

AIM412-R1

Deep learning applicati
PyTorch, featuring Fres

Kris Skrinak Michael Suo
PSA, Global Machine Software Engineer
Learning Segment Lead PyTorch

Amazon Web Services

AWS
re. | nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved

®
.

SRR Leee

L)

P
Madaaaasa i Ll "o PRI rEt e PIPEPEIEIILLECRILBPIPRRINN SR RI I SRR IS .

The broadest and most complete set of machine learning capabilities

Al SERVICES

AMAZON
SAGEMAKER

ML FRAMEWORKS
& INFRASTRUCTURE

NEW! NEW! NEW! NEW!
Vision SPEECH TEXT SEARCH CHATBOTS PERSOMALIZATION FORECASTING FRAUD DEVELOPMENT CONTACT CENTERS
Amaz_op ' Amazon Amazon | Amazon Amazon Amazon ‘ Amazon ' Amazon ' Amazon ' Amazon l Amazon ' Amazon ' Contact
Rekognition Polly Transcribe Translate Comprehend Textract Kendra Lex Personalize Forecast Fraud Detector CodeGuru Lens
¢ Medicol + Medicol Amazon Connect
| wewi | SageMaker Studio IDE
Ground Truth ML NEW! NEW! NEW! NEW! NEW!
data labelling Marketplace Built-in SageMaker SageMaker Model SageMaker Model SageMaker Model SageMaker SageMaker
algorithms Notebooks Experiments training Debugger tuning Autopilot hosting Model Monitor Neo
NEW! NEW! NEW! ‘
- n \ ' ; Deep Learning GPUs and Elastic)
T TensorFlow flixnet O PyTorch @ocruon K Keras h AMis & Containers CPUs Inference Inferentia SEGA
oP000000008TeRIeNt IIs0aeieeeTasti iR IIIIITIIIIII000ETERIINNNIBIRILEROLLOILILILIILLLLIOINNN 02 e T T T T T e e T TP Y T eT]
' : = _— i —

B

—

The deep learning Amazon machine image (AM|

« With Amazon Elastic Inference

Deep Learning AMI (Ubuntu 16.04)

Deep Learning AMI (Ubuntu 16.04) Pricing Details

AWS Deep Learning AMI are built and optimized for
building, training, debugging, and serving deep
learning models in EC2 with popular frameworks
such as TensorFlow, MXNet, PyTorch, Chainer,
Keras, and more. Deep learning frameworks are

Hourly Fees

Instance Type Software EC2 Total

. . . . t2.small $0.00 $0.023 $0.023/hr
installed in Conda environments to provide a)

reliable and isolated environment for practitioners. t2-medium $0.00 $0.046 $0.046/hr
The AWS Deep ... t2.large $0.00 $0.093 $0.093/hr

More info t2.xlarge $0.00 $0.186 $0.186/hr

View Additional Details in AWS Marketplace t2.2xlarge $0.00 $0.371 $0.371/hr

Product Details t3.small $0.00 $0.021 $0.021/hr
t3.medium $0.00 $0.042 $0.042/hr
t3.large $0.00 $0.083 $0.083/hr
t3.xlarge $0.00 $0.166 $0.166/hr
t3.2xlarge $0.00 $0.333 $0.333/hr
mba.large $0.00 $0.086 $0.086/hr
mb5a.xlarge $0.00 $0.172 $0.172/hr
mb5a.2xlarge $0.00 $0.344 $0.344/hr
mb5a.4xlarge $0.00 $0.688 $0.688/hr
mb5a.12xlarge $0.00 $2.064 $2.064/hr
Highlights m5a.24xlarge $0.00 $4.128 $4.128/hr
m5d.large $0.00 $0.113 $0.113/hr

— il N AN LT e Ta Vel hn AnmsL

By Amazon Web Services
Customer Rating 9)
Latest Version 24.3

Base Operating System Linux/Unix, Ubuntu 16.04

Delivery Method 64-bit (x86) Amazon Machine Image (AMI)

License Agreement End User License Agreement
On Marketplace Since 11/14/17

AWS Services Required Amazon EC2, Amazon EBS

= Used Ubuntu 16.04 as base

Training with Py Torch estimators

import os
import subprocess

instance type = 'local’
if subprocess.call('nvidia-smi') == 0:

Set type to GPU if one is present
instance type = 'local gpu'

n

print("Instance type = + instance type)

from sagemaker.estimator import Estimator
hyperparameters = {'epochs': 1}
estimator = Estimator(role=role,
train_ instance_ count=1,
train_instance type=instance_ type,
image name='pytorch-extending-our-containers-cifarlO-example:latest’,
hyperparameters=hyperparameters)

estimator.fit('file:///tmp/pytorch-example/cifar-10-data')

predictor = estimator.deploy(l, instance type)

Deploying Py Torch at scale with Amazon SageMaker

from sagemaker.estimator import Estimator
hyperparameters = {'epochs': 1}
instance type = 'ml.mé4.xlarge’

estimator = Estimator(role=role,
train instance count=1l,
train instance type=instance type,
image name=ecr image,
hyperparameters=hyperparameters)

estimator.fit(data location)

predictor = estimator.deploy(l, instance_type)

get some test images
dataiter = iter(testloader)
images, labels = dataiter.next()

print images
imshow(torchvision.utils.make grid(images))

print('GroundTruth: ', '.join('%4s' % classes[labels[]j]] for j in range(4)))

predictor.accept = 'application/json'
predictor.content_type = 'application/json'

predictor.serializer = json_serializer
predictor.deserializer = json_deserializer

outputs = predictor.predict(images.numpy())

_r predicted = torch.max(torch.from numpy(np.array(outputs)), 1)

print('Predicted: ', '.join('%4s' % classes[predicted[j]]
for j in range(4)))

' o000 pytorch_iris_train_deploy.py — SageMakerLocal
@ pytorch_iris_train_deploy.py X

@ pytorch_iris_train_deploy.py > ...

41

42

43 estimator = PyTorch(entry_point="iris.py",

Ip 44 role=role,
45 framework version='0.4.0"',
&

46 train_instance_count=1,
47 * train_instance_type='ml.m4.m§' r
48 hyperparameters={
49 'epochs': n_epochs,
50 '"Lr': learning_rate
51 })
52
53
Run Cell | Run Above | Debug cell
54 # In[]:
55
56
57 estimator.fit({'training":
58
59
60 # ## Deploy
61

inputs})

Run Cell | Run Above | Debug cell
62 # In[1:
63
64

PyTorch in Amazon SageMaker Loca

65 predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge")

66
67

{:‘% Run Cell | Run Above | Debug cell
638 # In[]:

Python 3.7.4 64-bit ®1A 00 8

Spaces: 4 UTF-8

LF

Python

® 0

Py Torch Lightning on AWS

Multi-node Training

| atest on PyTorch

Michael Suo

Software Engineer
PyTorch

AWS
re. |nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved

What is PyTorch?

An open source deep learning platform

GPU-enabled Tensors with behaviour similar to NumPy

What is PyTorch?

Graphs are defined
dynamically, as they are
executed in Python

Fast tape-based autograd

What is PyTorch?

DYNAMIC HARDWARE
NEURAL ACCELERATED
NETWORKS O s INFERENCE

EAGER & ® *

i o DISTRIBUTED SIMPLICITY
Siégg' TRAINING OVER
COMPLEXITY

EXECUTION

NEW CORE FRAMEWORK FEATURES

NEW LIBRARIES

]
W

PYTORCH 1.3

@@ NEW FRAMEWORKS

O

PYTORCH 1.3

EXPERIMENTAL

End-to-end workflows for mobile in iOS
and Android:

. No separate runtime to export

Build-level optimization and selective compilation

Whole program optimization with link time optimization

AUTHOR A MODEL IN PYTORCH

MODEL OPTIMIZATION (OPTIONAL)

gmodel = quantization.convert(my_mobile_model)

torch.jit.script(gmodel).save(“my_mobile_model.pt")

ANDROID - MAVEN iOS - COCOAPODS

implementation

pod ‘LibTorch’
'org.pytorch:pytorch_

android:1.3.0°

O

PYTORCH 1.3

QUANTIZATION

model = ResNet50()

EXPERIMENTAL model.load_state_dict(torch.load("model.pt"))

Neural networks inference is expensive

loT and mobile devices have limited resources gmodel = quantization.prepare(

Quantizing models enables efficient inference at scale model, {"": quantization.default_qconfig})

gmodel.eval()

for batch, target in data_loader:
I model (batch)

LESS MEMORY SPEEDUPS IN

USAGE COMPUTE gmodel = quantization.convert(gmodel)

PYTORCH 1.3 # Tensor[N, C, H, W]

images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)

N A M E D T E N S O R S images.select(dim=1, index=0)

EXPERIMENTAL

Enables cleaner, better code with more expressivity — Today we name and access dimensions by comment
tensors are manipulated based on names

Code becomes self-documenting by adding names to tensor
dimensions

Prevent silent user errors through runtime checking of

NCHW = ['N’, ‘C’, ‘H’, ‘W’]

images = torch.randn(32, 3, 56, 56, names=NCHW)
images.sum('C")

images.select('C', 0)

names

But naming explicitly leads to more readable and maintainable
code

O

import torch
class MyModule(torch.nn.Module):
def __init__(self, N, M, state: List[Tensor]):

(MyModule, self).__init_ ()
T O R C H S C R | P T z:iifwezggtu;to:h.nn.P:::meter(torch.rand(N, M))

self.state = state
A static, high-performance subset def forward(self, input):
of Python. self.state.append(input)
if input.sum() > O:
. tput = 1f.weight. i t
1. Prototype your model with PyTorch output = self.weight.mv(input)

else:
2. Control flow is preserved output = self.weight + input

3. First-class support for lists, dictionaries, etc. return output

Compile the model code to a static representation
my_module = MyModule(3, 4, [torch.rand(3, 4)])
my_script_module = torch.jit.script(my_module)

Save the compiled code and model data
so it can be loaded elsewhere
my_script_module.save("my_script_module.pt")

O

PYTORCH JIT

An optimizing just-in-time compiler
for PyTorch programs.

1. Lightweight, thread-safe interpreter
2. Easy to write custom transformations
3. Not just for inference! Autodiff support

graph(%self : ClassType<MyModule>,

%input.1l : Tensor):
16 : int = prim::Constant[value=1]()
: None = prim::Constant()
: int = prim::Constant[value=0]()
prim::GetAttr[name="state"](%self)
aten::append(%2, %input.l)

o® o° o° o°
N 00 O

: Tensor[]

o\°
~

: Tensor[]

o\°
~

: Tensor = aten::sum(%input.l, %6)
: Tensor aten::gt(%7, %8)
10 : bool = aten::Bool(%9)
%output : Tensor = prim::If(%10)
blocko():
%11 : Tensor = prim::GetAttr[name="weight"](%self)

o\°
(o)

o\°

%output.l : Tensor = aten::mv(%11l, %input.l)
-> (%output.l)
blockl():
%14 : Tensor = prim::GetAttr[name="weight"](%self)
%output.2 : Tensor = aten::add(%14, %input.l, %16)
-> (%output.2)
return (%output)

NEW CORE FRAMEWORK FEATURES

NEW LIBRARIES

]
W

PYTORCH 1.3

@@ NEW FRAMEWORKS

O

PYTORCH 1.3

CRYPTEN

A platform for research in machine learning using
secure-computation techniques

KEY FEATURES:

. Tensors and CrypTensors coexist and can be mixed and
matched

. Uses standard eager execution — no compilers! Easy
debugging and learning

. Support for secure multi-party computation (MPC)
. Homomorphic encryption (FHE) (COMING)

. Trusted execution environments (COMING)

import crypten
import torch

crypten.init()

x = torch.tensor([1.0, 2.0, 3.0])

Xx_enc = crypten.cryptensor(x)
x_dec = x_enc.get_plain_text()

assert torch.all_close(x_dec, x)

y_enc = crypten.cryptensor([2.0, 3.0,

Xy_enc = x_enc + y_enc

H O OH =

=+ B~

xy_dec = xy_enc.get_plain_text()

assert torch.all_close(xy_dec,

X +y) #

z = torch.tensor([4.0, 5.0, 6.0])

XZ_enc = x_enc + z

xz_dec = xz_enc.get_plain_text()

assert torch.all_close(xz_dec,

X + z) #

sets up communication

encrypts tensor
decrypts tensor

this passes!

.01)

adds encrypted tensors

this passes!

adds FloatTensor to CrypTensor

this passes!

PYTORCH 1.3

Target Label Predicted Label Attribution Label Attribution Score Word Importance

zebra zebra (0.60) zebra 7.54 what is on the picture

Model interpretability library for PyTorch

Text contributions: 7.54
Image contributions: 11.19
Total contributions: 18.73

NEW CORE FRAMEWORK FEATURES

NEW LIBRARIES

]
W

PYTORCH 1.3

®:® NEW FRAMEWORKS

O

PYTORCH 1.3

DETECTRON?Z re

C o3
z b /

. Support for the latest models and new tasks S A 1)1
. Increased flexibility to aid computer vision research

. Improvements in maintainability and scalability to support
production use cases

Branch: master~ | fairseq / examples / speech_recognition / Create new file = Upload files Find file = History

“:-"l okhonko and facebook-github-bot Fix method has same name as property - Latest commit 481264 on Aug 20

PYTORCH 1.3

criterions Asr initial push (#810) 2 months ago
data Fix method has same name as property last month
datasets Asr initial push (#810) 2 months ago
models Small fixes 2 months ago
tasks Asr initial push (#810) 2 months ago
[E README.md Asr initial push (#810) 2 months ago
__init__.py Asr initial push (#810) 2 months ago

=) infer.py Asr initial push (#810) 2 months ago

README.md

Now supports end-to-end learning for Speech Recognition

examples/speech_recognition is implementing ASR task in Fairseq, along with needed features, datasets, models

h 't’ and loss functions to train and infer model described in Transformers with convolutional context for ASR
Speec recog n I |On (Abdelrahman Mohamed et al., 2019).

Additional dependencies

On top of main fairseq dependencies there are couple more additional requirements.

1. Please follow the instructions to install torchaudio. This is required to compute audio fbank features.

2. Sclite is used to measure WER. Sclite can be downloaded and installed from source from sctk package here.
Training and inference doesn't require Sclite dependency.

Preparing librispeech data

./examples/speech_recognition/datasets/prepare-librispeech.sh $DIR_TO_SAVE_RAW_DATA $DIR_FOR_PREPROCESSED_

Resources

PyTorch.org

> Youtube.com/pytorch

, Twitter.com/pytorch

f Facebook.com/pytorch

M Medium.com/pytorch

We build business software

that enables our customers to deliver
moments of wow

Our scale

150,000+
Global customers

3 Million+

Support tickets per day

000

Active support agents

575,

To consider

Diversity

Customers in insurance, finance, travel, logistics, etc.

Unigueness
Each customer has unique vocabulary, jargon, technical terms

Security

Need to keep customer information private and secure, no sharing

Meet Jonathan

System admin

Problem statement

Routing

Who is the best person to solve the customer's problem?

Categorization
What kind of issue is it?

Prioritization
How urgent is the issue?

The Goal

Reduce ticket assignment and resolution times
Improve triage and set context for agents

Ticket fields

FIRST RESPONSE DUE
by Mon 3 Jul 2018, 09:18pm

® RESOLUTION DUE Edit FREDDY PREDICTED FIELDS

by Mon 3 Jul 2018, 09:18pm
Priority : ® Urgent

PROPERTIES 8 Grouwp © L2 Support

Tags 3 Category : Troubleshooting

L2Bug X ForumApp X

CANCEL APPLY
Helpdesk Issues X +4

Status

Open

Priority

® Urgent

Group assigned to

What we needed

Build text classification models
Use ticket text and subject to predict fields

Quick, accurate, and small models

Chose Facebook's fastText & PyTorch: high accuracy, quick modeling times,
quantization, extensibility

Faster model build times
Initial pipeline took 24-30 hours to build 35K models on a Spark cluster

Amazon SageMaker + PyTorch

Time taken to build 30k models significantly
reduced from 24 hours to 60 minutes

Why Py Torch

Hassle-free transition
Transition from custom pipeline = PyTorch containers on Amazon SageMaker was seamless

Extensibility to deeper networks

Wanted to experiment with modern deep learning architectures
for embeddings & classifiers in PyTorch

Quantization, interpretability, and combining classifiers

Focus on smaller models, explaining predictions, and
building multi-head/multi-label classifiers

Data sources Data processing Training Inference Consumption

Amazon S3

Amazon SageMaler

. Endpoints interface API 0;

N

A 4

Predictive model f1ii

Scalable cluster a

Freshworks
suite

Endpoints serving models

- Data lake
—

Spoﬁlg Data processing, extraction, etc.

Spoﬁlg Predictive modeling fii —> APls —1b

'@' Scalable cluster . }

¢® Hadoop HDFS

\ 4

Learn ML with AWS Training and Certification

The same training that our own developers use, now available on demand

Role-based ML learning paths for developers, data scientists, data
\ﬁ’ platform engineers, and business decision makers

‘:__ D’ 70+ free digital ML courses from AWS experts let you learn from
| = === real-world challenges tackled at AWS

Validate expertise with the
AWS Certified Machine Learning - Specialty exam

adAWS training and

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. ~ >) certification

Thank yo

Tarkeshwar Thakur
tarkeshwar.thakur@freshworks.com

AWS
re. | nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

re: INven

