

DAT403-R

Amazon DynamoDB de
Advanced design patter

Rick Houlihan
Principal Technologist, NoSQL
Amazon Web Services

AWS
re. I nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved

Agenda

- Brief history of data processing (Why NoSQL?)

« Overview of Amazon DynamoDB

- NoSQL data modeling

Normalized versus de-normalized schema

« Common NoSQL design patterns

Composite keys, hierarchical data, relational data

« Modeling real applications

nobody was

Anonymous

Timeline of database technology

Data Pressure

Technology adoption and the hype curve

Peak of Inflated
Expectation

Technology
Trigger

Expectation

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

Time

Early

Innovators Adopters

\\

I

I

I

I

I
"The Chasm™ |I\[

|

I

I

Early
Majority

Late
Majority

-
Laggards

Adoption Rate

Why NoSQL?

SQL

Optimized for storage

Normalized/relational
Ad hoc queries

Scale vertically

NoSQL

Optimized for compute
De-normalized/hierarchical
Instantiated views
Scale horizontally

Built for OLTP at scale

Good for OLAP

Amazon DynamoDB

J)

Fully managed NoSQL Document or Wide Column Scales to any workload

“

Fast and consistent Access control Event-driven programming

Table

p N -1,](-
GSITPK GSI2PK GSI3PK [«

GSITPK

Attributes é

—
=

Partition Sort All items for key
ke ke ==, <, >, >=, <=
y y “begins with”
“between”
“contains”

llin"

sorted results

counts

top/bottom N values

Mandatory Optional

Key-value access pattern Model 1:N relationships
Determines data distribution Enables rich query capabilities

Partition overloading

Use generic keys to facilitate heterogeneous partitions

B S — . — s
P ———— Costamertye
T S U -

R FeCiD
Customer 1|2019-11-29T08:31:28Z2#01#11 _
- BO7G6CQQAYG PROCESSING BOOM 3 JNZS00170
— — lgn] Bl Nme | Adwes
- jdoe |john@example.com 123 5th Street, New York, NY

SELECT * WHERE PK=Customer_1 AND SK > 2019-10-29

Secondary indexes

Support secondary access patterns
Index across all partition keys
Use composite sort keys for compound indexes

RCUs/WCUs provisioned
A2 Al KEYS_ONLY
(partition) (itemkey)
S i INCLUDE A3
(item key) (projected)
A4 A1l A2 A3 ALL
(partition) (item key) (projected) (projected)

Indexes

Partition/shard keys in NoSQL

Partition/shard key is used for building an unordered hash index
Allows table to be partitioned for scale

Id=3
Name = Kim
Dept = Ops

Id =1

Id=2
Name = Jim

Name = Andy
Dept = Eng

Hash (1) = 7B Hash (2) = 48
00 54 55 Key'space A9 AA

/ |

Write sharding

Salt indexed keys to support high-density aggregations on GSls

/) locaton | Store | CustomerType |
2019-11-29T08:31:28Z#01 - Location Store CustomerType
Online#{0-N) U/ |wwwamazoncom [Regulr |

T T VAR T FeciD
Customer_1|2019-11-29T08:31:282#01#l1 _
- B07G6CQQAYG#(0-N) TPROCESSING BOOM 3 JNZS00170
— — lgn | Eml | Name | Addes
- jdoe ~ |john@example.com 123 5th Street, New York, NY

Data Layer API

I « Abstract partitioning from clients behind an API

“ S * Write across many partitions

« Use parallel processes to increase read throughput

Online#1 Online#... Online#N

Index overloading

Use generic keys once more to use indexes for multiple access
patterns

. e— — A

Store CustomerType
2019-11-29T08:31:287#01 | GSPK | “© fGsask | Store
Onlinek(O-N)

Product FCCID
Customer 1|2019-11-29T08:31:287#01#11 | GSIIPK |V GSIISK | Product
- BO7G6CQQYG#(0-N) [PROCESSING BOOM 3 JNZS00170

Customer_1 | logn | Email | = Name | = Address |
- jdoe |john@example.com 123 5th Street, New York, NY

Index overloading

SELECT * WHERE PK=ONLINE#0 AND SK=US

SELECT * WHERE PK=ONLINE#N AND SK=US

PrimaryKey” -
Attribut
GSIIPK | GSIISK FIDHEES

Online#(0-N) US “ CustomerType

-
SK FCCID
B07G6CAAYGH(0-N) |PROCESSING -i__
QQ (J ; BOOM 3 JNZS00170

SELECT * WHERE PK=B07G6CQQYG#0 AND SK=PROCESSING

SELECT * WHERE PK=B0O7G6CQQYG#N AND SK=PROCESSING

rks."”

glas Adams

What bad NoSQL looks like

! W " i B m

Partition

| “

Time

w
MN

Ilm

I

W

Heat

Getting the most out of DynamoDB throughput

“To get the most out of DynamoDB throughput, create tables where
the partition key element has a large number of distinct values, and

values are requested fairly uniformly, as randomly as possible.”
—DynamoDB Developer Guide

Space: Access is evenly spread over the key space

Time: Requests arrive evenly spaced in time

Much better picture

Heatmap contains active partition information only

N
w
o

Requests

=
- —
=
.
9]
©
>
a
o
]
—
| .
o
£
=
]
=
g =
©
o

1500 2000
Time (Seconds)

Auto scaling

Throughput automatically adapts to your actual traffic

Without auto scaling With auto scaling

Performance at any scale

High request volume Consistent low latency

Get latency (Milliseconds) Statistic: | Average v | Time Range: | Last 24 Hours ¥ | Period:| 5 Minutes ¥ o

1/22 1/22 1/22 1/22 1722 1/22 1/22 1/22 1722 1/22 1/22 1/22
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Many millions of requests per second per

Millisecond variance
table

Global-scale events: Elastic is the new normal

ata. If all we
mine.”

- Jim Barksda

t's all about relationships

Social network Document management Process control

IT monitoring Data trees

SQL vs. NoSQL design pattern

Product Database

Normalized

/

Products
1D
Type
Price
Description

AN

Books Albums Videos
J 1D 1D
Author Type Title
Title Title Category
Fiction Genre Fiction
Category Al Producer
Date (B]g=Tei(e]g
Tracks ActorVideo
1D ActorlD
AlbumID VideolD
Title
Duration
Actor |
1D
Nam~
p/
Jder
Sio

Ad hoc “joins”

SELECT * FROM PRODUCTS
INNER JOIN BOOKS ON
productld = productld
WHERE name = “Book Title"

SELECT * FROM PRODUCTS
INNER JOIN ALBUMS ON
productld = productld

INNER JOIN TRACKS ON
albumid = albumid

WHERE name = “Album Title"

SELECT * FROM PRODUCTS
INNER JOIN VIDEOS ON
productld = productld

INNER JOIN ACTORVIDEO ON
videold = videold

INNER JOIN ACTORS ON
actorld = actorld

WHERE name = “Movie Title"

18

S Q L productid | ____name |

T [Frankensten |
2 [pireStrats _[Album |

3

4 [enefre leook | 1099
6 [SavingPrivateRyan ___ [Video | 1899

bookld | productld publisher ISBN-10
Mary Shelley 553212478
| 2 | 4 |[Charlotte Bronté 1853260207

actorVideold| videold | _actorld | _character |

Captain Mille
2
4 [1 |3 [MacMilan

11/18/60

Time Complexity
O(lodp g NlogiMd o(Mlog (MPe(MIdg (M)

albumld] productld
Muff Winwood | 10/7/78
Pink Floyd Pink Floyd 3/1/73

trackid [alumid| ____song | duration |
523
4 | 1 [SweldeKnfe | 40|
6 | 1 [SubansofSwing | 547
& | 1 |WidWestend | 44|
o [1 Jtow | o5
113
T3 [2 [tme 3]
326

Modeled “joins” in NoSQL

Primary Key Attributes

SELECT * WHERE PK="Book Title"

ISBN-10
553212478
ReleaseDate

10/7/78

Publisher
Bantam
Producer
Muff Winwood

Price
11.99
Price
17.49
TrackNo

Type
book
Type
album
Duration
3:55
Duration
5:23
Duration
3:18
Duration
4:10
Duration
2:58
Duration
5:47
Duration
6:16
Duration
4:42
Duration
5:05
Type
video
Character
Josh
Character
Susan
Character
MacMillan
Gender
Male

Frankenstein Mary Shelley
Dire Straits

SELECT * WH ERE PK="Album Title" Down to the Waterline

Water of Love

SELECT * WHERE PK="Movie Title" Setting Me Up

Six Blade Knife

TrackNo
TrackNo

TrackNo

Dire Straits TrackN
Southbound Again rackivo

Sultans of Swing TrackNo

In the Gallery TrackNo

Wild West End TrackNo

, TrackNo
Lions

Penny Marshall
Time Complexity —
Bi
0(1) : Elizabeth Perkins
Robert Loggia

Writer
Ann Spielberg
BirthDate
7/9/56
BirthDate
11/18/60
BirthDate
1/3/30

ReleaseDate
6/5/88

Price
14.99
Gender
Male
Gender
Female
Gender
Male
BirthDate
7/9/56

Type	Price
book	= 1199
Type	Price
album	1749
Duration	TrackNo
355	00 1 0
Duration	TrackNo
5238	00 2
Duration	TrackNo
318	003
Duration	TrackNo
410	2 4
Duration	TrackNo
258	0005
Duration	TrackNo
547	00 6
Duration	TrackNo
6316	00 7
Duration	TrackNo
442	08
Duration	TrackNo
505	00 9
Type	Price
video	= 1499
Character	Gender
_Josh	= Male
Character	Gender
Susan	Female
Character	Gender
MacMillan	~ Male
Gender	BirthDate
Male	7/9/56

Modeled “joins” in NoSQL

Swap PK and SK on index

SELECT * WHERE SK="Author Name" — |] Attributes

. Type Publisher ISBN-10
ore shl e Tye |
11.99 553212478

X _u . I
SELECT * WHERE SK="Song Title o | oreswas (s | Tealo

Sultans of Swing: The

Very Best of Dire Straits
SELECT * WHERE SK="Actor Name" B e e e
SELECT * WHERE SK="Director Name" Tom Hanks _—___

.
7 S
SELECT * WHERE SK="Musician N

Sultans of Swing: The
Very Best of Dire Straits 25.99 10/19/98

Document vs. wide column data modeling

_id: “john@example.com”,
firstName: “John”,

lastName: “Doe”,
address: “123 A Street”,
city: “Seattle”,

state: "WA”",
building: “SEA58",

<

floor: "07.650.01"

Default “_id"” index supports K/V access
patterns, e.qg., “Get employee data by
email”, etc.

Compound index on "“building.floor” supports
subtree aggregations for employees by
location: SELECT * WHERE building ==
“SEA58" AND floor startsWith(“07")

Document vs. wide column

_id: “john@example.com”,
firstName: “John”,
lastName: “Doe”,

address: “123 A Street”,

city: “Seattle”,
state: “WA",
building: “SEA58",

flanr- "07 cCNO O
. U7 Q00U T

1tUVI

PK (_id) firstName | lastName address city state GSIPK GSISK

Indexing efficiently in NoSQL

Document @ Wide column éﬂ

Default index on _id Partition Key defines default index

Query planner selects the index User specifies the index

Include Shard Key or suffer Partition Key value always required

Optimize with Compound Indexes Use Projections to “pre-load” the index

an only give

Pablo Picass

l‘

Serverless & event driven architecture

DynamoDB streams

Ijo!

/ Amazon ES

Notify change>

Amazon S3 Kinesis Firehose AWS Lambda
Athena (Parquet)

| all are equal

omez Davila

Multi-value sorts and filters

Partition key

Sort key

= Sec&ndary index

/* 1

2074-10-02
2074-10-08

2074-09-30
2074-10-03
2074-10-03

DONE
IN_PROGRESS
PENDING
PENDING
IN_PROGRESS

Approach 1: Query filter

SELECT * FROM Game e
WHERE Opponent='Bob'
ORDER BY Date DESC

: FILTER ON Status='PENDING'
= Secondary index

— -

2074-10-02 DONE
2014-10-08 IN_PROGRESS

i

2074-09-30 PENDING
2074-10-03 PENDING
2014-10-03 IN_PROGRESS (Filtered out)

Approach 2: Composite key

DONE 2074-10-02
IN_PROGRESS 2074-10-08

DONE_2014-10-02
IN_PROGRESS_2014-10-08

IN_PROGRESS_2014-10-03
PENDING_2014-09-30
PENDING_2014-10-03

IN_PROGRESS 2014-10-03
PENDING 2074-10-03
PENDING 2014-09-30

Approach 2: Composite key

Partition key Sort key

= Secondary index

ﬁ T

DONE_2014-10-02
IN_PROGRESS_2014-10-08

IN_PROGRESS_2014-10-03
PENDING_2014-09-30
PENDING_2014-10-03

Approach 2: Composite key

SELECT * FROM Game n

WHERE Opponent='Bob'
AND StatusDate BEGINS_WITH 'PENDING'

= Secondary index

o I

i

DONE_2014-10-02
IN_PROGRESS_2014-10-08

IN_PROGRESS_2014-10-05
PENDING_2014-09-30
PENDING_2014-10-03

Modeling complex relationships

Access Patterns

Getmeetngs [|

y date and email

Load employee dashboard by email

I
I [
I

Projects

T
A
T
etassignedtickets|]
A
b

Buildings Employees

o

ctproectls) | |
y status, start and target date

b

b

y role

Meetings

et project history

et Rooms I
by buildingID

by availability and time range

|
|
| 4
| 6
| 8
|
| 9
|
|
|
|
|
|
|

Filter Condition
duration >0
SK contains(building/floor/room)

Key Condition
PK = employeeld, SK between(datel, date2)
PK = buildingld, SK between(datel, date2)
PK = employeeld, SK startsWith("E")
PK = ticketld
PK = projectName, SK = projectName
PK = projectName, SK between(datel, date2)
PK = projectName
PK = buildingID
PK = buildingld, SK between(datel, date2)

Access Patterns

by date and employeeld

by date and building/floor/room
by employeelD

by Ticket ID

by name

by date range

by role

by buildingld

by Availability and Time Range

Get meetings

Get meetings

Get employee info
Get Ticket History
Get project

Get project history
Get project history
Get rooms

Get rooms

The table

role = roleName

Partition key: pk

EMPLOYEE_1

EMPLOYEE_2

ProjectX

Ticket_1

Primary key

Sort key: sk

2019-08-20T10:00:00Z]|07.106

2019-08-20T10:15:00Z]|07.106

2019-08-20T10:00:00Z|07.106

2019-09-06|john@example.com

2019-09-06|richard@example.com

ProjectX

2019-08-15T12:35:00Z

2019-08-15T12:35:05Z

GSl1pk
john@example.com
Attendees

[--]

RoomSpecs

f--]

GSl1pk
richard@example.com
GSl1pk
richard@example.com
GSl1pk
john@example.com
GSl1pk
john@example.com
GSl1pk
richard@example.com
GSl1pk

Active

GSl1pk
john@example.com
GSl1pk

john@example.com

GSisk

2019-08-20T10:00:00Z|07.106

Subject

Discuss ProjectX

GSisk

2019-08-20T10:00:00Z|07.106

GSisk

E#999

GSisk

E#777

GSisk

2019-09-06

GSisk

2019-09-06

GSisk

2019-08-30

GSisk

2019-08-15T12:35:00Z

GSisk

2019-08-15T12:35:05Z

Duration
30
Organizer

john@example.com

Duration
30
GSI3pk
SEA
GSI3pk

SEA

24

Description

Some project
Subject

Badge replacement
GSI2pk

richard@example.com

Attributes

Attendees Subject

[--] Discuss ProjectX

Attendees Subject

k-] Discuss ProjectX
GSI3sk Name
58.07.105.B2 Richard Roe
GSI3sk Name
58.09.203.A1 John Doe
Role

TPM

Role

SDE2
TargetDelivery
2020-01-30
GSI3pk GSI3sk

7 2019-08-16T12:35:00Z

Message

Request received.

Title
IT Support
Title

CEO

GSI2pk

richard@example.com

GSI2pk
john@example.com
GSI2pk

john@example.com

Message

Dog ate my badge.

The index schema (GSIT

Access Patterns Key Condition Filter Condition
Get Meetings by date and email GSI1PK = email, GSISK between(datel, date2) duration>0
Get employee data
Get meetings
Load dashboard by email [Get tickets GSI1PK = email, GSISK > 30 days ago
Get reservations
Get time cards
Get Employee info by email GSI1PK = email, GSISK startsWith("E")
Get Ticket History by employee email GSI1PK = email PK = ticket!d
Get Projects by status, start and target date GSI2PK = status, GSISK > startDate targetDelivery < targetDate

Primary key
Attributes
Partition key: GSlipk Sort key: GSisk

pk sk Subject GSISpk GSI3sk GSIZ2Zpk NMessage
2019-08-15T12:35:00=Z
Ticket_1 2019-08-15T12:35:00=2 Badge replacement ¥ £ 2019-08-16T12:35:00=Z bhana@abc.com Dog ate my badge.

Pk sk GSiI2Zpk Message
2019-08-15T12:35:05Z
Ticket_1 2019-08-15T12:35:05Z bhana@abc.com Request received.

sk Duration Attendees Subject
staylor@abc.com 2019-08-20T10:00:00Z|07.106
2019-08-20T10:00:00Z|07.106 30 I===1 Discuss ProjectX

sk Role
2019-09-06
ProjectX 2019-09-06|staylor@abc.com TPM

pk sk GSI38sk Name E GSiIZpk
E#777

EMPLOYEE E#777 58.09.203. A1 Steven Taylor = staylor@abc.com

pk sk Attendees Subject
2019-08-20T10:00:00Z|07.106
EMPLOYEE 2019-08-20T10:00:00Z|O07.106 ==-1 Discuss ProjectX

pk sk Role
bhana@abc.com 2019-09-06

2019-09-06|bhana@abc.com SDE2

Pk sk GSI3sk Name Title GSiI2Zpk
E#999

EMPLOYEE E#999 58.07.105.B2 Benny Hana IT Support staylor@abc.com

pk sk Description TargetDelivery
2019-08-30

ProjectX ProjectX Some project 2020-01-30

The index schema (GSI2

Key Conditior iter Conditior
Get Ticket History by assignee email GSI2PK = email PK = ticketld
s Getemployees GSRPK-emal, k53 |

Primary key

Partition key: GSI2pk Sort key: GSlIsk

john@example.com

2019-08-15T12:35:00Z
richard@example.com

2019-08-15T12:35:05Z

pk
EMPLOYEE_2
pk
EMPLOYEE_1
pk

Ticket_1

pk

Ticket_1

sk

2019-08-15T12:35:00Z

sk

2019-08-15T12:35:05Z

GSI1pk
john@example.com
GSI1pk
richard@example.com
GSl1pk
john@example.com
GSl1pk

john@example.com

Attributes

GSI3pk

SEA

SEA

Subject

Badge replacement
Message

Request received.

GSI3sk
58.09.203.A1
GSI3sk
58.07.105.82
GSI3pk

7

Name

John Doe

Name

Richard Roe

GSI3sk

2019-08-16T12:35:00Z

Title

CEO

Title

IT Support
Message

Dog ate my badge.

The index schema (GSI3

Key Conditon Fiter Conditon
Get employees by city, building, floor, aisle, desk [GSI3PK = city, GSI3SK startsWith(building/floor/aisle/desk) | |
by ast touched > 24 hours

Primary key

Partition key: GSI3pk Sort key: GSI3sk

pk
58.07.105.B2

EMPLOYEE_1

pk
58.09.203.A1
EMPLOYEE_2

pk
2019-08-16T12:35:00Z
Ticket_1

sk

2019-08-15T12:35:00Z

GSl1pk
richard@example.com
GSl1pk
john@example.com
GSI1pk

john@example.com

Attributes

GSlsk

E#999

GSlsk

E#777

GSlsk

2019-08-15T12:35:00Z

GSI3PK = (0-N), GSI3SK < yesterday

Name
Richard Roe
Name

John Doe
Subject

Badge replacement

Title

IT Support
Title

CEO
GSI2pk

richard@example.com

GSI2pk
john@example.com
GSI2pk
john@example.com
Message

Dog ate my badge.

The final result

Access Patterns

Table/Index

Key Condition

Filter Condition

Get meetings

by date and email

GSI1

GSI1PK = email, GSISK between(datel, date2)

duration >0

by date and employeeld

Table

PK = employeeld, SK between(datel, date2)

duration >0

by date and building/floor/room

Table

PK = buildingld, SK between(datel, date2)

SK contains(building/floor/room)

Load employee dash

board by email

Get employee data

Get meetings

Get tickets

Get reservations

Get time cards

GSI1PK = email, GSISK > 30 days ago

Get employee info

by employeelD

PK = employeeld, SK startsWith("E")

by email

GSI1PK = email, GSISK startsWith("E")

Get Ticket history

by Ticket ID

PK = ticketld

by employee email

GSI1PK = email

PK = ticketld

by assignee email

GSI2PK = email

PK = ticketld

Get employees

by city, building, floor, aisle, desk

GSI3PK = city, GSI3SK startsWith(building/floor/aisle/desk)

by manager

GSI2PK = email, SK > 3

Get assigned tickets

by email

GSI1PK = email

PK = ticketld

Get Tickets

by last touched > 24 hours

GSI3PK = (0-N), GSI3SK < yesterday

Get project(s)

by status, start and target date

GSI2PK = status, GSISK > startDate

targetDelivery < targetDate

by name

PK = projectName, SK = projectName

Get project history

by date range

PK = projectName, SK between(datel, date2)

by role

PK = projectName

role = roleName

Get Rooms

by buildingld

PK = buildinglD

by Availability and Time Range

PK = buildingld, SK between(datel, date2)

Access patterns matter

)7L Attributes

| PK |

Quotel v2
Quotel v3

Quotel v4

Quotel_v5

I B B U R

200+ Attributes (50KB avg)

200+ Attributes (50KB avg)

200+ Attributes (50KB avg)

200+ Attributes (50KB avg)

Insurance quote service
Store all versions

200+ attributes per quote
50KB average record size
800 quotes-per-minute peak

1K WCU provisioned

Optimized for writes

- Attributes
o

price
Quotel vi Toplevel [.. | .

mileage
1

P I

T e i s s
T oera
—

|
Quotel v2_Mileage | 25000 | ..

Version items as categories
are updated

Send all versions when
queried

Process with client-side
logic

50 WCU provisioned

NoSQL Workbench tor DynamoDB

aws
— Data modeler

» Use the tool designed by and
for the AWS specialist SA team

* Model your data, visualize your
designs, generate your code

» https://docs.aws.amazon.com/a
mazondynamodb/latest/develo
perguide/workbench.html

Conclusions

« NoSQL does not mean non-relational
* The ERD still matters

 RDBMS is not deprecated by NoSQL
 Use NoSQL for OLTP or DSS at scale
« Use RDBMS for OLAP

L earn databases with AWS Training and Certification
Resources created by the experts at AWS to help you build and validate database skills

25+ free digital training courses cover topics and services

" | related to databases, including:
H — = -o[>— « Amazon Aurora « Amazon ElastiCache
_C — « Amazon Neptune Amazon Redshift
« Amazon DocumentDB « Amazon RDS

Amazon DynamoDB

Validate expertise with the new AWS Certified Database - Specialty beta

exam

AWS training and

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. ~ >) certification

Thank you!

AWS
re. | nve r]t © 2019, Amazon Web Services, Inc. or its affiliates. All rights rese

re'lNven

