

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architecting multi-tenant PaaS
offerings with Amazon EKS
Judah Bernstein

G P S T E C 3 3 7

Sr. Partner Solutions Architect, SaaS Factory
Amazon Web Services

Sr. Partner Solutions Architect, SaaS Factory
Amazon Web Services

Ranjith Raman

What is Kubernetes?

Open-source
container

management
platform

Helps you
run

containers at
scale

Gives you
primitives

for building
modern

applications

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Platform as a Service (PaaS)

What is Platform as a Service (PaaS)?

Platform as a service
(PaaS) is a proven model
for running applications

without the hassle of
maintaining on-

premises hardware and
software infrastructure

at your company

https://www.salesforce.com/ap/paas/overview/

https://www.salesforce.com/ap/paas/overview/

Core requirements for today’s PaaS solution

External customers Custom applications Automatic scaling

Turnkey deployment Multiple languages Secure & compliant

Tenant isolation design considerations

Silo

Tenant

Bridge
Tenant

Pool

Compute
isolation

Network
isolation

Plan
tiering

Storage
isolation

Usage
metering

Advanced
architectures

Tenant

TenantTenant

Tenant Tenant

Tenant Tenant

Tenant Tenant

Tenant Tenant

Multi-tenant Kubernetes workload architecture

Application
Load Balancer

Amazon Elastic
Kubernetes Service

(Amazon EKS)

Amazon
EKS

Amazon
Route 53

Tenant1 Tenant2

Tenant1
Tenant2

Tenant1

Tenant1

Tenant1

Tenant2

Namespace: 1

Namespace: 2
Namespace: 1

Namespace: 2

Enterprise tier

Enterprise tier

Standard tier

Standard tier

Kubernetes tenant isolation strategies

Soft multi-tenancy
• Hospitable tenants
• Tenants == business units
• No intention to exploit
• Accident prevention
• Focus on agility

Hard multi-tenancy
• Inhospitable tenants
• Tenants == different

companies
• Potential intention to exploit
• Focus on tenant isolation

Native multi-tenancy

The Kubernetes open-source project
DOES NOT currently support

native multi-tenancy

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PaaS architecture requirements

Core components of a PaaS

API wrapper Workload manager Customer endpoint

Deployment pipeline Monitoring service Metering service

Multi-tenant PaaS API layer

Public API
Static

website

Kubernetes
API wrapper

Public API
workload instantiation

Workload
manager

[mycluster].eks.amazonaws.com

Availability
Zone 1

Availability
Zone 2

Availability
Zone 3

AWS Cloud

VPC

Amazon Kinesis
Data Streams

Amazon
DynamoDB

Lambda
tenant authorizer

Public API
workload state

Amazon EKS

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Compute isolation

Design considerations for compute isolation

Namespace
isolation

ServiceAccount
segmentation

Resource
isolation

Namespace per tenant
Namespaces

Provide a scope for names. Names of
resources need to be unique within a

namespace but not across namespaces.
Namespaces cannot be nested inside one

another, and each Kubernetes resource can
only be in one namespace.

Strength
Provides obfuscation of
tenant resources within

a pooled environment by
mitigating resource advertisement

Weakness
You can still globally

access tenant
resources in a

pooled environment

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://www.weave.works/blog/optimizing-cluster-resources-for-kubernetes-team-development

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://www.weave.works/blog/optimizing-cluster-resources-for-kubernetes-team-development

Securing platform as a service authorization

Restrict role
access

Tenant service
accounts

Tenant
RoleBinding

kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
namespace: tenant1
name: tenant1-role

rules:
- apiGroups: ["", "extensions", "apps"]
resources: ["replicasets", "pods”, "deployments"]
verbs: ["list", “get”, ”watch", "create", "update", "patch", "delete"]

apiVersion: v1
kind: ServiceAccount
metadata:
name: tenant1-service1
namespace: tenant1

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
name: tenant1-role-binding
namespace: tenant1

subjects:
- kind: ServiceAccount
name: tenant1-service1
namespace: tenant1

roleRef:
kind: Role
name: tenant1-role
apiGroup: ""

Example - Role, ServiceAccount, RoleBinding

Restricting access to Kubernetes compute
Restrict deployment of tenant pods

from accessing

• EC2 Instance

• Filesystems

• Networks

• Processes (PID)

• Namespaces

• Volumes

Preventing a tenant’s custom

application from accessing another

tenant’s resources

Pod security policies
A set of conditions that pods

must meet to be accepted by the
cluster

DISABLE PRIVILIGED MODE!!!

apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
name: pod-security-policy

spec:
privileged: false
runAsUser:
rule: MustRunAsNonRoot

seLinux:
rule: RunAsAny

fsGroup:
rule: RunAsAny

supplementalGroups:
rule: RunAsAny

volumes:
- ‘*'

Example – Pod security policy

Prevents creation of privileged containers

Prevents containers that require root privileges

Note!
Amazon EKS 1.13 cluster now has the pod
security policy admission plugin enabled by
default

$ kubectl get psp

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP READONLYROOTFS VOLUMES
eks.privileged true * RunAsAny RunAsAny RunAsAny RunAsAny false *

Amazon EKS 1.13 and above

$ kubectl describe psp eks.privileged

Name: eks.privileged
Settings:
Allow Privileged: true
Allow Privilege Escalation: 0xc0004ce5f8
Default Add Capabilities: <none>
Required Drop Capabilities: <none>
Allowed Capabilities: *
Allowed Volume Types: *
Allow Host Network: true
Read Only Root Filesystem: false

Create a more restrictive pod security

policy and delete the default

Securing platform as a service authentication

Never expose
ServiceAccount

Pull Secrets
from vault

Consider
federation

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network isolation

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network isolation

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network isolation

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Network isolation

Design considerations for network isolation

Network &
pod policies

Service-
mesh

Monitoring &
compliance

Network isolation with Kubernetes

• Define policy to control network
traffic

• No in-built mechanism to
enforce the policy

• Use network plugins
• Tigera Calico and Secure
• Weave, Romana

• Network ingress and egress
rules

Network policy kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: default-deny
namespace: tenant1

spec:
podSelector:
matchLabels: {}

types:
- Ingress
- Egress

Example - Network policies
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-same-namespace
namespace: tenant1

spec:
podSelector:
matchLabels:
app: backend

ingress:
- from:
- podSelector:

app: frontend

Implementing a K8S tenant network policy

Create two namespaces for two Tenants
• kubectl create ns tenant1

• kubectl create ns tenant2

Create a standard HTTP web server within Each Tenant Namespace
kubectl run nginx --image=nginx --replicas=1 --port=80 -n=tenant1
kubectl run nginx --image=nginx --replicas=1 --port=80 -n=tenant2
Expose the port 80 for external access
kubectl expose deployment nginx --port=80 --type=NodePort -n=tenant1
kubectl expose deployment nginx --port=80 --type=NodePort -n=tenant2
Create a "bash" pod in one namespace
kubectl run -i --tty client --image=tutum/curl -n=tenant1# Create a Cross Tenant Event "tenant1" => success
curl http://nginx.tenant1
Create a Cross Tenant Event "tenant2" => success
curl http://nginx.tenant2

Create a Network Policy (Standard K8S In this Instance)
vi network-policy.yaml

Save the Following Tenant Namespace Policy
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: deny-from-other-namespaces

spec:
podSelector:
matchLabels:

ingress:
- from:
- podSelector: {}

Apply Network Policy to Tenant1 and Tenant2
kubectl apply -f ./network-policy.yaml -n=tenant1
kubectl apply -f ./network-policy.yaml -n=tenant2
Create a Cross Tenant Event "tenant2" => failure
curl http://nginx.tenant2

Tigera Secure: Network security for Kubernetes

• Least privileged tenant access through fine-grained

network policies [L3-L7] (Calico)

• Enable tenant traceability through Amazon CloudWatch

custom metrics and logs, and Prometheus

• In-transit encryption for all tenant communication

• FQDN support with whitelists and default-deny

• Automate incident response workflows for tenants

• Monitor, detect, prevent malicious tenant activity

• Continuous compliance (PCI DSS, SOC2, etc.)

• Immediate alerting for cross-tenant impacts

• Reporting, threat analysis, and logging dashboards

tenant1 svc-1

log-1saas

Atlassian achieves AWS multi-tenancy with

“Atlassian’s objective was to build a
central, managed container platform,
hosted in AWS, that could eventually
support the majority of its compute

workloads. That includes . . .
Bitbucket/Bamboo code

management and continuous
integration and deployment (CI/CD)
platform. This also builds and runs

customers’ code – i.e., arbitrary code
execution within a multi-tenant

environment: a security professional’s
worst nightmare!”

Corey Johnston, Kubernetes Platform
Senior Team Lead at Atlassian

“Our security approach had to be strong
enough to isolate not just our own
developers’ applications but, more

importantly, our external customers’ code.

“This led us to Tigera Calico as the most
robust, Kubernetes-native network

security solution for achieving
microsegmentation of container

workloads.”

https://www.tigera.io/customer/atlassian

https://www.tigera.io/customer/atlassian

Create logical tenant network boundaries

Service mesh

A logical boundary for network traffic
between the services that reside within it. A

mesh can contain virtual services, virtual
nodes, virtual routers, and routes.

• Abstraction
• Service discovery
• Obfuscation
• Retry logic
• Circuit breakers
• Routing
• Load balancing
• Security
• Observability

https://istio.io/blog/2018/soft-multitenancy/

AWS App Mesh

Istio
Consul

Linkerd

SuperGloo

https://istio.io/blog/2018/soft-multitenancy/

Multi-tenant isolation with service mesh

Tenant routing Network isolation Obfuscation

Service discovery Canary deployment Multi-region

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tenant tiering & quality of service

Tenant tiering strategies with resource quotas
• Limit total resources consumed by a tenant

• Set a quota and resource limit for tenant (namespace) capacity

• Limit the type of resources consumed by a tenant

• Enforce performance and capacity tiering (CPU, mem, storage)

• Manage tenant pod prioritization

• Minimize blast radius for a tenant overconsumption event

https://kubernetes.io/docs/concepts/policy/resource-quotas/

https://kubernetes.io/docs/concepts/policy/resource-quotas/

Tenant tiering strategies with resource quotas

https://kubernetes.io/docs/concepts/policy/resource-quotas/

apiVersion: v1
kind: ResourceQuota
metadata:
name: compute-resource

spec:
hard:
pods: “5”
requests.cpu: "1"
requests.memory: 2Gi
limits.cpu: "2"
limits.memory: 4Gi

https://kubernetes.io/docs/concepts/policy/resource-quotas/

Managing tenant placement on Kubernetes nodes

Node affinity (Tenant stickiness)
• Constrain which nodes a

tenant’s pods are deployed to
with labels and selectors

• Allows certain tenant pods to
be scheduled on certain
specified nodes

Pod anti-affinity (tenant silo)
• How tenant (pods) should be

placed in relationship to where
other tenants (pods) are deployed

• Prevents scheduling tenant (pod)
deployment on the same nodes as
pods of another tenant

X
X

X

Defining hard tenant node placement boundaries
Taints

• A taint lets you mark a node
to prevent the scheduler
from using it for certain
pods

Tolerations

• A toleration lets you
designate Pods that can be
used on "tainted" nodes

kubectl taint nodes node1 client=tenant1:NoSchedule

apiVersion: v1
kind: Pod
metadata:
name: nginx
labels:
env: test

spec:
containers:
- name: nginx
image: nginx
imagePullPolicy: IfNotPresent

tolerations:
- key: “client”
operator: "Equal"
value: “tenant1”
effect: "NoSchedule"

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Managing eviction through priority and preemption

Priority

• Priority indicates the

importance of a pod relative

to other pods

• High priority pod placed in

front of the queue

• Prioritize tenants base on

plan tiers

Preemption

• Allows a tenant to be evicted, to

prioritize another tenant

• Be mindful of how the priority

values are assigned

• Graceful tenant task termination

for preemption victims

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Storage isolation

Design considerations for storage multi-tenancy

Folder
isolation

Volume
isolation

AWS resource
isolation

Storage isolation design considerations

• Artifact roles limit the physical volumes a tenant “namespace” can

access

• PVC Claims limit a tenant’s access to NFS volume subfolders through

RBAC

• Storage classes exist at the cluster level (not namespace)

• Use storage resource quotas to limit by namespace

• To deny a specific namespace access to specific storage, set the resource

quota to 0 for that storage class

Native AWS IAM roles for service accounts, pods

https://aws.amazon.com/blogs/opensource/introducing-fine-grained-iam-roles-service-accounts/

• IAM Roles for ServiceAccounts (IRSA)

• Pods first class citizens in IAM

• AWS identity APIs recognize Kubernetes pods

• OpenID Connect (OIDC) IDP with a Kubernetes service

account annotations allow you to use IAM roles at the pod

level.

• Exchange OIDC JWT with STS for temporary credentials

• Signed token verified by STS with OIDC Provider

• Hosted on the control plane and managed by AWS

https://aws.amazon.com/blogs/opensource/introducing-fine-grained-iam-roles-service-accounts/

Example of an AWS IAM role for a service account
kubectl get sa tenant1-serviceaccount1 -o yaml
apiVersion: v1

kind: ServiceAccount

metadata:

annotations:

eks.amazonaws.com/role-arn: arn:aws:iam::123456789012:role/Tenant1Role

name: tenant1-serviceaccount1

namespace: default

secrets:

- name: tenant1-mysecret

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Designing for cost

Optimizing multi-tenant Kubernetes for cost
• Resource aggregation to improve utilization and performance across pool

of tenants

• Meter cluster usage (cpu, mem, storage) for each tenant

• Develop tiering strategies, and provider budgets per plan type

• Develop performance and tenant SLA tiering

• Use metered information to drive entitlement, showback, chargeback, and

compliance

• Align cost structure to your customer’s consumption

• Tie consumption to native K8S constructs such as Pods, PersistantVolumes

Metering Kubernetes cost per tenant
• Expose Kube State Metrics for tenant (namespace) metrics

• Number of pods per hour

• Pod usage per hour (cpu, mem)

• EC2 Node metrics (instance type)

• Lambda functions expose opaque, transparent metrics

• Meter events (start, stop), or regularly poll on schedule

• Pull tenant Metrics into real time analytics pipeline

• Digest metrics into unit based on consumption type

• Define API dimensions to post metering records

• Send records to a metering/billing API (schedule)

https://github.com/kubernetes/kube-state-metrics/tree/master/docs#exposed-metrics

Amazon CloudWatch
Container Insights

https://github.com/kubernetes/kube-state-metrics/tree/master/docs

Slalom solution approach for cost per tenant

• Number of API requests

processed, and execution

time per use-case

• CPU and memory usage

across the pods in the K8S

tenant namespace

• Single tenant S3 bucket,

CloudFront distribution
https://aws.amazon.com/blogs/apn/calculating-saas-cost-per-tenant-a-poc-implementation-in-an-aws-kubernetes-environment/ https://www.hawkular.org/hawkular-metrics/docs/user-guide/#_tenants

https://aws.amazon.com/blogs/apn/calculating-saas-cost-per-tenant-a-poc-implementation-in-an-aws-kubernetes-environment/
https://www.hawkular.org/hawkular-metrics/docs/user-guide/

Slalom cost per tenant architecture

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Advanced multi-tenant strategies

Hardware isolation

Hardware-isolation between containers giving you the highest level of
security between the services in your cluster

Kata Containers is an open source project and global community working
to build a standard implementation of lightweight virtual machines that
feel and perform like containers

Firecracker is an open source virtual machine monitor (VMM) that uses
the Linux Kernel-based Virtual Machine (KVM). Firecracker allows you to
create micro virtual machines or microVMs

Multi-tenant MicroVM isolation architecture

https://github.com/firecracker-microvm/firecracker/blob/master/docs/design.md

https://github.com/firecracker-microvm/firecracker/blob/master/docs/design.md

Application Load Balancer ingress controller V2

Load Balancer
Routing

Amazon
Route 53

Tenant1

Tenant1 Tenant2

Tenant2

Tenant3

Tenant3

Path
HTTP

header
Host header

Target
groups

/tenant1

X-Tenant-Id: 2

Tenant3.anycompany.com

/tenant1

X-Tenant-Id: 2

Tenant3.anycompany.com

Vertical Pod Autoscaler for Database Isolation

• Automatically adjusts the CPU and memory

reservations for pods to help right-size your

applications

• This can free up CPU, memory for other pods

for better resource allocation

• It can scale a database application to

automatically support the necessary utilization

required by the tenant consuming the database

• Dedicated Database Volume per tenant, multi-

tenant database deployment

Things we did not have sufficient time to cover…

Image
scanning

SaaS
devops

SaaS
monitoring

Emerging
K8s concepts

And so much more…

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Closing thoughts

Things to remember

No native support Do it yourself (DIY) Community

Never expose API Deep dive on K8S Silo pipeline

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Related sessions

Related SaaS sessions
Breakouts

• ARC410 – Serverless SaaS deep dive: Building serverless SaaS on AWS

• ARC210 – Microservices decomposition for SaaS environments

• GPSTEC337 – Architecting multi-tenant PaaS offerings with Amazon EKS
Chalk talks

• ARC413 – SaaS metrics deep dive: A look inside multi-tenant analytics

• GPSTEC306 – Reinventing your technology product strategy with a SaaS delivery model

• ARC305 – Migrating single-tenant applications to multi-tenant SaaS

• API308 – Monolith to serverless SaaS: Migrating to multi-tenant architecture

Workshops

• SVS303 – Monolith to serverless SaaS: A hands-on service decomposition

• ARC308 – Hands-on SaaS: Constructing a multi-tenant solution on AWS

Builders sessions

• ARC405 – Building multi-tenant-aware SaaS microservices

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Judah Bernstein
judahb@amazon.com ranraman@amazon.com

Ranjith Raman

Please complete the session
survey in the mobile app.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

