

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon DynamoDB deep dive:
Advanced design patterns

D A T 4 0 3 - R

Rick Houlihan

Principal Technologist, NoSQL

Amazon Web Services

Agenda

• Brief history of data processing (Why NoSQL?)

• Overview of Amazon DynamoDB

• NoSQL data modeling

Normalized versus de-normalized schema

• Common NoSQL design patterns

Composite keys, hierarchical data, relational data

• Modeling real applications

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“History repeats itself because nobody was
listening the first time.”

Timeline of database technology
D

a
ta

 P
re

s
s
u

re

Technology adoption and the hype curve

Why NoSQL?

Optimized for storage Optimized for compute

Normalized/relational De-normalized/hierarchical

Ad hoc queries Instantiated views

Scale vertically Scale horizontally

Good for OLAP Built for OLTP at scale

SQL NoSQL

Amazon DynamoDB

Document or Wide Column Scales to any workloadFully managed NoSQL

Access control Event-driven programmingFast and consistent

Table
Table

Items

Attributes

Partition
key

Sort
key

Mandatory

Key-value access pattern

Determines data distribution

Optional

Model 1:N relationships

Enables rich query capabilities

All items for key
==, <, >, >=, <=
“begins with”
“between”
“contains”
“in”
sorted results
counts
top/bottom N values

GSI1PK

GSI1PK

GSI1PK

GSI2PK

GSI2PK

GSI3PK

Partition overloading

Use generic keys to facilitate heterogeneous partitions

SELECT * WHERE PK=Customer_1 AND SK > 2019-10-29

Secondary indexes

Support secondary access patterns

Index across all partition keys

Use composite sort keys for compound indexes

A1

(partition)
A2 A3 A4 A5

A5

(partition)

A4

(sort)

A1

(item key)

A3

(projected)
INCLUDE A3

A4

(partition)

A5

(sort)

A1

(item key)

A2

(projected)

A3

(projected)
ALL

A2

(partition)

A1

(itemkey)
KEYS_ONLY

Indexes

Table
RCUs/WCUs provisioned

separately for GSIs

Online indexing

00 55 A954 FFAA00 FF

Partition/shard keys in NoSQL
Partition/shard key is used for building an unordered hash index

Allows table to be partitioned for scale

Id = 1

Name = Jim

Hash (1) = 7B

Id = 2

Name = Andy

Dept = Eng

Hash (2) = 48

Id = 3

Name = Kim

Dept = Ops

Hash (3) = CD

Key space

Write sharding
Salt indexed keys to support high-density aggregations on GSIs

Index overloading

Use generic keys once more to use indexes for multiple access
patterns

Index overloading

SELECT * WHERE PK=ONLINE#0 AND SK=US
…
SELECT * WHERE PK=ONLINE#N AND SK=US

SELECT * WHERE PK=B07G6CQQYG#0 AND SK=PROCESSING
…
SELECT * WHERE PK=B07G6CQQYG#N AND SK=PROCESSING

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“We are stuck with technology when what we
really want is just stuff that works.”

What bad NoSQL looks like

P
a

rt
it

io
n

Time

Heat

Getting the most out of DynamoDB throughput

“To get the most out of DynamoDB throughput, create tables where

the partition key element has a large number of distinct values, and

values are requested fairly uniformly, as randomly as possible.”

—DynamoDB Developer Guide

Space: Access is evenly spread over the key space

Time: Requests arrive evenly spaced in time

Much better picture

Auto scaling

Throughput automatically adapts to your actual traffic

With auto scalingWithout auto scaling

Millisecond variance

Consistent low latency

Many millions of requests per second per

table

High request volume

Performance at any scale

W
ri

te
 c

a
p

a
c
it

y
 u

n
it

s/
se

c

Super Bowl

Global-scale events: Elastic is the new normal

Peak Consumed Capacity

Provisioned Capacity

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“If we have data, let’s look at data. If all we
have are opinions, let’s go with mine.”

It’s all about relationships

Document management Process controlSocial network

Data treesIT monitoring

SQL vs. NoSQL design pattern

Ad hoc “joins” in SQL

SELECT * FROM PRODUCTS
INNER JOIN BOOKS ON
productId = productId
WHERE name = “Book Title”

SELECT * FROM PRODUCTS
INNER JOIN ALBUMS ON
productId = productId
INNER JOIN TRACKS ON
albumId = albumId
WHERE name = “Album Title”

SELECT * FROM PRODUCTS
INNER JOIN VIDEOS ON
productId = productId
INNER JOIN ACTORVIDEO ON
videoId = videoId
INNER JOIN ACTORS ON
actorId = actorId
WHERE name = “Movie Title”

Modeled “joins” in NoSQL

SELECT * WHERE PK=“Book Title”

SELECT * WHERE PK=“Album Title”

SELECT * WHERE PK=“Movie Title”

Modeled “joins” in NoSQL

SELECT * WHERE SK=“Author Name”

SELECT * WHERE SK=“Song Title”

SELECT * WHERE SK=“Actor Name”

SELECT * WHERE SK=“Director Name”

SELECT * WHERE SK=“Musician”

Swap PK and SK on index

Compound index on “building.floor” supports
subtree aggregations for employees by
location: SELECT * WHERE building ==
“SEA58” AND floor startsWith(“07”)

Document vs. wide column data modeling

{

_id: “john@example.com”,

firstName: “John”,

lastName: “Doe”,

address: “123 A Street”,

city: “Seattle”,

state: “WA”,

}

building: “SEA58”,

Default “_id” index supports K/V access
patterns, e.g., “Get employee data by
email”, etc.

floor: “07.650.O1”

PK (_id) firstName lastName address city state GSIPK GSISK

john@example.com John Doe 123 A Street Seattle WA SEA58 07.650.O1

Document vs. wide column

{

_id: “john@example.com”,

firstName: “John”,

lastName: “Doe”,

address: “123 A Street”,

city: “Seattle”,

state: “WA”,

}

building: “SEA58”,

floor: “07.650.O1”

Indexing efficiently in NoSQL

Document Wide column

Default index on _id Partition Key defines default index

Query planner selects the index User specifies the index

Include Shard Key or suffer Partition Key value always required

Optimize with Compound Indexes Use Projections to “pre-load” the index

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“Computers are useless. They can only give
you answers.”

Serverless & event driven architecture

AWS Lambda

Notify change

Amazon ES

Kinesis Firehose

Data events

S3

(Parquet)
Amazon

Athena

DynamoDB streams

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“Hierarchies are celestial. In hell all are equal.”

Secondary index

Opponent Date GameId Status Host

Alice 2014-10-02 d9bl3 DONE David

Carol 2014-10-08 o2pnb IN_PROGRESS Bob

Bob 2014-09-30 72f49 PENDING Alice

Bob 2014-10-03 b932s PENDING Carol

Bob 2014-10-03 ef9ca IN_PROGRESS David

BobPartition key Sort key

Multi-value sorts and filters

Secondary index

Approach 1: Query filter

Bob

Opponent Date GameId Status Host

Alice 2014-10-02 d9bl3 DONE David

Carol 2014-10-08 o2pnb IN_PROGRESS Bob

Bob 2014-09-30 72f49 PENDING Alice

Bob 2014-10-03 b932s PENDING Carol

Bob 2014-10-03 ef9ca IN_PROGRESS David

SELECT * FROM Game
WHERE Opponent='Bob'
ORDER BY Date DESC
FILTER ON Status='PENDING'

(Filtered out)

Approach 2: Composite key

StatusDate

DONE_2014-10-02

IN_PROGRESS_2014-10-08

IN_PROGRESS_2014-10-03

PENDING_2014-09-30

PENDING_2014-10-03

Status

DONE

IN_PROGRESS

IN_PROGRESS

PENDING

PENDING

Date

2014-10-02

2014-10-08

2014-10-03

2014-10-03

2014-09-30

+ =

Secondary index

Approach 2: Composite key

Opponent StatusDate GameId Host

Alice DONE_2014-10-02 d9bl3 David

Carol IN_PROGRESS_2014-10-08 o2pnb Bob

Bob IN_PROGRESS_2014-10-03 ef9ca David

Bob PENDING_2014-09-30 72f49 Alice

Bob PENDING_2014-10-03 b932s Carol

Partition key Sort key

Opponent StatusDate GameId Host

Alice DONE_2014-10-02 d9bl3 David

Carol IN_PROGRESS_2014-10-08 o2pnb Bob

Bob IN_PROGRESS_2014-10-03 ef9ca David

Bob PENDING_2014-09-30 72f49 Alice

Bob PENDING_2014-10-03 b932s Carol

Secondary index

Approach 2: Composite key

Bob

SELECT * FROM Game
WHERE Opponent='Bob'

AND StatusDate BEGINS_WITH 'PENDING'

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“Dude, where’s my lookup table?”

Modeling complex relationships

The table

The index schema (GSI1)

The index schema (GSI2)

The index schema (GSI3)

The final result

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“To understand is to perceive patterns.”

Access patterns matter

• Insurance quote service

• Store all versions

• 200+ attributes per quote

• 50KB average record size

• 800 quotes-per-minute peak

• 1K WCU provisioned

Optimized for writes

• Version items as categories
are updated

• Send all versions when
queried

• Process with client-side
logic

• 50 WCU provisioned

NoSQL Workbench for DynamoDB

• Use the tool designed by and
for the AWS specialist SA team

• Model your data, visualize your
designs, generate your code

• https://docs.aws.amazon.com/a
mazondynamodb/latest/develo
perguide/workbench.html

Conclusions

• NoSQL does not mean non-relational

• The ERD still matters

• RDBMS is not deprecated by NoSQL

• Use NoSQL for OLTP or DSS at scale

• Use RDBMS for OLAP

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

25+ free digital training courses cover topics and services
related to databases, including:

Validate expertise with the new AWS Certified Database - Specialty beta
exam

Learn databases with AWS Training and Certification

• Amazon Aurora

• Amazon Neptune

• Amazon DocumentDB

• Amazon DynamoDB

• Amazon ElastiCache

• Amazon Redshift

• Amazon RDS

Visit aws.training

Resources created by the experts at AWS to help you build and validate database skills

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

