aws Invent

AIM33

How to design high quality data labeling pipelines

Fedor Zhdanov

Principal Applied Scientist Amazon Web Services

Jonathan Buck

Software Dev Engineer Amazon Web Services

Amazon SageMaker Ground Truth

Labeling

Set up and manage labeling jobs for your datasets.

Notebooks

Explore AWS data in your notebooks, and use algorithms to create models via training jobs.

Training

Track training jobs at your desk or remotely. Leverage high-performance AWS algorithms.

Inference

Create models for hosting from job outputs, or import externally trained models into SageMaker.

Integrated label-> build-> train-> deploy flow Ground Truth makes data labeling easy, fast, and accurate

What you will be able to do after the talk

- Know how Amazon SageMaker Ground Truth works:
 - How it provides high quality annotations
 - How it does Active Learning to save on annotation costs
- Learn how to use confidences in annotations
- Learn how to chain jobs
- Learn how to verify and audit results of your labeling jobs
- Learn how to filter your data
- Learn how you can build hierarchical taxonomies in labeled classes

Human workforce options

MTurk

An on-demand 24x7 workforce of over 500,000 independent contractors worldwide, powered by Amazon Mechanical Turk

Private

A team of workers that you have sourced yourself, including your own employees or contractors for handling data that needs to stay within your organization

Vendors

A curated list of third party vendors that specialize in providing data labeling services, available via the AWS Marketplace

Provide details for a labeling job

Key ideas: Machine Learning and humans in the labeling loop

Consolidate annotations from multiple workers for greater accuracy

Only send to humans examples which are hard for the machines to label well:

Reduce annotation costs

AWS console: View labels for images

Deep dive into "how"

Reminder: Machine Learning with humans in the loop

Why use trust score?

What are these birds?

Active learning

Auto labeling

Auto-annotation for the bounding boxes

Total cost \$189.44 instead of \$260 Cost saving 27% Larger datasets often bring more savings

Read more on auto-annotation:

https://aws.amazon.com/blogs/machine-learning/annotate-data-for-less-with-amazon-sagemaker-ground-truth-and-automated-data-labeling/

Indicator of annotation quality

```
"source-ref": "S3 bucket location",
"bounding-box":
    "image size": [{ "width": 500, "height": 400, "depth":3}],
    "annotations":
       {"class id": 0, "left": 111, "top": 134,
                "width": 61, "height": 128},
       {"class_id": 5, "left": 161, "top": 250,
                 "width": 30, "height": 30},
        {"class id": 5, "left": 20, "top": 20,
                 "width": 30, "height": 30}
"bounding-box-metadata":
    "objects":
       {"confidence": 0.8},
       {"confidence": 0.9},
        {"confidence": 0.9}
   "class-map":
       "0": "dog",
        "5": "bone"
    "type": "groundtruth/object_detection",
    "human-annotated": "yes",
    "creation-date": "2018-10-18T22:18:13.527256",
    "job-name": "identify-dogs-and-toys"
```

Can we have any indicators for annotation quality?

Confidence scores for the annotations

- Auto-annotated and Human-annotated confidences are different as one is coming from the Deep Neural Network and the other is calculated from worker agreement.
- Only compare the confidence scores with each other for the objects within the same labeling job, and not rely on the high or low confidence scores as absolute values

Confidence Scores for Human Annotation

- Confidence score is the posterior probability of the output class from the Dawid-Skene model.
- Object Detection: Model predicts the Intersection over Union (IoU) using features like worker disagreement on box corners and number of annotators.
- Semantic Segmentation: Model predicts the Intersection over Union (IoU) using features like image complexity, worker disagreement across all pixels and number of annotators

Image from

T. Chavdarova, P. Baqu, S. Bouquet, A. Maksai, C. Jose, T. Bagautdinov, L. Lettry, P. Fua, L. Van Gool, and F. Fleuret, "WILDTRACK: A multicamera HD dataset for dense unscripted pedestrian detection," 2018.

Advanced features

Job Chaining

- Select a labeling job in the console, and select "chain"
- Subsequent job can be same or different modality
- All annotations and metadata from first job will be carried over to the output of the subsequent job

Audit Workflows

Start with the "chain" feature

- Use with advanced functionality
 - Filter low-confidence annotations from previous labeling job
 - Filter specific classes

- The original task type is maintained
 - Existing annotations are updated/adjusted

Verification Workflows

Start with the "chain" feature

- The original labeling task is transformed into a classification task, e.g.,
 - Correct / Incorrect
 - Occluded / Not Occluded

 Consider downstream filters to build hierarchies

Decision Points for Filtering Data

- Class/Label
- Machine labeled vs. human labeled
- Confidence score
- Modality
- Verification status (yes/no)
- Audit status (adjusted/not adjusted)

Using SQL to Query Output Data

```
"source-ref": "s3://jsimon-groundtruth-demo/SSDB00001.JPG",
      "GroundTruthDemo": {
       "annotations": [
         {"class_id": 0, "width": 54, "top": 482, "height": 39, "left": 337},
         {"class_id": 0, "width": 69, "top": 495, "height": 53, "left": 461},
         {"class_id": 0, "width": 52, "top": 482, "height": 41, "left": 523},
         {"class_id": 0, "width": 71, "top": 481, "height": 62, "left": 589},
         {"class_id": 0, "width": 347, "top": 479, "height": 120, "left": 573}
       "image size": [{"width": 1280, "depth": 3, "height": 960}
      "GroundTruthDemo-metadata": {
       "job-name": "labeling-job/groundtruthdemo",
       "class-map": {"0": "Car"},
       "human-annotated": "yes",
        "objects": [
         {"confidence": 0.94},
         {"confidence": 0.94},
         {"confidence": 0.94},
         {"confidence": 0.94},
         {"confidence": 0.94}
       "creation-date": "2018-11-26T04:01:09.038134",
       "type": "groundtruth/object-detection"
28
```

Objective: All images with at least 5 cars present with confidence score of at least 80

```
select * from s3object s
where s."demo-full-dataset-2" is not null
and 'Car' in s."demo-full-dataset-2-metadata"."class-map".*
and size(s."demo-full-dataset-2"."annotations") >= 5
and min(s."demo-full-dataset-2 metadata".objects[*]."confidence") >= 0.8
```

Hierarchical Taxonomies of Data

Thank you!

Please complete the session survey in the mobile app.

