
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for querying
vector data for gen AI apps in
PostgreSQL

Jonathan Katz

D A T 4 0 7

(he/him/his)

Principal Product Manager –
Technical

AWS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Overview of generative AI and the role of databases

PostgreSQL as a vector store

pgvector strategies and best practices

Amazon Aurora features for vector queries

Looking ahead: pgvector roadmap

Agenda

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Blue elephant vase that can hold

up to three plants in it, hand

painted…
Parrot decorative figure stands 12

inches high, red, and orange,

has…
Reddish vase six inches deep

perfect for cactuses and desert

plants…
Rabbit planter suitable for

growing vegetables indoors, green

and …
Decorative ceramic turtle, blue

and about eight inches wide,

makes…
Bird feeder shaped like a bird, can

hold birdseed for 28 days and is…

Sea shell themed vase that's two

feet wide and can hold a variety…

Garden variety owl planter, great

for keeping your favorite

flowers…

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Blue elephant vase that can hold

up to three plants in it, hand

painted…
Parrot decorative figure stands 12

inches high, red, and orange,

has…
Reddish vase six inches deep

perfect for cactuses and desert

plants…
Rabbit planter suitable for

growing vegetables indoors, green

and …
Decorative ceramic turtle, blue

and about eight inches wide,

makes…
Bird feeder shaped like a bird, can

hold birdseed for 28 days and is…

Sea shell themed vase that's two

feet wide and can hold a variety…

Garden variety owl planter, great

for keeping your favorite

flowers…

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Blue elephant vase that can hold

up to three plants in it, hand

painted…
Parrot decorative figure stands 12

inches high, red, and orange,

has…
Reddish vase six inches deep

perfect for cactuses and desert

plants…
Rabbit planter suitable for

growing vegetables indoors, green

and …
Decorative ceramic turtle, blue

and about eight inches wide,

makes…
Bird feeder shaped like a bird, can

hold birdseed for 28 days and is…

Sea shell themed vase that's two

feet wide and can hold a variety…

Garden variety owl planter, great

for keeping your favorite

flowers…

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pre-trained on vast amounts of

unstructured data

Contain large number of parameters that make

them capable of learning complex concepts

Can be applied in a wide range of contexts

Customize FMs using your data for domain
specific tasks

Generative AI is powered
by foundation models

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The easiest way to build and

scale generative AI

applications with foundation

models (FMs)

Amazon
Bedrock

<Slide: Bedrock>

Accelerate development of generative AI

applications using FMs through an API,

without managing infrastructure

Choose FMs from Amazon, AI21 Labs,

Anthropic, Cohere, Meta, and Stability

AI to find the right FM for your use

case

Privately customize FMs using

your organization’s data

N O W G E N E R A L L Y A V A I L A B L E

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented
Generation (RAG)

Configure FM to interact with
your company data

A N S W E RQ U E S T I O N

F O U N D A T I O N
M O D E L

How much does a blue

elephant vase cost?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented
Generation (RAG)

Configure FM to interact with
your company data

A N S W E RQ U E S T I O N

F O U N D A T I O N
M O D E L

How much does a blue

elephant vase cost?

Sorry, I don't know

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented
Generation (RAG)

Configure FM to interact with
your company data

A N S W E RQ U E S T I O N

K N O W L E D G E
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue

elephant vase cost?

Product catalog

Price data

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented
Generation (RAG)

Configure FM to interact with
your company data

A N S W E RQ U E S T I O N

K N O W L E D G E
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue

elephant vase cost?

Product catalog

Price data

A blue elephant vase

typically costs $19.99

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unstructured data has to be vectorized into vectors to be used in generative AI applications

C
H

A
IR

S

S
T

A
T

U
E

S

V
A

S
E

S

Product
catalog

Blue vase

Red chair

C L A U D E

S T A B L E D I F F U S I O N

J U R A S S I C - 2

A M A Z O N T I T A N

0.23, 1.58, …, 8.45

4.56, 0.71, …, 5.36

What are vector embeddings?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

PDF

document

1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

PDF

document

1 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

Amazon Titan

Embeddings
PDF

document

1 2 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

Amazon Titan

Embeddings
PDF

document

Amazon Aurora

PostgreSQL-

Compatible

1 2 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

Amazon Titan

Embeddings
PDF

document

Amazon Aurora

PostgreSQL-

Compatible

User

1 2 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

Amazon Titan

Embeddings
PDF

document

Amazon Aurora

PostgreSQL-

Compatible

User

Embeddings

1

4

Question

2 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

Amazon Titan

Embeddings
PDF

document

Amazon Aurora

PostgreSQL-

Compatible

User

Embeddings

1

4

Question

2 3

5

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

Amazon Titan

Embeddings
PDF

document

Amazon Aurora

PostgreSQL-

Compatible

User

Embeddings Large language

model

(Claude v2)

1

4

Question

Question + Context

2 3

5

6

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How vector embeddings are used

Document

chunks

Amazon Titan

Embeddings
PDF

document

Amazon Aurora

PostgreSQL-

Compatible

User

Embeddings Large language

model

(Claude v2)

1

4

Question

Question + Context

Response

2 3

5

6

7

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

•

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

•

•

•

Blue elephant

vase that can

hold up to three

plants in it, hand

painted…

0.1234

0.1231

0.1232

0.9005

0.2489

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

•

•

1536 dimensions

4-byte floats

6152B => 6KiB

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

•

•

1536 dimensions

4-byte floats

6152B => 6KiB

1,000,000 => 5.7GB

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

•

1536 dimensions

4-byte floats

6152B => 6KiB

1,000,000 => 5.7GB

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234

0.59405

0.23430

0.23432

0.20551

0.70543

0.20559

0.20559

0.70543

0.23432

0.24234

0.23430

0.12310

0.20551

0.59405

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

• Find similar vectors without
searching all of them

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

• Find similar vectors without
searching all of them

• Faster than exact nearest
neighbor

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

• Find similar vectors without
searching all of them

• Faster than exact nearest
neighbor

• “Recall” – % of expected
results

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

• Find similar vectors without
searching all of them

• Faster than exact nearest
neighbor

• “Recall” – % of expected
results

Recall: 80%

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Considerations for vector storage

PerformanceRelevancy

Cost

Storage

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Considerations for vector storage

PerformanceRelevancy

Cost

Storage

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Questions for choosing a vector storage system

•

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

• How much data am I storing?

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

• How much data am I storing?

• What matters to me: storage, performance, relevancy, cost?

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

• How much data am I storing?

• What matters to me: storage, performance, relevancy, cost?

• What are my tradeoffs: indexing, query time, schema design?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL as a vector store

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why PostgreSQL?

Open source

• Active development for more than 35
years

• Controlled by a community, not a single
company

Performance and scale

• Robust data type implementations

• Extensive indexing support

• Parallel processing for complex queries

• Native partitioning for large tables

PostgreSQL is a trademark or registered trademark of the

PostgreSQL Community Association of Canada, and used with their

permission.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why use PostgreSQL for vector searches?

• Existing client libraries work without modification

• Convenient to co-locate app + AI/ML data in same database

• PostgreSQL acts as persistent transactional store while working
with other vector search systems

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of
distance

github.com/pgvector/pgvector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of
distance

vector data type

github.com/pgvector/pgvector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of
distance

vector data type

Supports IVFFlat/HNSW indexing

github.com/pgvector/pgvector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of
distance

vector data type

Supports IVFFlat/HNSW indexing

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

github.com/pgvector/pgvector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of
distance

vector data type

Supports IVFFlat/HNSW indexing

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of
distance

vector data type

Supports IVFFlat/HNSW indexing
Distance operators (<->, <=>, <#>)

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing methods: IVFFlat and HNSW

• IVFFlat

▪

▪

▪

▪

• HNSW

▪

▪

▪

▪

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing methods: IVFFlat and HNSW

• IVFFlat

▪ K-means based

▪

▪

▪

• HNSW

▪ Graph based

▪

▪

▪

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing methods: IVFFlat and HNSW

• IVFFlat

▪ K-means based

▪ Organize vectors into lists

▪

▪

• HNSW

▪ Graph based

▪ Organize vectors into
“neighborhoods”

▪

▪

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing methods: IVFFlat and HNSW

• IVFFlat

▪ K-means based

▪ Organize vectors into lists

▪ Requires prepopulated data

▪

• HNSW

▪ Graph based

▪ Organize vectors into
“neighborhoods”

▪ Iterative insertions

▪

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing methods: IVFFlat and HNSW

• IVFFlat

▪ K-means based

▪ Organize vectors into lists

▪ Requires prepopulated data

▪ Insert time bounded by # lists

• HNSW

▪ Graph based

▪ Organize vectors into
“neighborhoods”

▪ Iterative insertions

▪ Insertion time increases as data in
graph increases

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Which search method do I choose?

•

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Which search method do I choose?

• Exact nearest neighbors: No index

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat

• Easy to manage: HNSW

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat

• Easy to manage: HNSW

• High performance/recall: HNSW

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector strategies and best
practices

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for pgvector

Storage strategies

HNSW strategies

IVFFlat strategies

Filtering

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector storage strategies

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding TOAST in PostgreSQL

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding TOAST in PostgreSQL

• TOAST (The Oversized-Attribute Storage Technique) is a
mechanism for storing data larger than 8KB

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding TOAST in PostgreSQL

• TOAST (The Oversized-Attribute Storage Technique) is a
mechanism for storing data larger than 8KB

• By default, PostgreSQL “TOASTs” values over 2KB

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding TOAST in PostgreSQL

• TOAST (The Oversized-Attribute Storage Technique) is a
mechanism for storing data larger than 8KB

• By default, PostgreSQL “TOASTs” values over 2KB

• 510-dim 4-byte float vector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL column storage types

•

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL column storage types

• PLAIN: Data stored inline with table

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL column storage types

• PLAIN: Data stored inline with table

• EXTENDED: Data stored/compressed in TOAST table when
threshold exceeded (pgvector default)

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL column storage types

• PLAIN: Data stored inline with table

• EXTENDED: Data stored/compressed in TOAST table when
threshold exceeded (pgvector default)

• EXTERNAL: Data stored in TOAST table when threshold exceeded

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL column storage types

• PLAIN: Data stored inline with table

• EXTENDED: Data stored/compressed in TOAST table when
threshold exceeded (pgvector default)

• EXTERNAL: Data stored in TOAST table when threshold exceeded

• MAIN: Data stored compressed inline with table

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

Workers Planned: 6

-> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

Sort Key: ((<-> embedding))

-> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667
width=12)

128 dimensions

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

Workers Planned: 4

-> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029
width=12)

1,536 dimensions

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strategies for pgvector and TOAST

• Use PLAIN storage

▪ ALTER TABLE … ALTER COLUMN ... SET STORAGE PLAIN

▪ Requires table rewrite (VACUUM FULL) if data already exists

▪ Limits vector sizes to 2,000 dimensions

• Use min_parallel_table_scan_size to induce more parallel
workers

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

Workers Planned: 11

-> Sort (cost=94704.11..96976.86 rows=909101 width=12)

Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW strategies

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW index building parameters

• m

▪ Maximum number of bidirectional links between indexed vectors

▪ Default: 16

• ef_construction

▪ Number of vectors to maintain in “nearest neighbor” list

▪ Default: 64

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 0

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW query parameters

• hnsw.ef_search

▪ Number of vectors to maintain in “nearest neighbor” list

▪ Must be greater than or equal to LIMIT

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW overview recap

• HNSW does more upfront work in constructing index

• This increases probability that searches are in best neighborhood
for nearest neighbors

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for building HNSW indexes

• Default values (M=16,ef_construction=64) usually work

• (pgvector 0.5.1) Start with empty index and use concurrent writes
to accelerate builds

▪ INSERT or COPY

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of concurrent inserts on HNSW build time

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64

T
im

e
 (

s
)

Clients

HNSW index build (1,000,000 128-dim vectors)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choosing m and ef_construction

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0

50

100

150

200

250

32 64 128 256 512

R
e

ca
ll

In
d

e
x

 b
u

il
d

(m

in
)

ef_construction

1.1MM 1536-dim vectors, m=16, ef_search=20

Build Time (min) Recall

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choosing m and ef_construction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

100

200

300

400

500

600

700

800

16 24 36 48

R
e

ca
ll

In
d

e
x

 b
u

il
d

 (
m

in
)

m

1MM 960-dim vectors

Build Time (min) Recall

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance strategies for HNSW queries

• Index building has biggest impact on performance/recall

• Increasing hnsw.ef_search increases recall, decreases
performance

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat strategies

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat index building parameters

• lists

▪ Number of “buckets” for organizing vectors

▪ Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING ivfflat(embedding) WITH (lists=3);

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an IVFFlat index

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an IVFFlat index: Assign lists

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index

SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index

SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance strategies for IVFFlat queries

•

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases
performance

•

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases
performance

• Lowering random_page_cost on a per-query basis can induce
index usage

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases
performance

• Lowering random_page_cost on a per-query basis can induce
index usage

• Set shared_buffers to a value that keeps data (table) in memory

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases
performance

• Lowering random_page_cost on a per-query basis can induce
index usage

• Set shared_buffers to a value that keeps data (table) in memory

• Increase work_mem on a per-query basis

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for building IVFFlat indexes

• Choose value of lists to maximize recall but minimize effort of
search

▪ < 1MM vectors: # vectors / 1000

▪ > 1MM vectors: √(# vectors)

• May be necessary to rebuild when adding/modifying vectors in
index

• Use parallelism to accelerate build times

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How parallelism works with pgvector IVFFlat

Find centers

Assign

vectors to

centers

Sort

vectors
Save to disk

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How parallelism works with pgvector IVFFlat

Find centers

Assign

vectors to

centers

Sort

vectors
Save to disk

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How parallelism works with pgvector IVFFlat

Vectors in

table

List

List

List

Assign to listSequential scan

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How parallelism works with pgvector IVFFlat

Vectors in

table

List

List

List

Assign to listParallel scan

Assign to listParallel scan

Assign to listParallel scan

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using parallelism to accelerate IVFFlat builds

0

20

40

60

80

100

120

140

Serial Parallel

T
im

e
 (

s
)

1MM 768-dim, lists=1000

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector filtering strategies

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is filtering?

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding

LIMIT 10;

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How filtering impacts ANN queries

• PostgreSQL may choose to not use the index

• Uses an index, but does not return enough results

• Filtering occurs after using the index

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Do I need an HNSW/IVFFlat index for a filter?

• Does the filter use a B-Tree (or other index) to reduce the data set?

• How many rows does the filter remove?

• Do I want exact results or approximate results?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering strategies

•

•

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering strategies

• Partial index

•

CREATE INDEX ON docs

USING hnsw(embedding vector_l2_ops)

WHERE category_id = 7;

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering strategies

• Partial index

• Partition

CREATE INDEX ON docs

USING hnsw(embedding vector_l2_ops)

WHERE category_id = 7;

CREATE TABLE docs_cat7

PARTITION OF docs

FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

USING hnsw(embedding vector_l2_ops);

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering with existing embeddings

SELECT *

FROM (

(SELECT id,

embedding <=> (SELECT embedding FROM documents WHERE id = 1 LIMIT 1) AS dist

FROM documents

ORDER BY dist LIMIT 5)

UNION

(SELECT id,

embedding <=> (SELECT embedding FROM documents WHERE id = 2 LIMIT 1) AS dist

FROM documents

ORDER BY dist LIMIT 5)

) x

WHERE x.id NOT IN (1, 2)

ORDER BY x.dist LIMIT 5;

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora features

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora overview
Designed for unparalleled high performance and availability at global scale with full MySQL and
PostgreSQL compatibility at 1/10th the cost of commercial databases

▪ 5x throughput of standard

MySQL and 3x of standard

PostgreSQL

▪ Scale out up to 15 read

replicas in region and 90

read replicas using global

database

▪ Decoupled storage and

compute enabling cost

optimization

▪ Fast database cloning

▪ Distributed, dynamically

scaling storage subsystem

Performance and

scalability

▪ 99.99% availability with

Multi-AZ

▪ Data is durable across 3 AZs

(customers only pay for 1

copy)

▪ Automatic, continuous,

incremental backups with

point-in-time recovery

(PITR)

▪ Failovers in < 10 seconds

▪ Fault-tolerant, self-

healing, auto scaling

storage

▪ Global database for

disaster recovery

Availability and

durability

▪ Network isolation

▪ Encryption at rest/in

transit

▪ Supports multiple secure

authentication mechanisms

and audit controls

Highly secure

▪ Automates time-consuming

management of

administration tasks like

hardware provisioning,

database setup, patching,

and backups

▪ Serverless configuration

options

Manageability at

scale

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora features for vector workloads

• Amazon Aurora PostgreSQL with Optimized Reads

▪ NVMe caching

• Instance types (r7g)

• Compatibility with frameworks like LangChain

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vector performance with tiered caching

Amazon Aurora PostgreSQL

I/O-Optimized with tiered

caching and pgvector

increases queries per second

for vector search by up to 9x in

workloads that exceed

available instance memory

4 8 16 32 48 64 80 96

Q
u

e
ri

e
s
 p

e
r

s
e

c
o

n
d

 (
Q

P
S

)

Clients

1 billion vectors with BigANN benchmark and

recall of 0.9578

QPS - I/O Optimized - db.r6g.12xlarge

QPS - I/O Optimized w/Optimized Reads - db.r6gd.12xlarge

Database size: 1.28TB (Data: 560 GB, Index: 720GB)

pgvector v0.5: HNSW index

Up to 9x

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Accelerating queries with AWS Graviton3

0%

10%

20%

30%

40%

50%

60%

70%

0

5000

10000

15000

20000

25000

30000

35000

20 40 80 200 400 800

S
p

e
e

d
u

p
 (

%
)

T
ra

n
s
a

c
ti

o
n

s
/

S
e

co
n

d
 (

T
P

S
)

hnsw.ef_search

1536-dimensional vector HNSW search

db.r6g.16xlarge db.r7g.16xlarge Speedup (%)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Looking ahead

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector roadmap

• Parallel builds for HNSW (committed; targeted for pgvector 0.6.0)

• Enhanced index-based filtering/HQANN (in progress)

• More data types per dimension (float2, uint8) (in progress)

• Product quantization/scalar quantization

• Parallel query

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Conclusion

• Primary design decision: query performance and recall

• Determine where to invest: storage, compute, indexing strategy

• Plan for today and tomorrow: pgvector is rapidly innovating

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Continue your journey

• DAT413-R1: Using LangChain to build gen AI apps with Amazon
Aurora and pgvector

▪ Nov 28: 5:30pm-6:30pm; Wynn – Level 1 – Lafite 2

• DAT212-INT: Future-proofing your applications with AWS
databases

▪ Nov 29: 2:30pm-3:30pm; Venetian – Level 5 – Palazzo Ballroom B

• DAT323-R / DAT323-R1: Discovering the vector database power of
Amazon Aurora & Amazon RDS

▪ Nov 29: 4:30pm-5:30pm; Mandalay Bay – Level 1 North – South Pacific B

▪ Dec 1: 8:30am-9:30am; Caesars Forum – Level 1 – Forum 104

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the
session survey in the
mobile app

Thank you!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the
session survey in the
mobile app

Jonathan Katz

jkatz@amazon.co
m

	Presentation
	Slide 1
	Slide 2: Best practices for querying vector data for gen AI apps in PostgreSQL
	Slide 3: Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Generative AI is powered by foundation models
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: What are vector embeddings?
	Slide 15: How vector embeddings are used
	Slide 16: How vector embeddings are used
	Slide 17: How vector embeddings are used
	Slide 18: How vector embeddings are used
	Slide 19: How vector embeddings are used
	Slide 20: How vector embeddings are used
	Slide 21: How vector embeddings are used
	Slide 22: How vector embeddings are used
	Slide 23: How vector embeddings are used
	Slide 24: How vector embeddings are used
	Slide 25: Challenges with vectors
	Slide 26: Challenges with vectors
	Slide 27: Challenges with vectors
	Slide 28: Challenges with vectors
	Slide 29: Challenges with vectors
	Slide 30: Challenges with vectors
	Slide 31: Challenges with vectors
	Slide 32: Challenges with vectors
	Slide 33: Challenges with vectors
	Slide 34: Challenges with vectors
	Slide 35: Challenges with vectors
	Slide 36: Challenges with vectors
	Slide 37: Challenges with vectors
	Slide 38: Challenges with vectors
	Slide 39: Approximate nearest neighbor (ANN)
	Slide 40: Approximate nearest neighbor (ANN)
	Slide 41: Approximate nearest neighbor (ANN)
	Slide 42: Approximate nearest neighbor (ANN)
	Slide 43: Approximate nearest neighbor (ANN)
	Slide 44: Considerations for vector storage
	Slide 45: Considerations for vector storage
	Slide 46: Questions for choosing a vector storage system
	Slide 47: Questions for choosing a vector storage system
	Slide 48: Questions for choosing a vector storage system
	Slide 49: Questions for choosing a vector storage system
	Slide 50: Questions for choosing a vector storage system
	Slide 51: PostgreSQL as a vector store
	Slide 52: Why PostgreSQL?
	Slide 53: Why use PostgreSQL for vector searches?
	Slide 54: What is pgvector?
	Slide 55: What is pgvector?
	Slide 56: What is pgvector?
	Slide 57: What is pgvector?
	Slide 58: What is pgvector?
	Slide 59: What is pgvector?
	Slide 60: Indexing methods: IVFFlat and HNSW
	Slide 61: Indexing methods: IVFFlat and HNSW
	Slide 62: Indexing methods: IVFFlat and HNSW
	Slide 63: Indexing methods: IVFFlat and HNSW
	Slide 64: Indexing methods: IVFFlat and HNSW
	Slide 65: Which search method do I choose?
	Slide 66: Which search method do I choose?
	Slide 67: Which search method do I choose?
	Slide 68: Which search method do I choose?
	Slide 69: Which search method do I choose?
	Slide 70: pgvector strategies and best practices
	Slide 71: Best practices for pgvector
	Slide 72: pgvector storage strategies
	Slide 73: Understanding TOAST in PostgreSQL
	Slide 74: Understanding TOAST in PostgreSQL
	Slide 75: Understanding TOAST in PostgreSQL
	Slide 76: Understanding TOAST in PostgreSQL
	Slide 77: PostgreSQL column storage types
	Slide 78: PostgreSQL column storage types
	Slide 79: PostgreSQL column storage types
	Slide 80: PostgreSQL column storage types
	Slide 81: PostgreSQL column storage types
	Slide 82: Impact of TOAST on pgvector queries
	Slide 83: Impact of TOAST on pgvector queries
	Slide 84: Strategies for pgvector and TOAST
	Slide 85: Impact of TOAST on pgvector queries
	Slide 86: HNSW strategies
	Slide 87: HNSW index building parameters
	Slide 88: Building an HNSW index
	Slide 89: Building an HNSW index
	Slide 90: Building an HNSW index
	Slide 91: Building an HNSW index
	Slide 92: Building an HNSW index
	Slide 93: HNSW query parameters
	Slide 94: Querying an HNSW index
	Slide 95: Querying an HNSW index
	Slide 96: Querying an HNSW index
	Slide 97: Querying an HNSW index
	Slide 98: Querying an HNSW index
	Slide 99: Querying an HNSW index
	Slide 100: HNSW overview recap
	Slide 101: Best practices for building HNSW indexes
	Slide 102: Impact of concurrent inserts on HNSW build time
	Slide 103: Choosing m and ef_construction
	Slide 104: Choosing m and ef_construction
	Slide 105: Performance strategies for HNSW queries
	Slide 106: IVFFlat strategies
	Slide 107: IVFFlat index building parameters
	Slide 108: Building an IVFFlat index
	Slide 110: Building an IVFFlat index: Assign lists
	Slide 111: Querying an IVFFlat index
	Slide 112: Querying an IVFFlat index
	Slide 113: Performance strategies for IVFFlat queries
	Slide 114: Performance strategies for IVFFlat queries
	Slide 115: Performance strategies for IVFFlat queries
	Slide 116: Performance strategies for IVFFlat queries
	Slide 117: Performance strategies for IVFFlat queries
	Slide 118: Best practices for building IVFFlat indexes
	Slide 119: How parallelism works with pgvector IVFFlat
	Slide 120: How parallelism works with pgvector IVFFlat
	Slide 121: How parallelism works with pgvector IVFFlat
	Slide 122: How parallelism works with pgvector IVFFlat
	Slide 123: Using parallelism to accelerate IVFFlat builds
	Slide 124: pgvector filtering strategies
	Slide 125: What is filtering?
	Slide 126: How filtering impacts ANN queries
	Slide 127: Do I need an HNSW/IVFFlat index for a filter?
	Slide 128: Filtering strategies
	Slide 129: Filtering strategies
	Slide 130: Filtering strategies
	Slide 131: Filtering with existing embeddings
	Slide 132: Amazon Aurora features
	Slide 133: Amazon Aurora overview Designed for unparalleled high performance and availability at global scale with full MySQL and PostgreSQL compatibility at 1/10th the cost of commercial databases
	Slide 134: Amazon Aurora features for vector workloads
	Slide 135: Vector performance with tiered caching
	Slide 136: Accelerating queries with AWS Graviton3
	Slide 137: Looking ahead
	Slide 138: pgvector roadmap
	Slide 139: Conclusion
	Slide 140: Continue your journey
	Slide 141

