# aws re: Invent

#### A I M 3 4 3 - R

# Build computer vision models with Amazon SageMaker

#### **Nathalie Rauschmayr**

Applied Scientist

Amazon Web Services





#### Agenda

Amazon SageMaker

Computer vision toolkit: GluonCV

GluonCV on Amazon SageMaker: A demo

# Amazon SageMaker





#### Amazon SageMaker: Build, train, and deploy ML



## Computer vision toolkit: GluonCV





#### Why GluonCV?

Biggest challenge in deep learning? Reproducing state of the art.



#### Real-world stories

#### Different transcoding:

In 2016, the same ImageNet models trained by MXNet achieved on average 1% less accuracy than Torch







85 JPEG quality

#### Real-world stories

Order of data augmentations:

Using another open-source DL framework: Trained model accuracies cannot match previous internal version.



#### Reproducibility

My code will still run next year.

Sometimes, it's not our fault.



#### Issues · tensorflow/tensorflow · GitHub

https://github.com/tensorflow/tensorflow/issues ▼

GitHub is where people build software. More than 27 million people use GitHub to dis contribute to over 80 million projects.

#### TF 1.5.0 Java API broken in Ubuntu 14.04: `GLIBCXX\_3.4.20' r

https://github.com/tensorflow/tensorflow/issues/16899 ▼

Feb 9, 2018 - System information. Have I written custom code (as opposed to using a script provided in **TensorFlow**): No; OS Platform and Distribution (e.g., Linux Ubuntu 1

#### Reproducibility

I will finish setting up the baseline model this afternoon.

Even though it may not be our fault again.



#### Starting from scratch can be hard

Even the most talented researchers will get blocked by trivial things.

Experience and instincts can be your enemies in certain circumstances.

Training is time-consuming, initialization and augmentation are randomized, and many implementation details need to be taken care of.

=> Debugging deep learning models is extremely difficult.

#### What does GluonCV provide?

State-of-the-art models

Official maintenance

Fast development

Reproducibility

Easy deployment

#### Pre-trained models

#### Image classification

More than 50+ pre-trained ImageNet models (ResNet, MobileNet...)

# Object detection SSD YOLOv3 Faster-RCNN RFCN FPN



#### Pre-trained models

Semantic segmentation

**FCN PSPNet** 

Mask-RCNN DeepLab



Instance segmentation

Mask R-CNN



### Key point estimation

SimplePose



#### Others

Style transfer

**MSGNet** 

**GANs** 

CycleGAN SRGAN WGAN

Re-identification

Market1501



#### GluonCV example



# GluonCV on Amazon SageMaker





#### Code walk-through

```
from sagemaker.mxnet import MXNet
mxnet estimator = MXNet( entry point='train.py',
                     role='SageMakerRole',
                     train instance type='ml.m5.xlarge',
                     train instance count=1,
                     framework version='1.3.0',
                     py version='py2')
mxnet estimator.fit({'train': 's3://data/train'})
```



## Demo





#### Go and build!





# Backup





#### Amazon SageMaker: Build, train, and deploy ML



### Amazon SageMaker Ground Truth



#### Amazon SageMaker: Build, train, and deploy ML



### Training



#### Amazon SageMaker: Build, train, and deploy ML



#### Amazon SageMaker Neo: Train once, run anywhere



#### Amazon SageMaker: Build, train, and deploy ML







#### Create a model



## Create versions of a model



# Create weighted production variants

**Production Variant** 

InstanceType

**InitialInstanceCount** 

MaxInstanceCount

ModelName

VariantName



# Create and Endpoint from Endpoint Configuration

**Production Variant** 

InstanceType

**InitialInstanceCount** 

**MaxInStanceCount** 

ModelName

VariantName

**Amazon ECR** 



Create and Endpoint Configuration one or many Production Variants

**Production Variant** 

InstanceType

**InitialInstanceCount** 

**MaxInstanceCount** 

ModelName

VariantName

**Amazon ECR** 



# One-click deployment for built-in algorithms and containers

**Production Variant** 

InstanceType

**InitialInstanceCount** 

**MaxInstanceCount** 

ModelName

VariantName

### Inference pipeline

**Amazon ECR** 



#### Batch Transform



**Graph Optimizations** 

Pruning

Layout transform

Fusing

**Tensor** Optimizations

Tiling

Vectorization





**Graph Optimizations** 

Pruning

Layout transform

NHWC → NCHW Cache efficiency

**Fusing** 

**Tensor** Optimizations

**Tiling** 

Vectorization



**Tensor** Optimizations Tiling Vectorization

**Graph Optimizations** 

**Pruning** 

Layout transform

Fusing

**Tensor Optimizations** 

Tiling

N\*C\*H\*W

N\*(C/16)\*H\*W\*16

Vectorization

**Graph Optimizations** 

**Pruning** 

Layout transform

Fusing

#### **Tensor** Optimizations

Tiling

#### Vectorization

# Thank you!







# Please complete the session survey in the mobile app.



