Comparing serverless and containers

Josh Kahn
Senior Solutions Architect
Amazon Web Services

Mayank Thakkar
Global Life Sciences Sr. Solutions Architect
Amazon Web Services
Our goal

Explore the benefits and trade-offs of container and serverless architectures
Architecture evolution

When the impact of change is small, release velocity can increase

Monolithic application
- Does everything
- Shared release pipeline
- Rigid scaling
- High impact of change
- Hard to adopt new technologies

Microservices
- Does one thing
- Independent deployments
- Independent scaling
- Small impact of change
- Choice of technology
We are witnessing a paradigm shift from physical machines to virtual machines, and further to containerization, which leads to serverless architectures. Serverless architectures offer features such as continuous scaling, fault tolerance built in, pay for value, zero maintenance, and focus on business value.
Containers & serverless on Amazon Web Services (AWS)
Options for architecting your microservices

Containers
- Amazon Elastic Container Service (Amazon ECS)
- Amazon Elastic Kubernetes Service (Amazon EKS)

Serverless
- Lambda
- Fargate
Containers: ECS, EKS, Fargate

- Platforms to run containerized applications on AWS
- Easily run and scale applications to meet your needs
- Native integration with other AWS services
- Pairs well with CI/CD

Benefits
- Portability
- Control
- Rich ecosystem
AWS container services landscape

Management
Deployment, scheduling, scaling & management of containerized applications
- Amazon ECS
- Amazon EKS

Hosting
Where the containers run
- Amazon EC2
- Fargate

Image Registry
Container image repository
- Amazon Elastic Container Registry (Amazon ECR)
Serverless: Lambda

- Run code without thinking about servers
 - Fully managed—no servers to provision or manage
- Scales with usage
- Pay for value
- Native integration with other AWS services

• Benefits
 • Event-driven framework
 • Multiple invocation models
 • Opinionated
AWS serverless web architecture
Architectural considerations

EKS/ECS/Fargate
- Custom code & services: Build your own environment
- Numerous choices
- Requires management and orchestration*

Lambda
- Standardized choices
- Opinionated approach drives scalable platform
- Security and scaling managed by AWS
- Serverless and “containerless”

* Fargate streamlines this model
Other considerations

EKS/ECS/Fargate
- Wide array of power options
 - Power level managed by container, scoped by host
 - Fargate offers streamlined model
- Multiple networking modes
- Mature tooling

Lambda
- Easy power level selection
 - 128MB to 3GB
 - Network and CPU assigned proportionally
- Can overwhelm backends
- Developing tooling
- Organizational readiness?
How do I decide?
When to leverage ECS/EKS (EC2-backed)

When you need . . .
- Support for long-running compute jobs (> 15 minutes)
- Predictable, high traffic usage
- Lower runtime startup latency (sub-second)
- Application with a non-HTTP/S listener
- Stateful applications (including EFS integration)
- Agent/daemon/side car to run alongside your service
- Specialized hardware (GPUs, etc.) or kernel tuning support
- Support for Windows containers or legacy .NET

When you want . . .
- Complete control of compute environment (but not just for the sake of control)
- Hybrid scenarios or on-premises portability
- Container image portability with Docker runtime
- Ability to purchase through different billing models (On-Demand, RI, Spot)
When to leverage AWS Fargate

When you need . . .

• Support for long-running compute jobs (> 15 minutes)
• More compute than Lambda offers (>3 GB memory)
• Application with a non-HTTP/S listener
• Run side cars with your service (agents only supported as side cars)
• Predictable scaling OR longer start times are acceptable

When you want . . .

• Managed serverless container environment
• Container image portability with Docker runtime
When to leverage Lambda

When you need . . .
• To trigger action on an event
• Support for varying utilization
• Ability to handle unknown demand
• Lighter-weight, application-focused stateless computing

When you want to . . .
• Focus on business logic and not IT operations
• Enable simplified IT automation
• Enable real-time data processing or serverless backend
• Hand operational complexity (patching, scaling, fault tolerance) to AWS
• Reduce complexity for development and operations
What if I can’t decide?

Application Load Balancer (ALB)

API Gateway

AWS AppSync

Load balancer

Container Task

Your business logic

Event

Context

Lambda Function
Decision tree

Desire application or platform runtime management?
 - Yes: Short-running task (<=15 min) or asynchronous processing
 - No: No premises portability required

Short-running task (<=15 min) or asynchronous processing?
 - Yes: Require 3 GB or less memory
 - No: Windows or .NET Classic required

Require 3 GB or less memory?
 - Yes: Specialized hardware not required (no ARM, GPUs, etc.)
 - No: Specialized hardware not required (no ARM, GPUs, etc.)

Specialized hardware not required (no ARM, GPUs, etc.)?
 - Yes: Stateless processing
 - No: Stateless processing

Stateless processing?
 - Yes: Variable demand within Lambda burst limits?
 - No: No

Yes: Amazon EKS
No: Amazon ECS (EC2-backed)
Yes: Stateless processing
No: Fargate
Yes: Lambda

Specialized hardware not required (no ARM, GPUs, etc.)?
 - Yes: Stateless processing
 - No: No

Variable demand within Lambda burst limits?
 - Yes: Yes
 - No: No

Platform?
 - No: No premises portability required
 - Yes: Yes

Hybrid or on-premises portability required?
 - No: No
 - Yes: Yes

Stateless processing?
 - Yes: Stateless processing
 - No: No
To learn more . . .

Containers
https://aws.amazon.com/containers/

Serverless
https://aws.amazon.com/serverless/
Learn to architect with AWS Training and Certification

Resources created by the experts at AWS to propel your organization and career forward

Free foundational to advanced digital courses cover AWS services and teach architecting best practices

Classroom offerings, including Architecting on AWS, feature AWS expert instructors and hands-on labs

Validate expertise with the AWS Certified Solutions Architect - Associate or AWS Certification Solutions Architect - Professional exams

Visit aws.amazon.com/training/path-architecting/
Thank you!

Josh Kahn
jkahn@amazon.com

Mayank Thakkar
mbt@amazon.com
Please complete the session survey in the mobile app.