

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PartiQL: One query language
for all of your data

O P N 2 0 7

Yannis Papakonstantinou

Senior Principal Scientist

Amazon Web Services

Almann Goo

Principal Engineer

Amazon.com

Agenda

What is PartiQL?

A walkthrough of PartiQL

Using and contributing to PartiQL in open source

Related breakouts

OPN308-R, -R1 – PartiQL: Solution integration and joining the
community

Wednesday 4:00-5:00, Thursday 1:45-2:45

OPN405-R, -R1 – How to integrate PartiQL into your project

Thursday 11:30-12:30, Friday 10:00-11:30

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Diverse data sources…

• Data lakes

• Relational databases

• Document databases

• Files on filesystem

Many other query languages…

SELECT AVG(temp) AS tavg
FROM readings
GROUP BY sid

SQL

db.readings.aggregate(
{$group: {_id: "$sid",
tavg: {$avg:"$temp"}}})

Amazon

DocumentDB

readings -> group by sid = $.sid
into { tavg: avg($.temp) };

Jaql

a = LOAD 'readings' AS
(sid:int, temp:float);
b = GROUP a BY sid;
c = FOREACH b GENERATE
AVG(temp);
DUMP c;

Pig

Unified query language and model

• Format independence

• Storage independence

Format/storage independence

SELECT DISTINCT r.sid
FROM readings AS r
WHERE r.temp < 50

A SQL Table

sid temp

2 70.1

2 49.2

1 null

JSON/Ion S3 Object

{ sid: 2, temp: 70.1 }
{ sid: 2, temp: 49.2 }
{ sid: 1, temp: null }

SQL compatibility

“I don’t know what the query language of the
future will be, but I know it will be called SQL.”

Distinguished Engineer

Amazon.com

SQL backwards compatibility

SELECT DISTINCT r.sid
FROM readings AS r
WHERE r.temp < 50

A SQL Table

sid temp

2 70.1

2 49.2

1 null

JSON/Ion S3 Object

{ sid: 2, temp: 70.1 }
{ sid: 2, temp: 49.2 }
{ sid: 1, temp: null }

Nested and semi-structured data

• First-class nested data

• Optional schema and query stability

Powerful and complete

• Minimal and composable extensions

Where is it?

• Amazon Redshift

• Amazon Simple Storage Service (Amazon S3) Select

• Amazon Simple Storage Service Glacier Select

• Amazon Quantum Ledger Database (Amazon QLDB)

• Amazon.com internal systems

• More announcements forthcoming

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PartiQL data model = …

= Ion

= JSON + strong types (e.g., timestamps, decimals, binary data)

…
{
location: "Alpine",
readings: [
{
time: 2014-03-12T20:00:00Z,
ozone: 0.035,
no2: 0.0050

},
{
time: 2014-03-12T22:00:00Z,
ozone: "m",
co: 0.4

}]
}
…

PartiQL data model = …

= Ion + SQL bags

• Bags (tables)—unordered collections

= JSON + strong types (e.g., timestamps, decimals, binary data) + bags

<< …
{
location: "Alpine",
readings: <<
{
time: 2014-03-12T20:00:00Z,
ozone: 0.035,
no2: 0.0050

},
{
time: 2014-03-12T22:00:00Z,
ozone: "m",
co: 0.4

} >>
}

… >>

PartiQL data model = SQL data types + …

+ Nesting

+ Heterogeneity + sparseness

+ Dynamically typed (schema optional)

{
vals: [
[5, 10, true],
[21, 2, “Abc”, 6],
[4, {lo: 3, exp: 4, hi: 7}, 2, 13, 6]

]
}

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Flattening nested data

Find the highest two sensor reading values that are
below 1.0, output as tuples with attribute “co”

SELECT r.v AS co
FROM sensors AS s,

s.readings AS r
WHERE r.v < 1.0
ORDER BY r.v DESC
LIMIT 2

[
{readings:
[{v:1.3}, {v:2}]
},
{readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
{readings:
[{v:0.3}, {v:0.8}, {v:1.1}]
},
{readings:
[{v:0.7}, {v:1.4}]
}
]

[
{ co: 0.9 },
{ co: 0.8 }
]

FROM semantics

FROM sensors AS s,
s.readings AS r

[
{readings:
[{v:1.3}, {v:2}]
},
{readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
{readings:
[{v:0.3}, {v:0.8}, {v:1.1}]
},
{readings:
[{v:0.7}, {v:1.4}]
}
]

BoutFROM = BinWHERE = <<
⟨ s : {readings:[{v:1.3}, …]}, r : {v:1.3} ⟩,
⟨ s : {readings:[{v:1.3}, …]}, r : {v:2 } ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.9 } ⟩,
…

>>

WHERE r.v < 1.0
ORDER BY r.v DESC
LIMIT 2
SELECT r.v AS co

WHERE semantics (the usual)
FROM sensors AS s,

s.readings AS r
WHERE r.v < 1.0[

{readings:
[{v:1.3}, {v:2}]
},
{readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
{readings:
[{v:0.3}, {v:0.8}, {v:1.1}]
},
{readings:
[{v:0.7}, {v:1.4}]
}
]

BoutWHERE = BinORDERBY = <<
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.9 } ⟩,
…

>>

ORDER BY r.v DESC
LIMIT 2
SELECT r.v AS co

ORDER BY semantics

FROM sensors AS s,
s.readings AS r

WHERE r.v < 1.0
ORDER BY r.v DESC

[
{readings:
[{v:1.3}, {v:2}]
},
{readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
{readings:
[{v:0.3}, {v:0.8}, {v:1.1}]
},
{readings:
[{v:0.7}, {v:1.4}]
}
]

BoutORDERBY = BinLIMIT = [
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.9} ⟩,
⟨ s : {readings:[{v:0.3}, …]}, r : {v:0.8} ⟩,
⟨ s : {readings:[{v:0.7}, …]}, r : {v:0.7} ⟩,
…

]

LIMIT 2
SELECT r.v AS co

Outer flattening nested data

Flatten all readings, including sensors without
readings

SELECT s.sensor, r.v AS co
FROM sensors AS s

LEFT CROSS JOIN
s.readings AS r

[
{sensor: 1,
readings:
[{v:1.3}, {v:2}]
},
{sensor: 2
readings: []
},
…
] <<

{sensor: 1, co: 1.3},
{sensor: 1, co: 2.0},
{sensor: 2, co: null}
>>

Tuples in tuples (object/structs)

Find the highest two sensor reading values that are
below 1.0, output as tuples with attribute “co”

SELECT r.event.v AS co
FROM sensors AS s,

s.readings AS r
WHERE r.event.v < 1.0
ORDER BY r.event.v DESC
LIMIT 2

[
{readings:
[{event: {v: 1.3, time: …},
{event: {v: 2.0, time: …}

]
},
{readings:
[{event: {v: 0.7, time: …}]

}…
]

[
{ co: 0.9 },
{ co: 0.8 }
]

Composing with SQL features (e.g., subqueries)

Find all tuples that have an average greater than 1.0

SELECT s.sensor, r.v AS co
FROM sensors AS s
WHERE

(SELECT AVG(r.v) FROM s.readings AS r) > 1.5

[
{sensor: 1,
readings:
[{v:1.3}, {v:2}]
},
{sensor: 2,
readings:
[{v:0.7}, {v:0.7}, {v:0.9}]
},
…
]

<<
{sensor: 1, co: [{v:1.3}, {v:2}]},
…
>>

Ranging over anything

Range over an array of numbers (not tuples) and find
the highest two sensor readings that are below 1.0

SELECT r AS co
FROM readings AS r
WHERE r < 1.0
ORDER BY r DESC
LIMIT 2

[
1.3,
0.7,
0.3,
0.8
]

[
{co: 0.8},
{co: 0.7}
]

Projecting non-tuples

Range over an array of numbers (not tuples) and find
the highest two sensor readings that are below 1.0

SELECT VALUE r AS co
FROM readings AS r
WHERE r < 1.0
ORDER BY r DESC
LIMIT 2

[
1.3,
0.7,
0.3,
0.8
]

[
0.8,
0.7
]

Flexibility in error cases

• Dynamic typing means things can go wrong at runtime

• Common in cases like a data lake

• Consider:

• FROM coll AS v

• coll may not be a bag or array

• SELECT x.foo AS bar, y[25] AS baz

• x might not be a tuple/struct/object or have a foo attribute

• y might not be an array or have an element at position 25

• PartiQL supports both a strict mode and a permissive mode

Additional features

Pivoting and unpivoting over

attribute/value pairs of tuples (a.k.a. objects a.k.a. structs)

key/value pairs of maps

Constructing new, nested PartiQL structures

via SELECT VALUE subqueries

via aggregating into complex values

Role of schema & working with schema-less

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A unifying query language

• Adopted by multiple services within AWS

• Data model and query language for integrating queries and views

• Amazon Redshift: database + Amazon S3 data

Combining relational tables and JSON/Ion/etc.

SELECT DISTINCT r.sid AS sid
FROM S3.readings AS r,

r.temperatures AS t,
RS.sensorlocation s,
RS.areatemp AS a

WHERE r.sid = s.sid AND s.area = a.area
AND t < a.toocold

{sid: 2,
temperatures: [70.1, 49.2]}
{sid: 1,
temperatures: [71.0]}

area toocold

1 30

2 50

3 null

sid area

1 1

2 2

{sid: 2}
sid

2

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contributing

• Open-source charter—driven by our tenets

• GitHub organization

• https://github.com/partiql/

• Forums

• https://community.partiql.org/

https://github.com/partiql/
https://community.partiql.org/

Specification

• https://github.com/partiql/partiql-spec

• GitHub issues or forum submissions for features/clarifications

• Pull requests on the LaTeX for fixes/additions

https://github.com/partiql/partiql-spec

Reference implementation

• Implemented in Kotlin for JVM

• Read-Eval-Print-Loop for experimenting with PartiQL

• Embeddable and customizable for adding query support to your
application

• https://github.com/partiql/partiql-lang-kotlin

https://github.com/partiql/partiql-lang-kotlin

Looking toward the future

• Alternative implementations

• Analytic engine integration

• Database integration

• Data format integration

• Specification work (e.g., data manipulation, data definition)

Questions?

• Query language

• Pivoting and unpivoting

• Constructing new, nested PartiQL structures

• Role of schema and schema-less

• Mapping into existing storage systems and databases

• Utilizing open-source implementation

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optional schema

• Unstructured data (schema-less)

• Structured data (complete and precise schema)

• Semi-structured data (partial or open schema)

PartiQL with JSON without schema

Find the readings since 2012

SELECT r.*
FROM myobj.readings AS r
WHERE CAST(r.time AS TIMESTAMP) > `2012-01-01`

{
"location": "Alpine",
"readings": [

{
"time": "2014-03-12T20:00:00",
"ozone": 0.035,
"no2": 0.0050

},
{
"time": "2014-03-12T22:00:00",
"ozone": "m",
"co": 0.4

}
]

}

PartiQL with Ion without schema

Find the readings since 2012

SELECT r.*
FROM myobj.readings AS r
WHERE r.time > `2012-01-01`

{
location: "Alpine",
readings: [

{
time: 2014-03-12T20:00:00,
ozone: 0.035,
no2: 0.0050

},
{
time: 2014-03-12T22:00:00,
ozone: "m",
co: 0.4

}
]

}

PartiQL with JSON with closed schema

Find the readings since 2012

SELECT r.*
FROM myobj.readings AS r
WHERE r.time > `2012-01-01`

{
"location": "Alpine",
"readings": [

{
"time": "2014-03-12T20:00:00",
"ozone": 0.035,
"no2": 0.0050

},
{
"time": "2014-03-12T22:00:00",
"ozone": "m",
"co": 0.4

}
]

}

PartiQL with JSON with open schema

Find the readings since 2012

SELECT r.*
FROM myobj.readings AS r
WHERE r.time > `2012-01-01`

any

*

{
"location": "Alpine",
"readings": [

{
"time": "2014-03-12T20:00:00",
"ozone": 0.035,
"no2": 0.0050

},
{
"time": "2014-03-12T22:00:00",
"ozone": "m",
"co": 0.4

}
]

}

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Constructing new nested data

SELECT s.sensor,

(

SELECT VALUE l.co

FROM logs AS l

WHERE l.sensor = s.sensor

) AS readings
FROM sensors AS s

[
{sensor: 1, co: 0.4},
{sensor: 1, co: 0.2},
{sensor: 2, co: 0.3},
…
]

<<
{sensor: 1, readings: <<0.4, 0.2>>},
{sensor: 2, readings: <<0.3>>},
…
>>

[
{sensor: 1},
{sensor: 2}

]

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Unpivoting a tuple as a collection

• Treating tuples as tables—dealing with data in non-normal form

Unpivoting a tuple as a collection

Return a collection of tuples from attributes in the
source tuple that are less than 1.0

SELECT n, v
FROM UNPIVOT readings AS v AT n
WHERE v < 1.0

{
co: 1.3,
no2: 0.7,
co2: 0.3,
o2: 0.6
}

<<
{n: "no2", v: 0.7},
{n: "co2", v: 0.3},
{n: "o2", v: 0.6},
>>

Pivoting a collection into a tuple

• Creating non-normal data for easier user interaction/visualization

• CSV/TSV exports

Pivoting a collection into a tuple

Find sensor readings that are below 1.0 and create a
single tuple with those readings where the name
field becomes the attribute

PIVOT r.v AT r.n
FROM readings AS r
WHERE r.v < 1.0

[
{n: "co", v: 1.3},
{n: "no2", v: 0.7},
{n: "co2", v: 0.3},
{n: "o2", v: 0.6}
]

{
no2: 0.7,
co2: 0.3,
o2: 0.6
}

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

