


© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nondisruptive strategies for application 
migration

Trevor Dyck

A P I 3 1 3

Senior Manager, Product Management

Amazon Web Services



Agenda

Migration considerations and challenges

Migrating existing message-oriented middleware

Step 1: Can you migrate?

Step 2: Proof of concept

Step 3: Nondisruptive migration (and demo)



Related breakouts

API202-R Building a bridge solution from IBM MQ to Amazon MQ

API307 Build efficient and scalable distributed applications using 
Amazon MQ

API312 How to select the right application-integration service



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Key considerations when migrating applications to 
the cloud
• Business goals 

• e.g., reduce cost, increase productivity and agility, increase scale, reduce 
operational overhead

• Application capacity

• Number of users, amount of traffic

• Costs of migration



Migration strategies: Rehost, replatform, or refactor



Migration strategies: Rehost

Replatform

Refactor



Migration strategies: Replatform

Rehost

Refactor



Migration strategies: Refactor

Rehost

Replatform



What about your application integration layer?

• Migrating apps also entails migrating the middleware they are using to 
integrate:

• APIs

• Orchestration/workflow

• Messaging



App A

App B

App C

frontend

App C

backendMoM

Message-oriented middleware (MoM) or message broker

Corporate data center

Enterprise messaging



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Traditional message-oriented middleware (MoM)

• Many applications running on-premises today use:

• IBM WebSphere MQ

• TIBCO EMS

• RedHat JBoss A-MQ

• RabbitMQ

• Many others exist: Oracle AQ, MSMQ, SonicMQ, etc. 



Migration strategies for message brokers:
Rehost

• Run your existing message broker (for example IBM MQ or RabbitMQ) 
in AWS

• Run on Amazon Elastic Compute Cloud (Amazon EC2) or Amazon 
Elastic Container Service (Amazon ECS)

• Options include AWS Quick Starts for deployment, AWS Marketplace 
offerings

• Infrastructure is now managed, but you still need to manage your 
broker



Migration strategies for message brokers:
Replatform

• Amazon MQ provides an API-compatible, managed message broker 
service

• Offload broker management to Amazon, reduces your operational 
overhead and cost

• Less disruptive than a refactor, minimal (or zero) code changes



Migration strategies for message brokers:
Refactor

• Rewrite portions of your applications to use serverless messaging: 
Amazon Simple Queue Service (Amazon SQS) and Amazon Simple 
Notification Service (Amazon SNS)

• Consider this if you are refactoring your applications for serverless (e.g., 
using AWS Lambda)

• Even less operational overhead (e.g., scales nearly infinitely), but up-
front investment to refactor code



Comparison of operational responsibility

Amazon SQS/

Amazon SNS
Serverless messaging

Amazon EC2
Your broker on AWS infrastructure

More opinionated

Less opinionated

AWS manages Customer manages

• Physical hardware, host OS/kernel, 
software, networking, 
and facilities

• Provisioning, managing, patching servers

• Security and upgrades

• Application code

• Broker “control plane”
• Physical hardware, host OS/kernel, 

software, networking, and facilities

• Provisioning, managing, and 
patching of servers

• Security updates, patching

• Application code
• Scaling

• Broker clusters
• Security config, network config, firewall, 

management tasks

• Physical hardware software, 
networking, and facilities

• Application code
• Scaling

• Security config and updates, network config, 
management tasks

• Provisioning, managing scaling, and 
patching of servers

Amazon MQ
Managed message broker



Mission-critical enterprise app considerations

Corporate 

data center

Inventory

CRM

Ordering 

Frontend

Ordering 

Backend

MoM

• Been around for years

• Critical to business

• High risk to modify

• Heavy investments in 

people, licensing, support

• Difficult to manage

• Commercial and/or open 

source



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



JMS

NMS

MQTT

STOMP

WebSocket

AMQP

Fully managed, open-source Apache ActiveMQ

Compatible with industry-standard APIs and protocols

Amazon MQ: Migrate without modifying code



Local and distributed 

transactions (XA)

Transient and 

persistent messages
Message filtering

Message delay and 

scheduling

Virtual and composite 

destinations Redelivery policy

Large message sizes
Queues and topics 

(with FIFO)

Amazon MQ: Compatible with key MoM features



Billing

Inventory

HRMS

CRMIBM MQ

Corporate data center

Case study: Example Corp.



Replatform: Replace with managed broker

+ Minimal code change

+ AWS manages messaging 

system

+ Highly available broker

+ Reliable message storage

+ Better overall reliability

+ No expensive licenses

AWS Cloud

VPC

Amazon MQ

HRMSBilling

CRMInventory



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Assess your existing messaging needs

• APIs/protocols (JMS, AMQP, WebSocket, STOMP, MQTT)

• Use cases (e.g., basic queuing, pub-sub, transactions, request-reply)

• Message ordering

• Availability and durability (how tolerant is your system to message 
loss)

• Performance (connections, throughput, latency)

• Security and compliance

• Monitoring and logging

• New requirements that you didn’t need on-prem (e.g., security, 
compliance)?



What if all requirements are not met?

• Concepts in existing system may have different names (e.g., RabbitMQ: 
“exchanges” vs. ActiveMQ “virtual topic”)

• Make sure to map current concepts to new terminology

• Are the features still needed? Sometimes there are legacy features that 
are not needed anymore

• May dictate need to rehost; lift-and-shift your existing broker



Case study: Example Corp. – Current on-prem situation

• Four applications using IBM MQ.

• JMS 1.1 APIs used to send/receive messages.

• 20 queues (two require FIFO ordering).

• Messages can’t be lost.

• Can’t have any downtime during migration. No SLA internally.

• Total throughput 1,200 messages per second.

• No encryption on-prem (new mandate in cloud).

• Healthcare company (HIPAA compliance).

• Use JMX-based tools for monitoring (Nagios).



Mapping requirements to Amazon MQ

✓ JMS 1.1 compatible 

✓ FIFO (ordered) queues

✓ Persistent multi-AZ storage, 99.9% durability

✓ Active/standby with 99.9% uptime SLA

▪ Performance?

✓ Mandatory TLS on all connections

✓ Encrypted storage with CMK

✓ HIPAA

✓ Amazon CloudWatch for monitoring



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Proof of concept

AWS Cloud

Amazon MQ

Billing

Inventory

HRMS

CRM

CloudWatch



Proof of concept

Goal – Ensure applications work with new message broker (Amazon MQ)

1. Install on-prem applications first in AWS

2. Create an Amazon MQ broker

a. mq.m5.2xlarge for 1,200 messages per second

b. Active/Standby mode for high availability

3. Modify app configurations to use JMS endpoint in Amazon MQ instead 
of IBM MQ (one at a time)

4. Run applications and ensure messages are flowing

5. Use CloudWatch to monitor message flow through queues

6. Test performance



Performance considerations when migrating

• Need to consider both throughput (mgs/sec), latency (msec) , and 
number of connections

• Common issue: “I got X mps on-prem and I get Y mps with Amazon 
MQ” (Y < X)

• Why?

• On-prem may have simple storage solution (e.g., RAID array in a single rack)

• Customers running on EC2 are often using Amazon Elastic Block Store (Amazon EBS) 
storage (single Availability Zone)

• Amazon MQ uses Amazon Elastic File System (Amazon EFS), which replicates across multiple 
AZs (physical facilities) and is designed for eleven nines durability. This comes at some 
performance trade-off.

• How fast is an Amazon MQ message broker?



It depends…



Example Amazon MQ performance (guideline only)

Producers/consumers Throughput (msgs/sec.) Latency (msec)

25 1,000–2,000 5–10

50 3,000–4,000 5–10

100 7,000–8,000 5–10

200 15,000–16,000 5–10

concurrentStoreAndDispatchQueues

https://aws.amazon.com/blogs/compute/measuring-the-throughput-for-amazon-mq-using-the-jms-benchmark



Tuning performance

• Nonpersistent mode (memory only) much faster than persistent mode, 
if your application can tolerate potential message loss

• Binary protocols (OpenWire) faster than text-based (STOMP, MQTT)

• concurrentStoreAndDispatchQueues flag

• Connections: Default limit 1,000 per broker, but you can request a 
service limit increase (larger instances can handle more)

• Network of brokers can be used to horizontally scale, distributing the 
load across more nodes (if message ordering is not required)



Slow consumers

• ActiveMQ (and Amazon MQ by extension) performs best with fast 
consumers

fast = able to keep up with the rate of messages generated by producers

slow = queue builds up a backlog of unacknowledged messages, potentially 
causing a decrease in producer throughput.

• To get the best performance with slow consumers set the 
concurrentStoreAndDispatchQueues parameter to false

set the concurrentStoreAndDispatchQueues attribute to false

<persistenceAdapter> 
<kahaDB concurrentStoreAndDispatchQueues="false"/> 
</persistenceAdapter>



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Migrating without service interruption

1. Create Amazon MQ broker

2. Modify consumers (or create 

new consumers) to consume 

from both on-prem and 

Amazon MQ endpoints

Example with ActiveMQ:

failover:(ssl://old:61617,
ssl://new:61617)



Migrating without service interruption

3. Stop each existing producer, 

point the producer to the new 

broker’s endpoint, then restart 

the producer

4. Wait for your consumers to 

drain the destinations on your 

on-premises broker



Migrating without service interruption

5. Stop your on-premises broker

6. Change your consumers’ 

failover transport to include 

only your Amazon MQ broker’s 

endpoint 

Example with ActiveMQ:

failover:(ssl://new:61617)



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.





© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Hybrid solution to connect existing with modern

• Incrementally migrate applications

• AWS manages messaging system

• Highly available broker

• Durable message store

• Better overall reliability

• Create new cloud apps

• Integrate with on-premises systems



AnyCompany use case: Hybrid solution to connect 
on-prem to cloud



Hybrid model: Network of brokers

AWS Cloud

On-prem

applications

Corporate data center

ActiveMQ 

Broker A

Amazon MQ

Broker B

networkConnector 

Cloud

applications

https://aws.amazon.com/blogs/compute/running-activemq-in-a-hybrid-cloud-environment-with-amazon-mq/

https://aws.amazon.com/blogs/compute/running-activemq-in-a-hybrid-cloud-environment-with-amazon-mq/


Hybrid model: Network of brokers

- Network of brokers supports distributed queues/topics 

- networkConnectors are configured between brokers, can be 
unidirectional or bidirectional

- Client can connect to any broker in the network, brokers intelligently 
forward to wherever consumers are present

- Other brokers act like consumers when bridged via networkConnector

- Useful for hybrid: forward messages from on-prem to cloud (or vice 
versa, if needed)

- Can migrate gradually by turning up cloud apps then turning 
down on-prem apps

https://aws.amazon.com/blogs/compute/running-activemq-in-a-hybrid-cloud-environment-with-amazon-mq/

https://aws.amazon.com/blogs/compute/running-activemq-in-a-hybrid-cloud-environment-with-amazon-mq/


Sample broker configuration: Network 

https://aws.amazon.com/blogs/compute/running-activemq-in-a-hybrid-cloud-environment-with-amazon-mq/

<networkConnector 
name="Q:hybridconnector"
duplex=“true"
uri="static:(ssl://b-foo.mq.us-east-1.amazonaws.com:61617)"
userName="username"
password="password"
networkTTL="2"
dynamicOnly="false">
<staticallyIncludedDestinations>

<queue physicalName="queuename"/>
</staticallyIncludedDestinations>

</networkConnector>

https://aws.amazon.com/blogs/compute/running-activemq-in-a-hybrid-cloud-environment-with-amazon-mq/


© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“With Amazon MQ we now have a clear path 
toward an iterative cloud migration that 
would have been a challenge with an on-
prem solution. Migrating consumers and 
producers individually will be easier given 
that the queues are already in AWS.”

Kevin Thorley

Enterprise Architect, Dealer.com



More information

• Blog: “Migrating from RabbitMQ to Amazon MQ” 

• https://aws.amazon.com/blogs/compute/migrating-from-rabbitmq-
to-amazon-mq/

• Bench Accounting: “From ActiveMQ To Amazon MQ: Why And How We 
Moved To AWS’s Managed Solution”

• https://medium.com/bench-engineering/from-activemq-to-amazon-
mq-why-and-how-we-moved-to-awss-managed-solution-
afeba3ea7e23

https://aws.amazon.com/blogs/compute/migrating-from-rabbitmq-to-amazon-mq/
https://medium.com/bench-engineering/from-activemq-to-amazon-mq-why-and-how-we-moved-to-awss-managed-solution-afeba3ea7e23


Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.


