

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Identity:
Permission boundaries & delegation

S E C 4 0 2 - R 1

Cameron Worrell

Solutions Architect

Amazon Web Services

Ilya Epshteyn

Principal Solutions Architect

Amazon Web Services

Workshop team

Question

Who would be comfortable giving developers permission to create

IAM roles (e.g. for Lambda functions) in production accounts?

Problem: safe delegation of permission management

• Should use caution when granting permission to create users and roles

• But there are many situations where user and role creation is required

• So, we need a way to safely delegate permission management

Solution: permissions boundaries

• Safely delegate permission management

• Free up developers (get out of their way) and do so securely

• Also allow multiple teams in the same account to do permission

management

Basics

Demo

Mechanism

Resource Restrictions

Hands on

Agenda

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Bob gives the car keys to his teenager

• Car keys give a lot of power: drive fast, drive

anywhere, etc.

• You can set rules: don’t speed, don’t go

beyond 20 mile range, etc.

• …but, you can only verify that they followed

your rules (check odometer, see if they got a

speeding ticket or got into an accident.)

Once you have the car keys

you can drive however you

want.

• Some cars have programmable keys so you

can restrict certain parameters.

• Ability (permission) of the car key is the

intersection between the desire of the driver

and the settings you program. Bound keys.

Key programming sets

maximum ability of the key.

Bob gives the car keys to his teenager

• Permission to create users or roles provides a

lot of power.

• Developer attaches policies (what they want a

role to be able to do) but you also require a

permissions boundary (like the programming

on the car key).

• Effective permission of the role is the

intersection of the two. Bound roles.

Permissions boundary sets

maximum permissions of

the role they create.

Bob gives permissions management to developers

Allow you to delegate permission to create users and roles

while preventing privilege escalation or unnecessarily broad

permissions.

Permission boundaries control the maximum permissions of a

user or role created by a delegated admin.

What are permissions boundaries?

Admins
Delegated

admins

IAM

users and roles

Resources

Lambda

Function Role

Permissions

Role

Permissions

Before permission boundaries

"Effect": "Allow",
"Action": ["iam:CreateRole"],
"Resource": ["*"]

"Effect": "Allow",
"Action": [“s3:*"],
"Resource": ["*"]

Admins
Delegated

admins

IAM

users and roles

Resources

Lambda

Function Role

Permissions

Role

Permissions

With permission boundaries

"Effect": "Allow",
"Action": ["iam:CreateRole"],
"Resource": ["arn:aws:iam::ACCOUNT_ID:role/path/*"],
"Condition": {"StringEquals":

{"iam:PermissionsBoundary":
"arn:aws:iam::ACCOUNT_ID:policy/boundary"
}

}

"Effect": "Allow",
"Action": [“s3:*"],
"Resource": ["*"]

Admins
Delegated

admins

“Bound” IAM

users and roles

Resources

Lambda

Function Role

Permissions

Role

Permissions

With permission boundaries

"Effect": "Allow",
"Action": ["iam:CreateRole"],
"Resource": ["arn:aws:iam::ACCOUNT_ID:role/path/*"],
"Condition": {"StringEquals":

{"iam:PermissionsBoundary":
"arn:aws:iam::ACCOUNT_ID:policy/boundary"
}

}

"Effect": "Allow",
"Action": [“s3:*"],
"Resource": ["*"]

"Effect": "Allow",
"Action": [“s3:GetObject"],
"Resource": ["arn:aws:s3:::app1/*"]

Identity-based

policy “slot”

Permissions

boundary “slot”

IAM

role
IAM policy

Identity-based policy “slot”

Identity-based

policy

Before Permissions

Boundaries were

launched

Permission policy “slots”

IAM

role
IAM policy

Identity-based policy “slot”

Identity-based

policy

Permissions

boundary

Permissions boundary “slot”

After Permissions

Boundaries were

launched

Permission policy “slots”

Identity-based policy slot

Permissions boundary slot

Permission policy “slots”

It’s just a condition …

"Condition": {"StringEquals":
{"iam:PermissionsBoundary":
"arn:aws:iam::ACCOUNT_ID:policy/permissionboundary"
}

}

… applied to principal actions

"Effect": "Allow",
"Action": ["iam:CreateRole"],
"Resource": ["arn:aws:iam::ACCOUNT_ID:role/path/*"],
"Condition": {"StringEquals":

{"iam:PermissionsBoundary":
"arn:aws:iam::ACCOUNT_ID:policy/permissionboundary"
}

}

• AttachRolePolicy

• AttachUserPolicy

• CreateRole

• CreateUser

• DeleteRolePermissionsBoundary

• DeleteUserPermissionsBoundary

• DeleteRolePolicy

• DeleteUserPolicy

• DetachRolePolicy

• DetachUserPolicy

• PutRolePermissionsBoundary

• PutUserPermissionsBoundary

• PutRolePolicy

• PutUserPolicy

Condition key support

Requirement: users and roles

created by delegated admins must

have a permissions boundary

Ability: can create users and

roles that have permissions

boundaries attached

Admins
Delegated

admins

“Bound” IAM

users and roles

Create delegated admins Create “bound” users & roles Users and roles restricted

by permissions

boundaries

Result: Permissions boundary

restrict the permissions of the

users and roles

Restricted

resources

Permissions for resources

restricted

Permissions of the roles

attached to resources like

Lambda functions are limited by

the permissions boundary

Lambda

Function Role

Permissions

Role

Permissions

Permissions boundary end-to-end workflow

Step 1: Create role and attach permissions boundary
$ aws iam create-role –role-name Some_Role –path /Some_Path/
–assume-role-policy-document file://Some_Trust_Policy.json

Step 2: Create identity-based policy
No change

Step 3: Attach identity-based policy
No change

Create role for a Lambda function

Developer experience changes little

–permissions-boundary arn:aws:iam::<ACCOUNT_NUMBER>:policy/Permissions_Boundary

• Builders (e.g. creating roles for Lambda functions)

• Application owners creating roles for EC2 instances

• Admins creating users for particular situations

• Any others?

Use cases

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Demo

Admin Delegated

admins

Lambda function

with a bound role

Lambda

Function

Role

Policy

Bound role

with PB

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Endpoint
policies

GrantsGuardrails

Policy categories

Organizations
SCPs

IAM permissions
boundaries

Session policies

Identity-based
policies

Resource-based
policies

Access controls
lists (ACLs)

Role trust

policies

KMS key
policy

Policy categories

Endpoint
policies

Role trust

policies

GrantsGuardrails

Policy categories

Organizations
SCPs

IAM permissions
boundaries

Session policies

Identity-based
policies

Resource-based
policies

Resource-based
policies

Guardrails

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Policy evaluation – Venn diagrams

Effective

permission

Permissions

boundary

Identity-based

policy

API, CLI or

Console

Request Allow Allow

Identity-based

policy

Explicit

deny

Permissions

boundary

Trying to hit the target – must go through obstacles

Explicit

deny

Explicit

deny
Allow

Everything

else

Two types of obstacles

Effective permissions – scenario 1

Identity-based policyPermissions boundary

Request: s3:GetObject / bucket name: example1

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup",
"logs:CreateLogStream”,
"logs:PutLogEvents”

],
"Resource": "arn:aws:logs:*:*:*"

},
}

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents",
],

"Resource": "*"
},
{

"Effect": "Allow",
”Action": ["s3:GetObject"],
"Resource”:"arn:aws:s3:::example1/*"

}
]

}

API

Request
Implicit

Deny
Allow

Identity-based

policy

Explicit

deny

Permissions

boundary

Request:

s3:GetObject

Request

denied

Effective permissions – scenario 1

Identity-based policyPermissions boundary

Request: s3:GetObject / bucket name: example1

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup",
"logs:CreateLogStream”,
"logs:PutLogEvents”

],
"Resource": "arn:aws:logs:*:*:*"

},
{
"Effect": "Allow",
"Action": ["s3:GetObject"],
"Resource”:"arn:aws:s3:::example1/*"

}
}

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents",
"s3:*"
],

"Resource": "*"
}

]
}

Effective permissions – scenario 2

API

Request
Allow Allow

Identity-based

policy

Explicit

deny

Permissions

boundary

Request:

s3:GetObject
Request

allowed

Effective permissions – scenario 2

Identity-based

policy

Explicit Deny

(any policies

that apply)

Request

Permissions

boundary

SCPs

Resource-based

policy

Session

Policy

Resource-based policies can grant an action

regardless of whether the permissions boundary or

identity-based policy does.

Resource based policies – intra account

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Resource Restrictions

• Goal: create a “walled garden” for the delegated admins

• Important since not all actions support the permissions boundary

condition

• Also allows different teams to safely do delegated permissions

management in the same account

• Pathing preferred (requires CLI). “Naming restrictions” can also be

used. Tags are also an option.

Resource Restrictions - paths

Basic path example:

arn:aws:iam::123456789012:role/webadmins/????

Naming example:

arn:aws:iam::123456789012:role/webadmins*

Command:

aws iam create-role --role-name webadmin --

assume-role-policy-document file://policydoc

Resource Restrictions - paths

Role: arn:aws:iam::123456789012:role/webadmins

Role with a path: arn:aws:iam::123456789012:role/namer/webadmins

Role with paths: arn:aws:iam::123456789012:role/namer/dept1/webadmins

--path /namer/dept1/

Permission:

"Effect": "Allow",

"Action": "iam:DeleteRole”,

"Resource": "arn:aws:iam::123456789012:/namer/dept1/*”

or "Resource": "arn:aws:iam::123456789012:/namer/*”

AWS Account

Web Admins

Create policies

and roles:

/namer/dep1/webadmins/*

Webadmins

Role

Policies: /namer/dep1/webadmins/test-policy

Roles: /namer/dep1/webadmins/test-role

Rest of the account

Other policies: admin-policy

Other roles: /namer/dep2/test-role

Pathed walled garden

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

End of presentation questions

• What is the condition context key used for permissions boundaries?

• What are some of the advantages of using pathing for policies, users

and roles?

• What are some permissions boundaries use cases?

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://dashboard.eventengine.run

https://dashboard.eventengine.run/

Region is N. Virginia (us-east-1)

Region is N. Virginia (us-east-1)

Read through the Overview, then click on Build Phase:

Follow instructions under “Click here if you are using your own AWS account …”

https://identity-round-robin.awssecworkshops.com/permission-boundaries-advanced/

https://bit.ly/2CMjqmh

Permissions boundaries workshop
Build phase (60 min)

Click on Verify Phase:

https://identity-round-robin.awssecworkshops.com/permission-boundaries-advanced/

https://bit.ly/2CMjqmh

Permissions boundaries workshop
Verify phase (15 min)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

End of workshop questions

• What is the risk of implementing permissions boundaries

without resource restrictions?

• What do you attach the permissions boundary to?

• How does a permissions boundary differ from an IAM policy?

Summary

Safely delegate permission management

Let builders build without compromising on security

Also allow multiple teams in the same account to do permission

management

Related breakouts

SEC207-L - Leadership session: AWS identity

SEC209-R - [REPEAT] Getting started with AWS identity

SEC316-R - [REPEAT] Access control confidence: Grant the right access
to the right things

SEC217-R - [REPEAT] Delegate permissions management using
permissions boundaries

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cameron Worrell
Ilya Epshteyn

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

