aws re: Invent

AIM358

Prepare data for ML using Amazon SageMaker

Christian Williams

Machine Learning Specialist SA Amazon Web Services

Agenda

What problem are we solving?

What are Amazon SageMaker inference pipelines?

Use cases for Amazon SageMaker inference pipelines

Q & A

Related breakouts

- AIM348 Deploying and managing machine learning models at scale
- AIM306 How to build high-performance machine learning solutions at low cost
- AIM416 Deploy an ML model on the cloud and at the edge
- AIM357 Build an ETL pipeline to analyze customer data

What problem are we solving?

Just like cheese and vegetables

Data comes in many forms

Data may need pre-processing
 Normalization, feature engineering, dimensionality reduction, etc.

Predictions may need post-processing
 Filtering, sorting, combining, etc.

Prior to inference pipelines
 This required deploying multiple endpoints

Tell me: What is this pipeline?

Tell me: What is this pipeline?

Linear sequence of 2-5 containers that process inference requests

 Feature engineering with Scikit-learn or SparkML (on AWS Glue or Amazon EMR)

Predict with built-in or custom containers

The pipeline is deployed as a single model

SparkML/XGBoost use case

 Using AWS Glue for executing the SparkML feature pre-processing and post-processing job

 Using Amazon SageMaker XGBoost to train on the processed dataset produced by SparkML job

 Building an inference pipeline consisting of SparkML & XGBoost models for a real-time inference endpoint

Workflow

Endpoint

Batch transform

Batch transform

```
input_data_path = 's3://{}/{}/{}'.format(default_bucket, 'key', 'file_name')
output_data_path = 's3://{}/{}'.format(default_bucket, 'key')
transform_job = sagemaker.transformer.Transformer(
    model_name = model_name,
    instance_count = 1,
    instance_type = 'ml.m4.xlarge',
    strategy = 'SingleRecord',
    assemble_with = 'Line',
    output_path = output_data_path,
    base_transform_job_name='inference-pipelines-batch',
    sagemaker_session=sess,
    accept = CONTENT_TYPE_CSV)
transform_job.transform(data = input_data_path,
                        content_type = CONTENT_TYPE_CSV,
                        split_type = 'Line')
```

Real-time inference

Real-time inference

```
from sagemaker.predictor import json_serializer, json_deserializer, RealTimePredictor
from sagemaker.content types import CONTENT TYPE CSV, CONTENT TYPE JSON
payload = {
       "input": [
                "name": "Pclass",
               "type": "float",
                "val": "1.0"
            },
       "output": {
           "name": "features",
           "type": "double",
           "struct": "vector"
predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sess, serializer=json_serializer,
                                content_type=CONTENT_TYPE_JSON, accept=CONTENT_TYPE_CSV)
print(predictor.predict(payload))
```

That's easy enough: Let's look at an example

Demo

Thank you!

Please complete the session survey in the mobile app.

