

STP208

How to build a compan
oNn engineering principle

Brian Scanlan

Principal Systems Engineer
Intercom

re:|Nvent

Agenda

Why principles are useful
Intercom’s engineering principles

Intercom’s engineering principles in practice

A good set of principles allows an organization to work
off a common mental model

A good set of principles allow an organisation to work
off a common mental model

Bad principles?

“We don't ship bugs”

a Des Traynor £

L2 @destraynor

The opposite of a good product principle is itself a good
product principle.

Everything else just is a truism.

We prioritise power users
New users should be
and design for speed of . A
o . productive on their first use
their interactions

L We optimise every screen and
We prioritise product
: » component to perfect the
consistency
workflow

We seek to delight our _ _ _
R J : We design to simplify, not
users with intricate detail
: to decorate.
and polish

Good principles!

“We build on AWS”

L ook at what works in practice.

Look at what you truly believe in.

Refresh them regularly

Avoid truisms and consider the opposite opinion.

o’

INTERCOM

=]

A_.ea;iw

1. szr\\k ” ! \. {

,?.,

a,wn.

RN 2N
e .c\.k.Jﬂﬂnl
Asiave

i am -I- i lll- [
, g = A
;
;
]
-—-d‘_-
)

T\

= - K =4 > <
N ~ s (12

¢’

——— |..I|..ll
™I rrrrir

Il--...

tmf\& a ..u i
y -r.A ,
25 }.
” .w g

f.ﬁfh Jﬂf(..

NN

/XN

W“m%i

N el

Design prn’nciple
Number twe

et

We OPtimize out dea
o,-).‘n.ion,mza by defa,
Power and Henf;ihty

IS b fegd <

U, But o

imple
O0reasive

and
Iy roveal

754
’

e le

roblern we
_

thet

1%

i 2 wiing
L, understandit ynderstit 0t
jeapiy Y i this naysl
Srart by des jally SVGIWV
5 ~ antinuan)
. "p‘e .0
Princ
RAD

1
e yv
asure

to it to €ns
¢ y
solving retuir

3

number one

tiy
el persts

oft cou
ated of
st

Ship to learn

> u i

R&D Principle The soconer you ship, the sooner you get feedback

number three on your assumptions and your solution, so you
can learn quickly if you're having impact. Shipping
Is the beginning more than the end.

Build in
small steps

Engineering principle Large changes are hard to understand, and

number three harder to debug. We deliver complex
changes in a series of small, controlled, easy
to understand steps.

Be technically
conservative

Engineering principle We like familiar solutions with boring
number two technologies. We reuse the same patterns in
different solutions as much as possible.

Keep it
simple

Engineering principle = Complexity is the enemy of our ability to

number four move quickly. We will trade off performance,
financial cost, and perfect abstraction in
order to keep a solution simple.

Build with
positivity
and pride

Engineering principle Great things are only built by high

number five functioning groups of humans, We are
optimistic, positive, and assume good intent,
We are eager to teach and learn.

Fxample #1

AWS costs

Using AWS at Intercom: costs, availability and fleet management principles and practices B
File Edit View Insert Format Tools Add-ons Help All changes saved in Drive

~ ~ g A, P 100% v Normaltext ~ Arial

1

Outline

AWS costs, availability and fleet ma...
Intercom'’s Hosting requirements
Why do we use AWS?
When to get help, and who to talk t...
A note on gatekeeping
' How do we use AWS?
AWS Accounts
AWS Regions
AWS Availability Zones
How many availability zones sh...
AWS Support
AWS Costs
) EC2
Autoscaling
Instance families
Instance types

Reserving instances

Spot instances

||

— 1 —

v 11 «~ B I UA s oocEH0OBN-

1 2 3 4 5 6

4
— 3 —

AWS costs, availability and fleet
management principles and practices

First published: August 2017
Last updated: September 2019
Author: Brian Scanlan

The following document describes the principles behind the current practices used in Intercom
to build and host services in AWS today, and gives some insight into the thought process and
historical context behind these decisions. The purpose of this document is to codify frequently
asked questions, assumptions and decisions into a single place, so they can be shared,
critiqued and revised over time. It is inevitable that our approach to hosting will change as
Intercom continues to grow, and the technology landscape changes. This is not a guide about
how to use AWS or its services - reading The Open Guide to Amazon Web Services is strongly
recommended for anybody interested in staying current with the wonderful world of AWS.

Intercom’s Hosting requirements

For Intercom, hosting of services needs to]
¢ Be simple to understand and operate: Complex, optimised services take time to build
and will continue to take time to operate long after they’re built. Our time is what we must
protect the most. We prefer to use simple, common components over heavily optimised
systems that can be challenging to learn or understand. An example of this would be
choosing to use DynamoDB over a self-hosted Cassandra installation for key value

The Open Guide to Amazon Web Services
& Join us!

Credits « Contributing guidelines

Table of Contents

Purpose

* Why an Open Guide?
e Scope
* Legend

AWS in General

General Information

Learning and Career Development
Managing AWS
Managing Servers and Applications

"Our approach to managing AWS costs is REACTIVE
and prioritizes taking action against the highest
contributors to our costs as observed in production”

“The co

th

mplexi

SdC

ecisior

Y Of |

we C

ementing multi-cloud

t even want:

(O contem

mMakes

dlate”

Apr 2019 May 2019 Jun 2019 Jul 2019 Aug 2019 Sep 2019*

B EC2-Instances |l Relational Database Service [l EC2-Other ElastiCache [Premium Support [Others

Apr 2019 May 2019 Jun 2019 Jul 2019 Aug 2019 Sep 2019*

B Reserved [l Spot [On Demand Unused Reserved

Things we do:

Tag resources

Use Cost Explorer to visualize trends

Things we do:
Work with product team to understand usage

Use a small number of modern instance families

Things we do:

Use auto scaling suppor

for m

DUrC

1dSe O

ul

ije

e instance types ana

Ot

or

S

Costs are important, but. ..
We ship to learn.

We're technically conservative.

Fxample #2

Monolith

]

Rebuilding your monolith from scratch using Go
microservices'

"Our monol

NS, aNC

)

office t

ooy dic

ith was poorly tested and de
every 6 mont

YO

at wee

k (O

nloyed once

| Nnot war

~month)”

tto bein the

"Our monolith kept slowing us down, so we had to
break it apart!”

Maijestic monolith

Maijestic monolith running on EC2 instances

Supercharging our monolith with serverless

Daniel Vassallo
@dvassallo

Lambda is a very poor substitute for EC2.
But it still has a place.

Instead of thinking of Lambda as a host for your
applications, think of it as an extension for other AWS

services.

Examples:

12:29 AM - Sep 30, 2019 - Twitter Web App

61 Retweets 243 Likes

Q " 4 T

Fxample #3

Replacing MongoDB witn
Amazon DynamoDB

Thank you!

Brian Scanlan

@brian_scanlan

AWS
re. | nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights rese

re:lnven

