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Blue elephant vase that can hold 

up to three plants in it, hand 

painted…
Parrot decorative figure stands 12 

inches high, red, and orange, 

has…
Reddish vase six inches deep 

perfect for cactuses and desert 

plants…
Rabbit planter suitable for 

growing vegetables indoors, green 

and …
Decorative ceramic turtle, blue 

and about eight inches wide, 

makes…
Bird feeder shaped like a bird, can 

hold birdseed for 28 days and is…

Sea shell themed vase that's two 

feet wide and can hold a variety…

Garden variety owl planter, great 

for keeping your favorite 

flowers…
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Pre-trained on vast amounts of 

unstructured data

Contain large number of parameters that make 

them capable of learning complex concepts

Can be applied in a wide range of contexts

Customize FMs using your data for domain 
specific tasks

Generative AI is powered
by foundation models
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The easiest way to build and 

scale generative AI 

applications with foundation 

models (FMs)

Amazon 
Bedrock

<Slide: Bedrock>

Accelerate development of generative AI 

applications using FMs through an API, 

without managing infrastructure

Choose FMs from Amazon, AI21 Labs, 

Anthropic, Cohere, Meta, and Stability 

AI to find the right FM for your use 

case

Privately customize FMs using 

your organization’s data

N O W  G E N E R A L L Y  A V A I L A B L E

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented 
Generation (RAG)

Configure FM to interact with 
your company data

A N S W E RQ U E S T I O N

F O U N D A T I O N
M O D E L

How much does a blue 

elephant vase cost?
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Retrieval Augmented 
Generation (RAG)

Configure FM to interact with 
your company data

A N S W E RQ U E S T I O N

F O U N D A T I O N
M O D E L

How much does a blue 

elephant vase cost?

Sorry, I don't know



© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented 
Generation (RAG)

Configure FM to interact with 
your company data

A N S W E RQ U E S T I O N

K N O W L E D G E  
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue 

elephant vase cost?

Product catalog

Price data
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Retrieval Augmented 
Generation (RAG)

Configure FM to interact with 
your company data

A N S W E RQ U E S T I O N

K N O W L E D G E  
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue 

elephant vase cost?

Product catalog

Price data

A blue elephant vase 

typically costs $19.99
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Unstructured data has to be vectorized into vectors to be used in generative AI applications
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Product
catalog

Blue vase

Red chair

C L A U D E

S T A B L E  D I F F U S I O N

J U R A S S I C - 2

A M A Z O N  T I T A N

0.23, 1.58, …, 8.45

4.56, 0.71, …, 5.36

What are vector embeddings?
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How vector embeddings are used
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How vector embeddings are used
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Challenges with vectors

•

•

•

•
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Challenges with vectors

• Time to generate embeddings

•

•

•

Blue elephant 

vase that can 

hold up to three 

plants in it, hand 

painted…

0.1234

0.1231

0.1232

0.9005

0.2489
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Challenges with vectors

• Time to generate embeddings

• Embedding size

•

•

1536 dimensions

4-byte floats

6152B => 6KiB
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Challenges with vectors

• Time to generate embeddings

• Embedding size

•

•

1536 dimensions

4-byte floats

6152B => 6KiB

1,000,000 => 5.7GB
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Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

•

1536 dimensions

4-byte floats

6152B => 6KiB

1,000,000 => 5.7GB
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Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

0.12310

0.24234
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0.20551
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0.20559
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0.20551

0.59405
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Approximate nearest neighbor (ANN)

•

•

•
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Approximate nearest neighbor (ANN)

• Find similar vectors without 
searching all of them

•

•
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Approximate nearest neighbor (ANN)

• Find similar vectors without 
searching all of them

• Faster than exact nearest 
neighbor
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• Find similar vectors without 
searching all of them

• Faster than exact nearest 
neighbor

• “Recall” – % of expected 
results
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Approximate nearest neighbor (ANN)

• Find similar vectors without 
searching all of them

• Faster than exact nearest 
neighbor

• “Recall” – % of expected 
results

Recall: 80%
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Considerations for vector storage

PerformanceRelevancy

Cost

Storage
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Questions for choosing a vector storage system

•

•

•

•
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Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

•

•

•
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Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

• How much data am I storing?

• What matters to me: storage, performance, relevancy, cost?

•
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Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

• How much data am I storing?

• What matters to me: storage, performance, relevancy, cost?

• What are my tradeoffs: indexing, query time, schema design?
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PostgreSQL as a vector store
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Why PostgreSQL?

Open source

• Active development for more than 35 
years 

• Controlled by a community, not a single 
company

Performance and scale

• Robust data type implementations

• Extensive indexing support

• Parallel processing for complex queries

• Native partitioning for large tables

PostgreSQL is a trademark or registered trademark of the 

PostgreSQL Community Association of Canada, and used with their 

permission.
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Why use PostgreSQL for vector searches?

• Existing client libraries work without modification

• Convenient to co-locate app + AI/ML data in same database 

• PostgreSQL acts as persistent transactional store while working 
with other vector search systems
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What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of 
distance

github.com/pgvector/pgvector
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vector data type
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What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of 
distance

vector data type

Supports IVFFlat/HNSW indexing

github.com/pgvector/pgvector
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What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of 
distance

vector data type

Supports IVFFlat/HNSW indexing

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

github.com/pgvector/pgvector
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What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of 
distance

vector data type

Supports IVFFlat/HNSW indexing

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector
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What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of 
distance

vector data type

Supports IVFFlat/HNSW indexing
Distance operators (<->, <=>, <#>)

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector
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Indexing methods: IVFFlat and HNSW

• IVFFlat

▪

▪

▪

▪

• HNSW

▪

▪

▪

▪
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Indexing methods: IVFFlat and HNSW
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▪ K-means based

▪ Organize vectors into lists

▪

▪

• HNSW

▪ Graph based

▪ Organize vectors into 
“neighborhoods”

▪

▪
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Indexing methods: IVFFlat and HNSW

• IVFFlat

▪ K-means based

▪ Organize vectors into lists

▪ Requires prepopulated data

▪

• HNSW

▪ Graph based

▪ Organize vectors into 
“neighborhoods”

▪ Iterative insertions

▪
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Indexing methods: IVFFlat and HNSW

• IVFFlat

▪ K-means based

▪ Organize vectors into lists

▪ Requires prepopulated data

▪ Insert time bounded by # lists

• HNSW

▪ Graph based

▪ Organize vectors into 
“neighborhoods”

▪ Iterative insertions

▪ Insertion time increases as data in 
graph increases 
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Which search method do I choose?

•

•

•

•



© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Which search method do I choose?

• Exact nearest neighbors: No index

•

•

•
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Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat

•

•
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Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat

• Easy to manage: HNSW

•
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Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat

• Easy to manage: HNSW

• High performance/recall: HNSW
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pgvector strategies and best 
practices
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Best practices for pgvector

Storage strategies

HNSW strategies

IVFFlat strategies

Filtering
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pgvector storage strategies
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Understanding TOAST in PostgreSQL

•

•

•
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Understanding TOAST in PostgreSQL

• TOAST (The Oversized-Attribute Storage Technique) is a 
mechanism for storing data larger than 8KB

•

•
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Understanding TOAST in PostgreSQL

• TOAST (The Oversized-Attribute Storage Technique) is a 
mechanism for storing data larger than 8KB

• By default, PostgreSQL “TOASTs” values over 2KB

•
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Understanding TOAST in PostgreSQL

• TOAST (The Oversized-Attribute Storage Technique) is a 
mechanism for storing data larger than 8KB

• By default, PostgreSQL “TOASTs” values over 2KB

• 510-dim 4-byte float vector
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PostgreSQL column storage types

•

•

•

•
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PostgreSQL column storage types

• PLAIN: Data stored inline with table

•

•

•



© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL column storage types

• PLAIN: Data stored inline with table

• EXTENDED: Data stored/compressed in TOAST table when 
threshold exceeded (pgvector default)

•

•
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PostgreSQL column storage types

• PLAIN: Data stored inline with table

• EXTENDED: Data stored/compressed in TOAST table when 
threshold exceeded (pgvector default)

• EXTERNAL: Data stored in TOAST table when threshold exceeded

•
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PostgreSQL column storage types

• PLAIN: Data stored inline with table

• EXTENDED: Data stored/compressed in TOAST table when 
threshold exceeded (pgvector default)

• EXTERNAL: Data stored in TOAST table when threshold exceeded

• MAIN: Data stored compressed inline with table
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Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

Workers Planned: 6

-> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

Sort Key: ((<-> embedding))

-> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667
width=12)

128 dimensions
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Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

Workers Planned: 4

-> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029
width=12)

1,536 dimensions
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Strategies for pgvector and TOAST

• Use PLAIN storage

▪ ALTER TABLE … ALTER COLUMN ... SET STORAGE PLAIN

▪ Requires table rewrite (VACUUM FULL) if data already exists

▪ Limits vector sizes to 2,000 dimensions

• Use min_parallel_table_scan_size to induce more parallel 
workers
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Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

Workers Planned: 11

-> Sort (cost=94704.11..96976.86 rows=909101 width=12)

Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1
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HNSW strategies
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HNSW index building parameters

• m

▪ Maximum number of bidirectional links between indexed vectors

▪ Default: 16

• ef_construction

▪ Number of vectors to maintain in “nearest neighbor” list

▪ Default: 64
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Building an HNSW index
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 1
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Building an HNSW index

Layer 0
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HNSW query parameters

• hnsw.ef_search

▪ Number of vectors to maintain in “nearest neighbor” list

▪ Must be greater than or equal to LIMIT
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 0
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Querying an HNSW index

Layer 0
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HNSW overview recap

• HNSW does more upfront work in constructing index

• This increases probability that searches are in best neighborhood 
for nearest neighbors
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Best practices for building HNSW indexes

• Default values (M=16,ef_construction=64) usually work

• (pgvector 0.5.1) Start with empty index and use concurrent writes 
to accelerate builds

▪ INSERT or COPY
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Impact of concurrent inserts on HNSW build time
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Choosing m and ef_construction
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Choosing m and ef_construction
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Performance strategies for HNSW queries

• Index building has biggest impact on performance/recall

• Increasing hnsw.ef_search increases recall, decreases 
performance
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IVFFlat strategies
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IVFFlat index building parameters

• lists

▪ Number of “buckets” for organizing vectors

▪ Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING ivfflat(embedding) WITH (lists=3);
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Building an IVFFlat index
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Building an IVFFlat index: Assign lists
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Querying an IVFFlat index

SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3
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Querying an IVFFlat index

SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3
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Performance strategies for IVFFlat queries

•

•

•

•
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Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases 
performance

•

•

•
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Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases 
performance

• Lowering random_page_cost on a per-query basis can induce 
index usage

•

•
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Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases 
performance

• Lowering random_page_cost on a per-query basis can induce 
index usage

• Set shared_buffers to a value that keeps data (table) in memory

•
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Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases 
performance

• Lowering random_page_cost on a per-query basis can induce 
index usage

• Set shared_buffers to a value that keeps data (table) in memory

• Increase work_mem on a per-query basis
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Best practices for building IVFFlat indexes

• Choose value of lists to maximize recall but minimize effort of 
search

▪ < 1MM vectors: # vectors / 1000

▪ > 1MM vectors: √(# vectors)

• May be necessary to rebuild when adding/modifying vectors in 
index

• Use parallelism to accelerate build times
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How parallelism works with pgvector IVFFlat

Find centers

Assign 

vectors to 

centers

Sort

vectors
Save to disk
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How parallelism works with pgvector IVFFlat

Find centers

Assign 

vectors to 

centers

Sort

vectors
Save to disk
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How parallelism works with pgvector IVFFlat

Vectors in 

table

List

List

List

Assign to listSequential scan
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How parallelism works with pgvector IVFFlat

Vectors in 

table

List

List

List

Assign to listParallel scan

Assign to listParallel scan

Assign to listParallel scan
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Using parallelism to accelerate IVFFlat builds 
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pgvector filtering strategies
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What is filtering?

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding

LIMIT 10;
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How filtering impacts ANN queries

• PostgreSQL may choose to not use the index

• Uses an index, but does not return enough results

• Filtering occurs after using the index
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Do I need an HNSW/IVFFlat index for a filter?

• Does the filter use a B-Tree (or other index) to reduce the data set?

• How many rows does the filter remove?

• Do I want exact results or approximate results?
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Filtering strategies

•

•
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Filtering strategies

• Partial index

•

CREATE INDEX ON docs

USING hnsw(embedding vector_l2_ops)

WHERE category_id = 7;
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Filtering strategies

• Partial index

• Partition

CREATE INDEX ON docs

USING hnsw(embedding vector_l2_ops)

WHERE category_id = 7;

---

CREATE TABLE docs_cat7

PARTITION OF docs

FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

USING hnsw(embedding vector_l2_ops);
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Filtering with existing embeddings

SELECT *

FROM (

(SELECT id,

embedding <=> (SELECT embedding FROM documents WHERE id = 1 LIMIT 1) AS dist

FROM documents

ORDER BY dist LIMIT 5)

UNION

(SELECT id,

embedding <=> (SELECT embedding FROM documents WHERE id = 2 LIMIT 1) AS dist

FROM documents

ORDER BY dist LIMIT 5)

) x

WHERE x.id NOT IN (1, 2)

ORDER BY x.dist LIMIT 5;
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Amazon Aurora features
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Amazon Aurora overview
Designed for unparalleled high performance and availability at global scale with full MySQL and 
PostgreSQL compatibility at 1/10th the cost of commercial databases

▪ 5x throughput of standard

MySQL and 3x of standard 

PostgreSQL

▪ Scale out up to 15 read 

replicas in region and 90 

read replicas using global 

database

▪ Decoupled storage and 

compute enabling cost 

optimization

▪ Fast database cloning

▪ Distributed, dynamically 

scaling storage subsystem

Performance and 

scalability

▪ 99.99% availability with 

Multi-AZ

▪ Data is durable across 3 AZs 

(customers only pay for 1 

copy)

▪ Automatic, continuous, 

incremental backups with 

point-in-time recovery 

(PITR)

▪ Failovers in < 10 seconds 

▪ Fault-tolerant, self-

healing, auto scaling 

storage

▪ Global database for 

disaster  recovery

Availability and 

durability

▪ Network isolation

▪ Encryption at rest/in 

transit

▪ Supports multiple secure 

authentication mechanisms 

and audit controls

Highly secure

▪ Automates time-consuming 

management of 

administration tasks like 

hardware provisioning, 

database setup, patching, 

and backups

▪ Serverless configuration 

options

Manageability at 

scale
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Amazon Aurora features for vector workloads

• Amazon Aurora PostgreSQL with Optimized Reads

▪ NVMe caching

• Instance types (r7g)

• Compatibility with frameworks like LangChain
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Vector performance with tiered caching

Amazon Aurora PostgreSQL 

I/O-Optimized with tiered 

caching and pgvector 

increases queries per second 

for vector search by up to 9x in 

workloads that exceed 

available instance memory
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recall of 0.9578
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Database size: 1.28TB (Data: 560 GB, Index: 720GB)

pgvector v0.5: HNSW index

Up to 9x
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Accelerating queries with AWS Graviton3 
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Looking ahead



© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector roadmap

• Parallel builds for HNSW (committed; targeted for pgvector 0.6.0)

• Enhanced index-based filtering/HQANN (in progress)

• More data types per dimension (float2, uint8) (in progress)

• Product quantization/scalar quantization

• Parallel query



© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Conclusion

• Primary design decision: query performance and recall

• Determine where to invest: storage, compute, indexing strategy

• Plan for today and tomorrow: pgvector is rapidly innovating 
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Continue your journey

• DAT413-R1: Using LangChain to build gen AI apps with Amazon 
Aurora and pgvector

▪ Nov 28: 5:30pm-6:30pm; Wynn – Level 1 – Lafite 2

• DAT212-INT: Future-proofing your applications with AWS 
databases

▪ Nov 29: 2:30pm-3:30pm; Venetian – Level 5 – Palazzo Ballroom B

• DAT323-R / DAT323-R1: Discovering the vector database power of 
Amazon Aurora & Amazon RDS

▪ Nov 29: 4:30pm-5:30pm; Mandalay Bay – Level 1 North – South Pacific B

▪ Dec 1: 8:30am-9:30am; Caesars Forum – Level 1 – Forum 104
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Thank you!
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Please complete the 
session survey in the 
mobile app

Thank you!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the 
session survey in the 
mobile app

Jonathan Katz

jkatz@amazon.co
m
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