aws re: Invent

GPSTEC335

Power your machine learning with Amazon SageMaker & Fast.ai

Amit Mukherjee

Partner Solutions Architect Amazon Web Services

Kris Skrinak

Partner Solutions Architect, Global Machine Learning Segment Lead Amazon Web Services

THE AWS ML STACK

Broadest and deepest set of capabilities

Al services

VISION	SPEECH	LANGUAGE	СНАТВОТЅ	FORECASTING	RECOMMENDATIONS
Amazon Rekognition Amazon Rekognition Amazon Textraction Image Video	Amazon Polly Amazon Transcribe	Amazon Translate Amazon Comprehend & Amazon Comprehend Medical		Amazon Forecast	Amazon Personalize

ML services

	Amazon SageMaker	Ground Truth	Notebooks	Algorithms + Marketplace	Reinforcement Learning	Training	Optimization	Deployment	Hosting
--	------------------	--------------	-----------	--------------------------	------------------------	----------	--------------	------------	---------

Inferentia

DL Containers

& AMIs

ML frameworks + infrastructure

FRAMEWORKS		INTERFACES	INFRASTRUCTURE			
*TensorFlow	mxnet	© GLUON	Õ		Õ	[
PYT <mark>Ö</mark> RCH	Chainer	K Keras	EC2 P3 & P3DN	EC2 G4	EC2 C5	F

Amazon SageMaker: Build, train, and deploy ML models at scale

Prebuilt notebooks for common problems

Collect and prepare training

data

Built-in, highperformance algorithms

Choose and optimize your ML algorithm

One-click training on the highest performing infrastructure

Set up and manage environments for training

Model optimization

Train and tune ML models

One-click deployment

Deploy models in production

Scale and manage the production environment

Fully

managed with

auto scaling

for 75% less

Intuit

NFL tinder

CONVOY

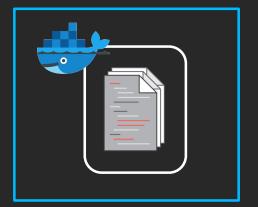
SIEMENS

Dow Jones

Snapchat

Sony

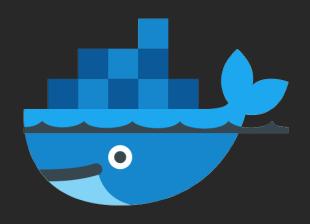
Amazon SageMaker training options



- Matrix factorization
- Regression
- Principal component analysis
- K-means clustering
- Gradient boosted trees
- And more!

Built-in algorithms

Bring your own script (Amazon SageMaker managed container)



Bring your own algorithm (you build the Docker container)

Subscribe to
Algorithms and
Model Packages on
AWS Marketplace

Script mode

- 1. Point to the AWS-managed container of your choice
- 2. Write your model as a bundle of files

- 3. Specify the entry point in the Amazon SageMaker Estimator
- 4. Include any extra libraries with requirements.txt

AWS Managed 5. Use our web server for inference

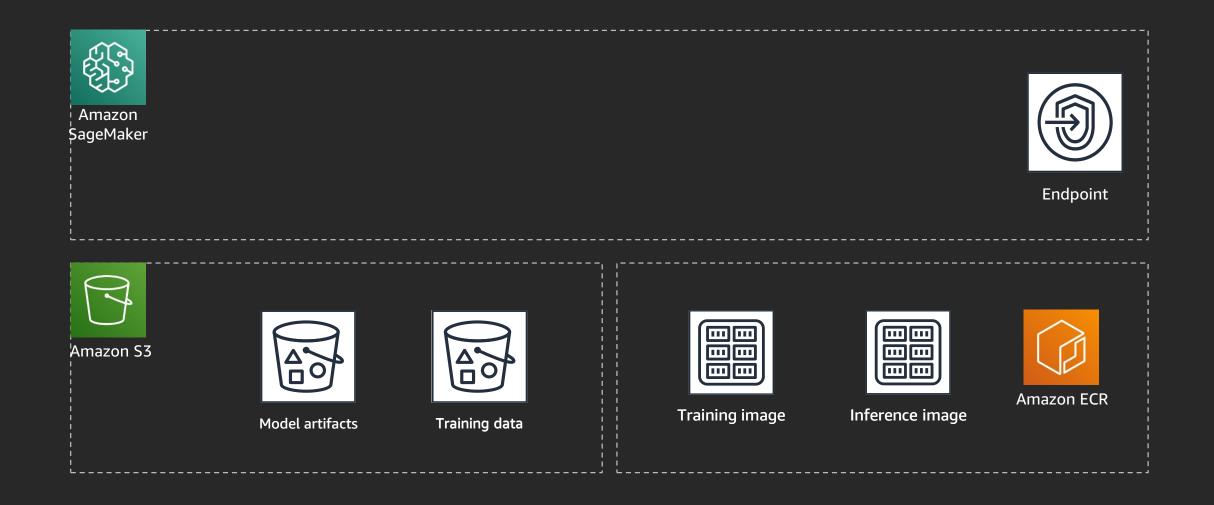
Amazon SageMaker training service

Model artifacts

Amazon S3

Training data

Training image



Inference image

Container Registry
(Amazon ECR)

Amazon SageMaker hosting service

Fast.ai: Making neural nets uncool again

Deep learning for coders

- MOOC taught by Jeremy Howard
- Part 1 and Part 2 both have new v3

Fast.ai library

- Deep learning framework built on PyTorch
- SOTA best practices made easy
- Easily extensible

Dogs vs. cats

Arch: Resnet34*	Fast.ai	Keras
Lines of code (excluding imports)	5	31
Stage 1 error	0.70%	2.05%
Stage 2 error	0.50%	0.80%
Test time augmentation (TTA) error	0.30%	N/A*
Stage 1 time	4:56	8:30
Stage 2 time	6:44	17:38

*Keras does not provide resnet 34 or TTA

Source: https://www.fast.ai/2018/10/02/fastai-ai/

Why Fast.ai with Amazon SageMaker?

Fast.ai sample training job in Amazon SageMaker

```
print('Creating DataBunch object')
   data = ImageDataBunch.from name re(path img, fnames, pat,
                                ds_tfms=get_transforms(),
                                size=args.image_size,
                                bs=args.batch_size).normalize(imagenet_stats)
   # create the CNN model
    print('Create CNN model from model zoo')
    print(f'Model architecture is {args.model_arch}')
    arch = getattr(models, args.model arch)
   print("Creating pretrained conv net")
    learn = create cnn(data, arch, metrics=error_rate)
    print('Fit for 4 cycles')
    learn.fit_one_cycle(4)
    learn.unfreeze()
   print('Unfreeze and fit for another 2 cycles')
    learn.fit_one_cycle(2, max_lr=slice(1e-6,1e-4))
    print('Finished Training')
```

Fast.ai model deployment in Amazon SageMaker

```
print('Creating DataBunch object')
empty_data = ImageDataBunch.load_empty(path)
arch_name = os.path.splitext(os.path.split(glob.glob(f'{model_dir}/resnet*.pth')[0])[1])[0]
print(f'Model architecture is: {arch_name}')
arch = getattr(models, arch_name)
learn = create_cnn(empty_data, arch, pretrained=False).load(path/f'{arch_name}')
return learn
```

Demo

Getting started

Fast.ai online course – http://course.fast.ai/

Fast.ai documentation – https://docs.fast.ai/

Fast.ai library – https://github.com/fastai/fastai

Amazon SageMaker PyTorch container with Fast.ai v1.0.39 –

https://github.com/aws/sagemaker-pytorch-container

Amazon SageMaker Python SDK – https://sagemaker.readthedocs.io/en/stable/

Amazon SageMaker & Fast.ai blog –

https://aws.amazon.com/blogs/machine-learning/building-training-and-deploying-fastai-models-with-amazon-sagemaker/

FAQ

- 1. Can I train Fast.ai models in Amazon EC2 instead of Amazon SageMaker?
- 2. When choosing the deep learning AMI, do I need to install a CUDA driver separately?
- 3. Can I use Spot Instance to train Fast.ai models in Amazon SageMaker to optimize cost?
- 4. Does Fast.ai have any AWS Marketplace algorithm or model packages?
- 5. What version of Fast.ai library is attached to AWS-managed PyTorch container?
- 6. How I can use the Fast.ai higher version of V1.0.39 in Amazon SageMaker?
- 7. What option do I have if I don't have Amazon SageMaker console access to train Fast.ai models from a local laptop?
- 8. I have already trained Fast.ai models on-premises; can I host the same in Amazon SageMaker?
- 9. Does Fast.ai library support distributed training?
- 10. What is TTA in Fast.ai?
- 11. Can I deploy Fast.ai models in AWS Lambda?

Thank you!

Amit Mukherjee

amitmukh@amazon.com

Kris Skrinak

skrinak@amazon.com

Please complete the session survey in the mobile app.

