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Agenda

What is PartiQL?

A walkthrough of PartiQL

Using and contributing to PartiQL in open source



Related breakouts

OPN308-R, -R1 – PartiQL: Solution integration and joining the 
community

Wednesday 4:00-5:00, Thursday 1:45-2:45

OPN405-R, -R1 – How to integrate PartiQL into your project

Thursday 11:30-12:30, Friday 10:00-11:30
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Diverse data sources…

• Data lakes

• Relational databases

• Document databases

• Files on filesystem



Many other query languages…

SELECT AVG(temp) AS tavg 
FROM readings 
GROUP BY sid

SQL

db.readings.aggregate( 
{$group: {_id: "$sid", 
tavg: {$avg:"$temp"}}})

Amazon 

DocumentDB

readings -> group by sid = $.sid
into { tavg: avg($.temp) }; 

Jaql

a = LOAD 'readings' AS 
(sid:int, temp:float);
b = GROUP a BY sid;
c = FOREACH b GENERATE
AVG(temp);
DUMP c;

Pig



Unified query language and model

• Format independence

• Storage independence



Format/storage independence

SELECT DISTINCT r.sid
FROM readings AS r
WHERE r.temp < 50

A SQL Table  

sid temp

2 70.1

2 49.2

1 null

JSON/Ion S3 Object

{ sid: 2, temp: 70.1 }
{ sid: 2, temp: 49.2 }
{ sid: 1, temp: null }



SQL compatibility

“I don’t know what the query language of the 
future will be, but I know it will be called SQL.”

Distinguished Engineer

Amazon.com



SQL backwards compatibility

SELECT DISTINCT r.sid
FROM readings AS r
WHERE r.temp < 50

A SQL Table  

sid temp

2 70.1

2 49.2

1 null

JSON/Ion S3 Object

{ sid: 2, temp: 70.1 }
{ sid: 2, temp: 49.2 }
{ sid: 1, temp: null }



Nested and semi-structured data

• First-class nested data

• Optional schema and query stability



Powerful and complete

• Minimal and composable extensions



Where is it?

• Amazon Redshift

• Amazon Simple Storage Service (Amazon S3) Select 

• Amazon Simple Storage Service Glacier Select

• Amazon Quantum Ledger Database (Amazon QLDB)

• Amazon.com internal systems

• More announcements forthcoming



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



PartiQL data model = …

= Ion

= JSON + strong types (e.g., timestamps, decimals, binary data)

…
{ 
location: "Alpine",
readings: [
{ 
time: 2014-03-12T20:00:00Z,
ozone: 0.035,
no2: 0.0050

},
{ 
time: 2014-03-12T22:00:00Z,
ozone: "m",
co: 0.4

} ]
}
…



PartiQL data model = …

= Ion + SQL bags

• Bags (tables)—unordered collections 

= JSON + strong types (e.g., timestamps, decimals, binary data) + bags

<< …
{ 
location: "Alpine",
readings: <<
{ 
time: 2014-03-12T20:00:00Z,
ozone: 0.035,
no2: 0.0050

},
{ 
time: 2014-03-12T22:00:00Z,
ozone: "m",
co: 0.4

} >>
}

… >>



PartiQL data model = SQL data types + …

+ Nesting

+ Heterogeneity + sparseness

+ Dynamically typed (schema optional)

{
vals: [ 
[5, 10, true], 
[21, 2, “Abc”, 6],
[4, {lo: 3, exp: 4, hi: 7}, 2, 13, 6]

]
}
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Flattening nested data

Find the highest two sensor reading values that are 
below 1.0, output as tuples with attribute “co”

SELECT r.v AS co
FROM sensors  AS s,

s.readings AS r
WHERE r.v < 1.0
ORDER BY r.v DESC
LIMIT 2

[ 
{readings:
[{v:1.3}, {v:2}]
},
{readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
{readings:
[{v:0.3}, {v:0.8}, {v:1.1}]
},
{readings:
[{v:0.7}, {v:1.4}]
}
]

[
{ co: 0.9 },
{ co: 0.8 }
]



FROM semantics

FROM   sensors  AS s,
s.readings AS r

[ 
{readings:
[{v:1.3}, {v:2}]
},
{readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
{readings:
[{v:0.3}, {v:0.8}, {v:1.1}]
},
{readings:
[{v:0.7}, {v:1.4}]
}
]

BoutFROM = BinWHERE = <<
⟨ s : {readings:[{v:1.3}, …]}, r : {v:1.3} ⟩,
⟨ s : {readings:[{v:1.3}, …]}, r : {v:2 } ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.9 } ⟩,
…

>>

WHERE r.v < 1.0
ORDER BY r.v DESC
LIMIT 2
SELECT r.v AS co



WHERE semantics (the usual)
FROM sensors  AS s,

s.readings AS r
WHERE r.v < 1.0[ 

{readings:
[{v:1.3}, {v:2}]
},
{readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
{readings:
[{v:0.3}, {v:0.8}, {v:1.1}]
},
{readings:
[{v:0.7}, {v:1.4}]
}
]

BoutWHERE = BinORDERBY = <<
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.9 } ⟩,
…

>>

ORDER BY r.v DESC
LIMIT 2
SELECT r.v AS co



ORDER BY semantics

FROM sensors  AS s,
s.readings AS r

WHERE r.v < 1.0
ORDER BY r.v DESC

[ 
{readings:
[{v:1.3}, {v:2}]
},
{readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
{readings:
[{v:0.3}, {v:0.8}, {v:1.1}]
},
{readings:
[{v:0.7}, {v:1.4}]
}
]

BoutORDERBY = BinLIMIT = [
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.9} ⟩,
⟨ s : {readings:[{v:0.3}, …]}, r : {v:0.8} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
…

]

LIMIT 2
SELECT r.v AS co



Outer flattening nested data

Flatten all readings, including sensors without 
readings

SELECT s.sensor, r.v AS co
FROM sensors  AS s

LEFT CROSS JOIN
s.readings AS r

[ 
{sensor: 1,
readings:
[{v:1.3}, {v:2}]
},
{sensor: 2
readings: []
},
…
] <<

{sensor: 1, co: 1.3},
{sensor: 1, co: 2.0},
{sensor: 2, co: null}
>>



Tuples in tuples (object/structs)

Find the highest two sensor reading values that are 
below 1.0, output as tuples with attribute “co”

SELECT r.event.v AS co
FROM sensors  AS s,

s.readings AS r
WHERE r.event.v < 1.0
ORDER BY r.event.v DESC
LIMIT 2

[ 
{readings:
[{event: {v: 1.3, time: …},
{event: {v: 2.0, time: …}

]
},
{readings:
[{event: {v: 0.7, time: …}]

}…
]

[
{ co: 0.9 },
{ co: 0.8 }
]



Composing with SQL features (e.g., subqueries)

Find all tuples that have an average greater than 1.0

SELECT s.sensor, r.v AS co
FROM sensors  AS s
WHERE

(SELECT AVG(r.v) FROM s.readings AS r) > 1.5

[ 
{sensor: 1,
readings:
[{v:1.3}, {v:2}]
},
{sensor: 2,
readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
…
]

<<
{sensor: 1, co: [{v:1.3}, {v:2}]},
… 
>>



Ranging over anything

Range over an array of numbers (not tuples) and find 
the highest two sensor readings that are below 1.0

SELECT r AS co
FROM readings AS r
WHERE r < 1.0
ORDER BY r DESC
LIMIT 2

[ 
1.3,
0.7,
0.3,
0.8
]

[
{co: 0.8},
{co: 0.7} 
]



Projecting non-tuples

Range over an array of numbers (not tuples) and find 
the highest two sensor readings that are below 1.0

SELECT VALUE r AS co
FROM readings AS r
WHERE r < 1.0
ORDER BY r DESC
LIMIT 2

[ 
1.3,
0.7,
0.3,
0.8
]

[
0.8,
0.7
]



Flexibility in error cases

• Dynamic typing means things can go wrong at runtime

• Common in cases like a data lake

• Consider:

• FROM coll AS v

• coll may not be a bag or array

• SELECT x.foo AS bar, y[25] AS baz

• x might not be a tuple/struct/object or have a foo attribute

• y might not be an array or have an element at position 25

• PartiQL supports both a strict mode and a permissive mode



Additional features

Pivoting and unpivoting over

attribute/value pairs of tuples (a.k.a. objects a.k.a. structs)

key/value pairs of maps

Constructing new, nested PartiQL structures

via SELECT VALUE subqueries

via aggregating into complex values

Role of schema & working with schema-less
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A unifying query language

• Adopted by multiple services within AWS

• Data model and query language for integrating queries and views

• Amazon Redshift: database + Amazon S3 data



Combining relational tables and JSON/Ion/etc.

SELECT DISTINCT r.sid AS sid
FROM S3.readings AS r,

r.temperatures AS t,
RS.sensorlocation s,
RS.areatemp AS a

WHERE r.sid = s.sid AND s.area = a.area
AND t < a.toocold

{sid: 2,
temperatures: [70.1, 49.2]}
{sid: 1,
temperatures: [71.0]}

area toocold

1 30

2 50

3 null

sid area

1 1

2 2

{sid: 2}
sid

2
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Contributing

• Open-source charter—driven by our tenets

• GitHub organization

• https://github.com/partiql/

• Forums

• https://community.partiql.org/

https://github.com/partiql/
https://community.partiql.org/


Specification

• https://github.com/partiql/partiql-spec

• GitHub issues or forum submissions for features/clarifications

• Pull requests on the LaTeX for fixes/additions

https://github.com/partiql/partiql-spec


Reference implementation

• Implemented in Kotlin for JVM

• Read-Eval-Print-Loop for experimenting with PartiQL

• Embeddable and customizable for adding query support to your 
application

• https://github.com/partiql/partiql-lang-kotlin

https://github.com/partiql/partiql-lang-kotlin


Looking toward the future

• Alternative implementations

• Analytic engine integration

• Database integration

• Data format integration 

• Specification work (e.g., data manipulation, data definition)



Questions?

• Query language

• Pivoting and unpivoting

• Constructing new, nested PartiQL structures

• Role of schema and schema-less

• Mapping into existing storage systems and databases

• Utilizing open-source implementation
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Optional schema

• Unstructured data (schema-less)

• Structured data (complete and precise schema)

• Semi-structured data (partial or open schema)



PartiQL with JSON without schema

Find the readings since 2012

SELECT r.*
FROM myobj.readings AS r
WHERE CAST(r.time AS TIMESTAMP) > `2012-01-01`

{ 
"location": "Alpine",
"readings": [

{ 
"time": "2014-03-12T20:00:00",
"ozone": 0.035,
"no2": 0.0050

},
{ 
"time": "2014-03-12T22:00:00",
"ozone": "m",
"co": 0.4

}
]

}



PartiQL with Ion without schema

Find the readings since 2012

SELECT r.*
FROM myobj.readings AS r
WHERE r.time > `2012-01-01`

{ 
location: "Alpine",
readings: [

{ 
time: 2014-03-12T20:00:00,
ozone: 0.035,
no2: 0.0050

},
{ 
time: 2014-03-12T22:00:00,
ozone: "m",
co: 0.4

}
]

}



PartiQL with JSON with closed schema

Find the readings since 2012

SELECT r.*
FROM myobj.readings AS r
WHERE r.time > `2012-01-01`

{ 
"location": "Alpine",
"readings": [

{ 
"time": "2014-03-12T20:00:00",
"ozone": 0.035,
"no2": 0.0050

},
{ 
"time": "2014-03-12T22:00:00",
"ozone": "m",
"co": 0.4

}
]

}



PartiQL with JSON with open schema

Find the readings since 2012

SELECT r.*
FROM myobj.readings AS r
WHERE r.time > `2012-01-01`

any

*

{ 
"location": "Alpine",
"readings": [

{ 
"time": "2014-03-12T20:00:00",
"ozone": 0.035,
"no2": 0.0050

},
{ 
"time": "2014-03-12T22:00:00",
"ozone": "m",
"co": 0.4

}
]

}
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Constructing new nested data

SELECT s.sensor,

(

SELECT VALUE l.co

FROM logs AS l         

WHERE l.sensor = s.sensor 

) AS readings
FROM sensors  AS s

[ 
{sensor: 1, co: 0.4},
{sensor: 1, co: 0.2},
{sensor: 2, co: 0.3},
…
]

<<
{sensor: 1, readings: <<0.4, 0.2>>},
{sensor: 2, readings: <<0.3>>},
… 
>>

[
{sensor: 1},
{sensor: 2}

]
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Unpivoting a tuple as a collection

• Treating tuples as tables—dealing with data in non-normal form



Unpivoting a tuple as a collection

Return a collection of tuples from attributes in the 
source tuple that are less than 1.0

SELECT n, v
FROM UNPIVOT readings AS v AT n
WHERE v < 1.0

{
co:  1.3,
no2: 0.7,
co2: 0.3,
o2:  0.6
}

<<
{n: "no2", v: 0.7},
{n: "co2", v: 0.3},
{n: "o2", v: 0.6},
>>



Pivoting a collection into a tuple

• Creating non-normal data for easier user interaction/visualization

• CSV/TSV exports



Pivoting a collection into a tuple

Find sensor readings that are below 1.0 and create a 
single tuple with those readings where the name 
field becomes the attribute

PIVOT r.v AT r.n
FROM readings AS r
WHERE r.v < 1.0

[ 
{n: "co",  v: 1.3},
{n: "no2", v: 0.7},
{n: "co2", v: 0.3},
{n: "o2",  v: 0.6}
]

{
no2: 0.7,
co2: 0.3,
o2:  0.6
}



Thank you!
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