


© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Converting a monolithic .NET app 
into a modern application

Artur Rodrigues

W I N 3 1 5 - R

Solutions Architect – Public Sector

Amazon Web Services

Amit Jha

Solutions Architect – MSFT Technologies

Amazon Web Services



Agenda (interactive discussion throughout)

• Monolithic -> Microservices primer

• .NET Framework -> .NET Core

• Demo App -> Journey of an MVC app on-premises to a full serverless app

• DevOps -> Primer tools, processes

• Various paths for legacy .NET-based applications



Metathesiophobia

Change is the root cause of 

most outages

The fear of change, it is a persistent, 

unrealistic, intense anxiety about and 

fear of new or different situations

“Preparing for a deploy,” by Olli https://t.co/GwM6QMLQLn, DevOps Reactions (@devopsreactions)

https://t.co/GwM6QMLQLn


“IMG_1760” by Robert Couse-Baker. No alterations other than cropping. https://www.flickr.com/photos/29233640@N07/14859431605/

Image used with permissions under Creative Commons license 2.0, Attribution Generic License (https://creativecommons.org/licenses/by/2.0/)



Ecosystem of microservices

Drivers

microservice

Payments

microservice Location

microservice

Ordering

microservice

Restaurant

microservice



.NET Core is the future of .NET

https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/



.NET Core is the future of .NET

https://aws.amazon.com/blogs/opensource/aws-joins-the-net-foundation/



ParticipationHours app: How I moved my MVC on-
premises to a full serverless app

• “The Frankensteimation” (Frankenstein automation)

• Amazon EC2 + Amazon EC2 Auto Scaling + VS with Web Deploy + Amazon S3 + AWS 
Systems Manager

• AWS Elastic Beanstalk + VS integration

• From .NET Standard 4.5 to .NET Core 2.0

• Using AspNetCore.DataProtection.Aws.S3

• Converting services/controllers/views into Razor + Ajax calls

• AWS Lambda + Amazon API Gateway + custom authorizer

• Moving authentication (entity framework identity) to Amazon Cognito

• Better integration with API Gateway

• Converting MS SQL server tables to Amazon DynamoDB (next release)



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Software moves faster today



ReleaseTestBuild

ReleaseTestBuild

DevOps – Teaming, architecture, CI/CD practices

Two-pizza team Delivery pipeline Service

ReleaseTestBuild

ReleaseTestBuild

ReleaseTestBuild

ReleaseTestBuild



CI/CD tools Monitoring and tracing

SDKs

IDE

IDE and DevOps toolkits CLI and scripting tools

Infrastructure as code Web apps

MobileLanguages

Secure development environments in AWS



DevSecOps architecture pillars 

• Microservices architecture – Integrated via API

• Infrastructure as code – Integrated via API

• Security policy as code – Integrated via API

• Automated configuration management and control

• Continuous integration and continuous delivery

• Continuous lightweight/“rightweight” governance

• Intelligent automated logging and monitoring

• Automated event management and incident response



Possible phases of modernization

• Phase 1: Migrate existing workloads to the cloud

• Phase 2: Convert as many standard .NET applications to .NET Core using 

the .NET Portability Analyzer

• Phase 3: Containerize .NET applications and deploy to Windows or Linux 

containers; use ECS and/or EKS or AWS Fargate (.NET Core only 

currently)

• Phase 4: Offload pieces of your .NET applications to become serverless 

microservices (Strangler pattern)

• Phase 5: Take advantage of ML/AI technologies AWS has to offer, such 

as Amazon SageMaker, Amazon Transcribe, Amazon Translate, Amazon 

Polly, Amazon Lex, etc.

Not all phases need to be done in this exact order. Rearranging of 

order can and does occur. This list is not all encompassing either.



Strangler pattern for legacy app modernization

https://martinfowler.com/bliki/StranglerFigApplication.html

https://martinfowler.com/bliki/StranglerFigApplication.html


Resources

• Deploying an ASP.NET Core Application to AWS Fargate

• Deploy an ASP.NET Core Application to Windows Containers Using 

Amazon ECS

• Managing ASP.NET Session State with Amazon DynamoDB

• Identity Middleware for ASP.NET Core Web Applications Running Behind 

an Application Load Balancer (ALB) Configured With the OpenID Connect 

Authentication Feature

• Many more code samples/step-by-step guides/tools/webinars at AWS 

Developer Center for .NET : 

https://aws.amazon.com/developer/language/net/

https://github.com/aws-samples/aws-net-guides/tree/master/Containers/Deploy-ASP.NET-Core-To-Fargate
https://github.com/aws-samples/aws-net-guides/tree/master/Containers/Deploy-.NET-Core-app-in-Windows-Containers-to-ECS
https://docs.aws.amazon.com/sdk-for-net/v2/developer-guide/dynamodb-session-net-sdk.html
https://github.com/awslabs/aws-alb-identity-aspnetcore
https://aws.amazon.com/developer/language/net/


Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

artrodri@amazon.com

Artur Rodrigues

amitjh@amazon.com

Amit Jha



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.


