support

Storage fleet

Compute fleet

Automatically grows and shrinks

Automatically grows and shrinks

Applications

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users >1:

By leveraging managed services for frontend,
backend, and database we can start off day 1, user 1,
with a great foundation and little overhead

• No self-managed infrastructure

• Built-in scalability OR easy knobs to turn to

increase capacity as needed

• Built-in high availability (multi-AZ) in a single

Region

• Layers of security and access controls from the

start to establish good practices

• Aligned costs to value

From here we can go pretty far!

User
Amazon Route 53

AWS Amplify Hosting AWS App Runner

VPC

Amazon Aurora

Serverless v2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >100

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >1000

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >10,000

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >10,000

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >10,000 – What starts to go wrong?

The current stack will scale incredibly far, but
the scaling of single tier/monolithic
applications can sometimes only go so far.
You’ll eventually run into issues common in
most architectures:

• Varied needs of the product complicating
others

• Poor performance in one part impacting
other parts

• Slowing queries in the database due to large
table sizes/index growth

User
Amazon Route 53

AWS Amplify Hosting AWS App Runner

VPC

Amazon Aurora
Serverless v2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s learn more

Amazon Route 53

AWS Amplify Hosting AWS App Runner

VPC

Amazon Aurora

Serverless v2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s learn more

Amazon Route 53

AWS Amplify Hosting App Runner

VPC

Amazon Aurora

Serverless v2

Frontend Backend

Data storage

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Before we go too much further

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

We can’t tune what
we aren’t measuring

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS services for observability

AWS X-RayAmazon

CloudWatch

Dashboards

Logs

Metrics

Alarms

Events

Synthetic Canaries

Real User Monitoring (RUM)

Traces

Analytics

Service map

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Leverage machine learning
(ML) to assist you

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS services for ML-assisted DevOps

Amazon

CodeGuru

Amazon

DevOps Guru

Detect unusual
behavior, analyze
performance, and
drive correction of

issues

Analyze application
code for common

issues, performance,
and cost

improvements

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tuning for scale

With data in hand, you can now
begin to tackle some of the most
common pain points in scaling
your application:

• Slow database queries

• Slow API requests

• Failures due to increased traffic

• Service-to-service
communication

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s learn more about the frontend tier

Amazon Route 53

AWS Amplify Hosting App Runner

VPC

Amazon Aurora

Serverless v2

Backend

Data storage

Frontend

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling the frontend

Generally speaking, Amplify Hosting can scale
to meet customer needs

Built on top of the 550+ Amazon CloudFront
PoPs globally

Performance typically comes from

• Tuning frontend code

• Reducing the number of backend calls

• Caching images/JavaScript/CSS effectively

Amazon CloudFront Points of

Presence (PoP)

Amazon CloudFront

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling the frontend

Generally speaking, Amplify Hosting can scale
to meet customer needs

Built on top of the 550+ Amazon CloudFront
PoPs globally

Performance typically comes from

• Tuning frontend code

• Reducing the number of backend calls

• Caching images/JavaScript/CSS effectively

Amazon CloudFront Points of

Presence (PoP)

Amazon CloudFront

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s learn more about the data tier

Amazon Route 53

AWS Amplify Hosting App Runner

VPC

Amazon Aurora

Serverless v2

Frontend Backend

Data storage

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora Serverless v2: Scaling

• Scales in place in under a second by adding more CPU
and memory resources

• No impact due to scaling even when running hundreds
of thousands of transactions

• Compute fleet continuously monitored and scaled
horizontally for heat management

• Background movement of idling instances while
preserving state (e.g. buffer pool, connections)

• Up to 15x faster scale-downs
Storage fleet

Compute fleet

Automatically grows

Automatically grows

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora Serverless v2: Fine-grained
capacity adjustments

• Aurora Serverless capacity is measured in

Aurora capacity units (ACU)

• 1 ACU comes with 2 GiB of memory

• Starting capacity as small as 0.5 ACU (1 GiB)

• Maximum capacity is 128 ACU (256 GiB)

• Fine-grained scaling with 0.5 ACU increments

S
ca

le
 u

p

S
ca

le
 d

o
w

n

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora Serverless v2: Scaling factors

• Scale-up rate is predictable and proportional
to current capacity – larger instances scale
up faster

• CPU utilization of both foreground and
background processes
(e.g. purge or vacuum)

• Memory utilization of internal data
structures (e.g. buffer pool)

• Network throughput is proportional to
capacity; capacity is scaled to match network
throughput needs

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aurora Serverless v2: Scaling with replicas

• Up to 15 read replicas act as
failover targets

• All instances inherit capacity
configuration from the cluster

• Tier 0 and 1 read replicas match the
size of the primary instance

• Deploy across separate AZs

• Multi-AZ Aurora clusters supported
by 99.99% uptime SLA

Cluster volume

Availability

Zone 2

Availability

Zone 3
Availability

Zone 1

writer

Tier 0 Tier 1

reader
Tier 14

reader

Tier 15

reader

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon RDS Proxy
A F U L L Y M A N A G E D , H I G H L Y A V A I L A B L E D A T A B A S E P R O X Y F O R A M A Z O N R D S A N D A M A Z O N A U R O R A

Increase app
availability and reduce

DB failover times

Manage app data
security with DB
access controls

Fully managed DB
proxy, compatible with

your database

Pool and share DB
connections for

improved app scaling

Amazon RDS Proxy supports Aurora Serverless v2, including mixed configurations

with Aurora provisioned and serverless instances within a cluster

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling Aurora Serverless v2

Amazon Route 53

AWS Amplify Hosting

AWS App Runner

VPC

Amazon Aurora

Serverless v2

Amazon Aurora

read replica
Amazon Aurora

read replica

Amazon RDS

Proxy

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling Aurora Serverless v2

Amazon Route 53

AWS Amplify Hosting

App Runner

VPC

Amazon Aurora

Serverless v2

Amazon Aurora

read replica
Amazon Aurora

read replica

Amazon RDS

Proxy

Amazon Aurora

read replica
Amazon Aurora

read replicaWe can continue to

scale by adding more

read replicas and

increasing the

instance sizes of the

nodes in the cluster

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The best database queries are
the ones you never need to
make (often).

Me

Today

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon ElastiCache

• Managed Memcached or Redis

• Scale from one to many nodes

• Self-healing (replaces dead
instance)

• Single-digit millisecond speeds
(usually)

• Multi-AZ deployments for
availability

Amazon

ElastiCache

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Add database caching with ElastiCache

Amazon Route 53

AWS Amplify Hosting

AWS App Runner

VPC

Amazon Aurora

Serverless v2

Amazon Aurora

read replica
Amazon Aurora

read replica

Amazon RDS

proxy

ElastiCache for

Memcached

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling the data tier

Three main methods for scaling the data tier:

• Increasing the size of the instance(s) used

• Adding read replicas and a proxy to help
scale read queries

▪ Typically minor application changes

• Using caches to remove queries from
even needing to be made

▪ Requires more significant application changes
and new logic to handle

Amazon Route

53

AWS Amplify Hosting

AWS App Runner

VPC

Amazon Aurora

Serverless v2

Amazon Aurora

read replica

Amazon Aurora

read replica

Amazon RDS

Proxy

ElastiCache for

Memcached

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Let’s learn more about the backend tier

Amazon Route 53

AWS Amplify Hosting App Runner

VPC

Amazon Aurora

Serverless v2

Frontend

Data storage

Backend

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS App Runner: A closer look

ECS Fargate tasks

L7 Request

Router

Internet-facing

NLB

Clients Internet

HTTP

request

AWS App Runner service accounts

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

App Runner: Scaling instance sizes

• Individual instances are configured for a
mix of CPU and memory (see table)

• Maximum number of concurrent requests
per instance: 200

• Maximum number of instances per
service: 25*

Current default limit of 5000 concurrent requests
per App Runner service (your deployed application)

*Default/soft limit which can be increased

ECS Fargate tasks

CPU Memory

0.25 vCPU 0.5 GB

0.25 vCPU 1 GB

0.5 vCPU 1 GB

1 vCPU 2 GB

1 vCPU 3 GB

1 vCPU 4 GB

2 vCPU 4 GB

2 vCPU 6 GB

4 vCPU 8 GB

4 vCPU 10 GB

4 vCPU 12 GB

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

App Runner: Scaling number of instances

• Scales by concurrent requests sent to an
“instance”

• Instances automatically added to the request
router

• Instances not serving requests can go idle to
save costs

• Can specify a max for cost control e.g., dev
environments

• When there are no requests, App Runner
scales down to 1 (default), and keeps memory
provisioned to minimize cold start latency

ECS Fargate tasks

L7 Request

Router

idle

idle

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling the backend tier

With basic default configuration you can hit 5000
concurrent requests

• For context, at 2 seconds per request you could
perform ~150K requests per minute

Application performance tuning remains key

• Reducing slow database queries

• Profiling code with CodeGuru and similar tools for
costly/slow logic

• Caching in the edge/application client where
possible

Amazon Route

53

AWS Amplify Hosting

App Runner

Amazon

Aurora

Serverless v2

Amazon Aurora

read replica
Amazon Aurora

read replica

Amazon RDS

Proxy

ElastiCache for

Memcached

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >100,000

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >1,000,000

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >1,000,000

At some point you will outgrow the
patterns we’ve discussed so far:

• Application complexity/feature
growth begins to necessitate new
infrastructure needs

• Database writes begin to become a
bottleneck

• Development and operational tasks
weighed down by the monolithic app
structure

Amazon Route 53

AWS Amplify Hosting

AWS App Runner

Amazon

Aurora

Serverless v2

Amazon Aurora

read replica
Amazon Aurora

read replica

Amazon RDS

Proxy

ElastiCache for

Memcached

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Going the microservices route

Moving to a service-oriented or microservices-based
architecture is a refactor that requires deep planning
across all layers

• Start with with the easiest to cut away
features/capabilities that don’t involve too many
cross-function ties

▪ Data domain mapping

▪ Business function mapping

• Good time to evaluate other compute technologies
for specific needs

• Will need to think about how to “glue” everything
together

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Database federation
Split up databases by function/purpose

• Repeat scaling patterns discussed previously for
each

• Can mix and match to align with specific business
needs

Harder to do cross-function queries

Essentially delays sharding/NoSQL

Won’t help with single huge queries or tables with
incredible amounts of data

• Often the result of misaligned workloads to the
technology, e.g. data warehouse workloads on
RDBMSes

Forums database

Users database

Products database

VPC

Amazon

Aurora

Serverless v2

Amazon Aurora

read replica

Amazon Aurora

read replica

Amazon RDS

Proxy

Amazon Aurora

Serverless v2

Amazon Aurora

read replica

Amazon

RDS

Proxy

Amazon Aurora

Serverless v2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shifting functionality to NoSQL

• Leverage managed services such
as DynamoDB

• Supports massive scale with
consistent low latency

• Example use cases:

▪ “Hot” tables

▪ Metadata/lookup tables

▪ Leaderboards/scoring

▪ Temporary data needs (cart data)

Amazon

DynamoDB

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Breaking up the backend tier

Breaking up the backend can mirror the data tier

• Split the application into new federated services
aligned to data patterns

• Revisit which managed compute best aligns

Explore what business logic can move to internal
services

• Internal facing API-based services

• Moving from sync to async

• Leveraging queues, topics, buses, and streams to
build event-driven architectures

Microservices complexity grows at a factor of scale

Amazon Route 53

AWS Amplify Hosting Amazon API Gateway

VPC

AWS App Runner Lambda function

/users/

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thinking asynchronously

Synchronous

commands

Client Service A Service B

Asynchronous

events

Client Service A Service B

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous APIs

Order
service

Invoice
service

POST

/order

201

POST

/invoice

Client

Invoice
service200

Get

/invoice

Client

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“The time spent to try making a
process async will pay for itself
in you gaining deeper
understanding of what is really
happening with your data.”
Me

Right now

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Topics, streams, queues, and buses

Amazon EventBridgeAmazon Simple

Notification Service

(Amazon SNS)

Amazon Simple Queue

Service (Amazon SQS)

Amazon Kinesis

Data Streams

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Async service decider cheat sheet

Massive throughput/ordering/multiple consumers/replay?

• Amazon Kinesis Data Streams

One to mostly one or minimal fanout, direct to Lambda/HTTP target?

• Amazon SNS

Buffer requests until they can be consumed, whether ordered or not?

• Amazon SQS

One to many fanout, lots of different consumer targets, schema
matching, granular target rules?

• Amazon EventBridge

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The microservices architecture

Amazon Route 53

AWS Amplify Hosting

AWS App Runner

Amazon CloudFront

Amazon Aurora

Serverless v2

Amazon Aurora

read replica

Amazon Aurora

read replica

Amazon RDS

Proxy

ElastiCache for

Memcached

Amazon API

Gateway

VPC

AWS App Runner

Lambda

function

Lambda function

AWS App Runner

Amazon

DynamoDB

table

Amazon Kinesis

Data Firehose

S3 Standard

Queue

Lambda

function

Amazon

DynamoDB

table

AWS App Runner

Amazon Aurora

Serverless v2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >10,000,000

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Users: >10 million

• More distribution of features/functionality
across internal microservices

• Deeply analyze your entire stack’s
performance and continue to find areas to
improve

• Start to build on self-managed compute

• Evaluating how to improve caching at all
tiers

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

To infinity . . .

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

In closing

We’re in such a better place in being able to scale out of the box than we were even
5 years ago

• Built-in scalability for many tiers that goes far toward meeting *most* needs

• There are more resources available throughout the stack: bandwidth, CPU,
memory, storage

The bulk of scaling wins come from doing less

• Caching at both the edge and origin

• Reducing scope of database queries and data processed

Evaluate refactoring cautiously

• Federating data can still be an easy way to win

• Look for “best fit” technologies based on need

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Chris Munns Skye Hart

	intro
	Slide 1
	Slide 2: Scaling on AWS for the first 10 million users
	Slide 3
	Slide 4: What do we mean by an app?
	Slide 5: Acknowledging current technology trends
	Slide 6: No architecture is designed for high scalability on day 1. But we’ll try.
	Slide 7

	the 2 tier day 1
	Slide 8: So let’s start from
	Slide 9
	Slide 10: Users: >1
	Slide 11: Users >1: Traditional frontend hosting
	Slide 12: Users >1: With a modern frontend
	Slide 13: Amplify Hosting
	Slide 14: Amplify Hosting features
	Slide 15: Amplify Hosting – Supporting modern frameworks
	Slide 16
	Slide 17: Options for compute
	Slide 18: Evaluating compute options
	Slide 19: We can go far with this, but . . .
	Slide 20: Evaluating managed compute on AWS
	Slide 21: Exposing business logic to the frontend
	Slide 22: Picking an API fronting service cheat sheet
	Slide 23: AWS App Runner
	Slide 24: Users >1: With modern frontend and backend
	Slide 25: To NoSQL or not to NoSQL?
	Slide 26: Start with SQL databases
	Slide 27: Why start with SQL?
	Slide 28
	Slide 29: Multiple terabytes of data in year 1? Incredibly data-intensive workload? Okay! You might need NoSQL
	Slide 30: Why else might you need NoSQL?
	Slide 31: But this isn’t most of you. So . . .
	Slide 32: Start with SQL databases
	Slide 33: Amazon Aurora
	Slide 34: Amazon Aurora Serverless v2
	Slide 35: Users >1:
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	tools to help us scale
	Slide 40: Users: >10,000 – What starts to go wrong?
	Slide 41: Let’s learn more
	Slide 42: Let’s learn more
	Slide 43: Before we go too much further
	Slide 44: We can’t tune what we aren’t measuring
	Slide 45: AWS services for observability
	Slide 46: Leverage machine learning (ML) to assist you
	Slide 47: AWS services for ML-assisted DevOps
	Slide 48: Tuning for scale
	Slide 49: Let’s learn more about the frontend tier
	Slide 50: Scaling the frontend
	Slide 51: Scaling the frontend

	db-tuning
	Slide 52: Let’s learn more about the data tier
	Slide 53: Aurora Serverless v2: Scaling
	Slide 54: Aurora Serverless v2: Fine-grained capacity adjustments
	Slide 55: Aurora Serverless v2: Scaling factors
	Slide 56: Aurora Serverless v2: Scaling with replicas
	Slide 57: Amazon RDS Proxy
	Slide 58: Scaling Aurora Serverless v2
	Slide 59: Scaling Aurora Serverless v2
	Slide 60: The best database queries are the ones you never need to make (often).
	Slide 61: Amazon ElastiCache
	Slide 62: Add database caching with ElastiCache
	Slide 63: Scaling the data tier

	backend-tuning
	Slide 64: Let’s learn more about the backend tier
	Slide 65: AWS App Runner: A closer look
	Slide 66: App Runner: Scaling instance sizes
	Slide 67: App Runner: Scaling number of instances
	Slide 68: Scaling the backend tier
	Slide 69

	100k+
	Slide 70
	Slide 71: Users: >1,000,000
	Slide 72: Going the microservices route
	Slide 73: Database federation
	Slide 74: Shifting functionality to NoSQL
	Slide 75: Breaking up the backend tier
	Slide 76: Thinking asynchronously
	Slide 77: Asynchronous APIs
	Slide 78: “The time spent to try making a process async will pay for itself in you gaining deeper understanding of what is really happening with your data.”
	Slide 79: Topics, streams, queues, and buses
	Slide 80: Async service decider cheat sheet
	Slide 81: The microservices architecture

	million+
	Slide 82
	Slide 83: Users: >10 million

	closing
	Slide 84
	Slide 85: In closing
	Slide 86

