

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building AWS IoT applications
using .NET

Sundararajan Narasiman Matt Luttrell

W I N 3 1 6

Partner Solutions Architect Cloud Application Architect

Amazon Web Services Amazon Web Services

Agenda

• Why AWS IoT Core and .NET

• AWS IoT Core protocols and integration

• Options to publish or subscribe with AWS IoT Core

• Demos

Why AWS IoT Core and .NET

• AWS IoT Core is a service for building connected applications

• AWS IoT Core supports device SDKs in programming languages such as
Java, C, Python, and JavaScript

Why AWS IoT Core and .NET, continued

• Large IoT edge gateways are found in use cases like smart city
command and control centers and building management systems

• Microsoft .NET occupies a significant footprint in the technology
landscape of large enterprises

• No out-of-the-box support for AWS IoT Device SDK for .NET
Framework or .NET Core

AWS IoT Core protocols and integration

Protocol Authentication Port

1 MQTT X.509 certificate 8883, 443

2 HTTP X.509 certificate 8443

3 HTTP SigV4 443

3
MQTT over

WebSockets
SigV4 443

AWS IoT Core device authentication and authorization

AWS IoT Core

Device

Establish TLS 1.2 connection; request server certificate

Sign connection with server certificate; request client certificate

Validate server certificate; sign response with client certificate

Connection authenticated; AWS IoT Core policy associated to client

certificate applied

Username: alice

Password: redQueen!

Establish HTTPS connection; request server certificate

Sign connection with server certificate; wait for message (REST API)

Validate server certificate; sign response with credentials (Amazon Cognito or AWS Identity and Access Management

(IAM)/AWS Security Token Service (AWS STS)

Connection authenticated; IAM policy associated

with access key/secret key used or AWS IoT Core policy for Amazon

Cognito identities

Note: MQTT and HTTP can use cert or SigV4 as authentication mechanism

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Links for source code

• https://github.com/aws-samples/aws-iot-core-http-sigv4-dotnet-app

• https://github.com/aws-samples/aws-iot-dotnet-publisher-http

• https://github.com/aws-samples/iot-dotnet-publisher-consumer

• https://github.com/aws-samples/aws-iot-core-dotnet-app-mqtt-over-
websockets-sigv4

https://github.com/aws-samples/aws-iot-core-http-sigv4-dotnet-app
https://github.com/aws-samples/aws-iot-dotnet-publisher-http
https://github.com/aws-samples/iot-dotnet-publisher-consumer
https://github.com/aws-samples/aws-iot-core-dotnet-app-mqtt-over-websockets-sigv4

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How to make .NET code handshake with AWS IoT
Core using X509 Certificate

• Identify protocol for connection – HTTPS / MQTTS

• Identify Port for connection

• Convert Device Certificate, Root Certificate and Private Key to Windows
format

• Implement Authentication using X509 Certificates

• Initiate MQTT Connection

• Define various MQTT events – Connect, Subscribe, Publish, Error and
Disconnect

• Implement the publish / subscribe mechanism

How to make .NET code handshake with AWS IoT
Core using AWS SigV4 authentication

• Identify protocol for connection – HTTPS / MQTTS

• Identify Port for Connection

• Implement AWS SigV4 authentication using AccessKey and SecretKey

• Initiate MQTT Connection

• Define various MQTT events – Connect, Subscribe, Publish, Error and
Disconnect

• Implement the publish / subscribe mechanism

