

AIM402-R

Deep Learning with Py

Kris Skrinak Chaitany
Sr. Al/ML Specialist PSA Al/ML Spe
Amazon Web Services Amazon Web

AWS
re. | nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

- State of the art in NLP using SageMaker
- SageMaker PyTorch Support

Lab [1] — Word Level Language Modeling Using PyTorch
« Train On Premise — Deploy in the Cloud

Lab [2] — Toxic Comments Classification using Hugging Face
Transformers and SageMaker

Bonus Lab - CAPTUM - PyTorch Deep Learning Models Interpretability

Related sessions

AIM402-R1 [REPEAT] Deep learning with PyTorch

AlIM412-R Deep learning applications using PyTorch, featuring Autodesk

AIM412-R1 Deep learning applications with PyTorch, featuring
Freshworks

AIM407-R Amazon SageMaker and PyTorch: Tips & tricks

AIM407-R1 - [REPEAT] Amazon SageMaker and PyTorch: Tips & tricks

State of the art in NLP

- Essential components of NLP
- Tokenize
Remove Stop Words
Lemmatize
Replace Rare Words
Embeddings

« Evolution of NLP from RNNs to Transformers
Seq2Seq
« Attention

« Transformer

Source:

A Deep Dive into NLP with PyTorch - PyData London 2019
https://www.youtube.com/watch?v=4jROIXH9Nvc

The Machine Learning

Business Problem

[ML problem framing }

Process

Re-training

Data Collection

Data Integratlon

Cleanlng

Data Augmentation

Data Visualization &
Analy5|s

[Data Preparation &
Model Training &
[I Parameter Tuning

Feature
Augmentation

—V[Feature Engineering]

v

Monitoring &
Debugging

— Predictions

y

[Model Evaluation]

I

[Model Deployment]

Are

No Business

V=S

Goals
met?

Al Services

THE AWS ML STACK

Broadest and deepest set of capabilities

VISION SPEECH LANGUAGE CHATBOTS FORECASTING RECOMMENDATIONS
T Y = Ay D = 7
& | @ | W B il ©
REKOGNITION REKOGNITION TEXTRACT POLLY TRANSCRIBE TRANSLATE COMPREHEND LEX FORECAST PERSONALIZE
IMAGE VIDEO & COMPREHEND
MEDICAL
ML Services
E%} Amazon SageMaker Ground Truth Notebooks Algorithms + Marketplace Reinforcement Learning Training Optimization Deployment Hosting
ML Frameworks + Infrastructure
FRAMEWORKS INTERFACES INFRASTRUCTURE
(™ GLUON]] ; , E%}A
T Tensorflow @ < L@ il il L@ ;\D
PYTbRCH K Keras EC2 P3 EC2 G4 EC2 C5 FPGAS DL CONTAINERS GREENGRASS INEFLEARSETI\II((:ZE INFERENTIA
& P3DN & AMIs

Pre-built
notebooks for
common problems

Collect and
prepare
training data

AMAZON SAGEMAKER

Bringing machine learning to all developers

Fully managed with
Built-in, high auto-scaling, health
performance One-click One-click checks, automatic handling

of node failures,

algorithms training Optimization deployment and security checks

[&ﬂ W3 %::é@ ’\f @

Choose and Set up and manage Train and Deploy Scale and manage
optimize your environments tune model model in the production
ML algorithm for training (trial and error) production environment

https://dashboard.eventengine.run

https://dashboard.eventengine.run/

dashboard.eventengine.runflogin

Who are you?

1. By using Event Engine for the relevant event, you agree to the AWS Event Terms and Conditions and the AWS Acceptable Use

Policy. You acknowledge and agree that are using an AWS-owned account that you can only access for the duration of the relevant
event. If you find residual resources or materials in the AWS-owned account, you will make us aware and cease use of the account. AWS
reserves the right to terminate the account and delete the contents at any time.

2. You will not: (a) process or run any operation on any data other than test data sets or lab-approved materials by AWS, and (b) copy,
import, export or otherwise create derivate works of materials provided by AWS, including but not limited to, data sets.

3. AWS is under no obligation to enable the transmission of your materials through [AWS Event Engine] and may, in its discretion, edit,
block, refuse to post, or remove your materials at any time.

4. Your use of the [event engine] will comply with these terms and all applicable laws, and your access to [AWS Event Engine] will
immediately and automatically terminate if you do not comply with any of these terms or conditions.

This is the 12 digit hash that was given to you or your team.

dashboard.eventengine.runflogin

Who are you?

1. By using Event Engine for the relevant event, you agree to the AWS Event Terms and Conditions and the AWS Acceptable Use

Policy. You acknowledge and agree that are using an AWS-owned account that you can only access for the duration of the relevant
event. If you find residual resources or materials in the AWS-owned account, you will make us aware and cease use of the account. AWS
reserves the right to terminate the account and delete the contents at any time.

2. You will not: (a) process or run any operation on any data other than test data sets or lab-approved materials by AWS, and (b) copy,
import, export or otherwise create derivate works of materials provided by AWS, including but not limited to, data sets.

3. AWS is under no obligation to enable the transmission of your materials through [AWS Event Engine] and may, in its discretion, edit,
block, refuse to post, or remove your materials at any time.

4. Your use of the [event engine] will comply with these terms and all applicable laws, and your access to [AWS Event Engine] will
immediately and automatically terminate if you do not comply with any of these terms or conditions.

This is the 12 digit hash that was given to you or your team.

Proceed

o ® < dashboard.eventengine.run

Dashboard

Team Dashboard

. Event

‘ Set Team Name H, & AWS Console H # SSHKey

Event: EE Workshop Demo

Event ID:
Team ID:

o ® < dashboard.eventengine.run

Dashboard

Team Dashboard

. Event

‘ Set Team Name H & AWS Console ” # SSHKey

Event: EE Workshop Demo

Event ID:
Team ID:

[] ® (< El] dashboard.eventengine.run ¢ il)]

AWS Console Login

Remember to only use " " as your region, unless otherwise directed by the event operator.

Login Link

= Open AWS Console N Copy Login Link

Credentials / CLI Snippets

Mac/ Linux Windows

Macor Linux |&

export AWS_DEFAULT_REGION=p= ==

export AWS_ACCESS_KEY_ID=&" &= ol ll™s &
export AWS_SECRET_ACCESS_KEY=rms swm e om -
export AWS_SESSION_TOKEN=" =

How do | use the AWS CLI?

Checkout the AWS CLI documentation here: https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

o ® < dashboard.eventengine.run

Dashboard

Team Dashboard

. Event

‘ Set Team Name H & AWS Console ‘ # SSHKey

Event: EE Workshop Demo

Event ID:
Team ID:

SageMaker PyTorch Support

Jup yt er pytorch_rnn Last Checkpoint: a few seconds ago (unsaved changes) P

File Edit View Insert Cel Kernel Widgets Help usted conda_pytorch_p27 O

'y 4+ % MABun B C W Markdown = @ nbdiff

-stimator

from sagemaker.pytorch import PyTorch

estimator = PyTorch(entry point="train.py',
role=role,
framework wversion='1.1.0",
train instance count=l,
train instance type='ml.pZ.xlarge’,

¥ available hyperparameters: emsize, nhid, nlayers, lr, cl
= bptt, dropout, tied, seed, log interval
hyperparameters={

'epochs': &,

'tied': True

ip, epochs, batch size,

})

Training Job

sagemaker-pytorch-2019-10-18-19-41-42-188

Job settings

Job name Status Training time (seconds) IAM role ARN
sagemaker-pytorch-2019-10-18-19-41-42-188 @ 2 arn:aws:iam:111652037296:role/service-

- Downloading role/EMRWorkshopStack-AmazonSageMaker-ExecutionRole
ARN View history Billable time (seconds) &
am:aws:sagemaker:us-west-2:111652037296:training- -
Job/sagemaker-pytorch-2019-10-18-19-41-42-188 Creation time
Oct 18, 2019 19:41 UTC Managed spot training savings

Last modified time
Oct 18, 2019 19:44 UTC Tuning job SOUF(QJ’DBT‘EI’II

Algorithm

Algorithm ARN

Training image
52071365463 8.dkr.ecr.us-west-

2.amazonaws.com/sagemaker-pytorch:1.1.0-gpu-py3

Input mode
File

Instance type

ml.p2.xlarge

Instance count
1

Additional volume size (GB)
30

Maximum runtime (s}
86400

Maximum wait time for managed spot training(s)

Managed spot training
Disabled

Volume encryption key

perparameters

Output data configuration

S3 output path CQutput encryption key
s3://sagemaker-us-west-2-111652037296/ -

Hyperparameters

Key

epochs 6

sagemaker_container_log_level 20

sagemaker_enable_cloudwatch_metrics false

sagemaker_job_name "sagemaker-pytorch-2019-10-18-19-41-42-188"
sagemaker_program "train.py”

sagemaker_region "us-west-2"

sagemaker_submit_directory "s3://sagemaker-us-west-2-111652037296/sagemaker-pytorch-2019-10-18-19-41-42-188/source/sourcedir.tar.gz"

tied true

Training Script

. Jupyter train.pyv anhour ago

Based on github.com/pytorch/examples/blob/master/word language model
import argparse

import math

import os

from shutil import copy

import time

import torch

import torch.nn as nn

import data
from rnn import RNNModel

parser = argparse.ArgqumentParser(description='PyTorch W 1 2 RNN/LSTM Language Model')

Hyperparameters sent by the client are passed as command-line arguments to the script.
parser.add_argument('-- ' int, default=200,
help : of rd embeddin
parser.add argument('--nhid’', t int, default=200,
hidden units per lay
parser.add_argument('--n

parser.add_argument('--1lr
help:
parser.add_argument('--
lipping'})
parser.add_argument('--epochs’', type=int, default=40,
help="'upper epoch limit')
parser.add_argument('--batch size', type=int, default=20, metavar='N',
help='batch size')
parser.add argument(’ ', type=int, default=35,
h equence length')
parser.add_argument(' ropout', typ loat, default=0.2,
help='dropout applied to la = no dropout)')
parser.add_argument('--tied', type=bool, defaul alse,
help='tie the rd embedding and softmax weights')
parser.add_argument('--seed', t nt, default=1111,
d')
parser.add_argument('--log-interval', type=int, default=200, metavar='N",
help='report interval')

Data and model checkpoints/otput directories from the container environment

parser.add argument(’ -dir', type=str, default=os.environ['SM MODEL DIR']})
parser.add_argument(' Pl ata-dir', type=str, default=os.environ['SM OUTPUT DATA DIR'])
parser.add_argument(' ata-dir', type=str, default=os.environ['SM_ CHANNEL TRAINING'])

args = parser.parse_args()

Training Script

def train():

Turn on training mode which enables dropout.

model.train()

total less = 0.

start time time.time()

hidden = model.init hidden(args.batch size)

for batch, i in enumerate(range(0, train data.size(0) - 1, args.bptt)):
data, targets = get batch(train data, i)
Starting each batch, we detach the hidden state from how it was previously produced.
If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage hidden(hidden}
model.zero grad()
output, hidden = model{data, hidden)
loss = eriterion(output.view(-1, ntokens), targets)
loss.backward()

"clip grad norm” helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip grad norm(model.parameters|(), args.clip)
for p in model.parameters():

p.data.add (-lr, p.grad.data)

total loss += loss.item()

if batch % args.log interval == 0 and batch > 0:
cur loss = total loss / args.log interval
elapsed = time.time() - start time
print('| epoch {:3d} | {:5d}/{:5d} batches lr {:02.2f} ms/batch
'loss {:5.2f} | ppl {:8.2f}'.format|

epoch, batch, len(train data) // args.bptt, 1lr,

elapsed * 1000 / args.log interval, cur loss, math.exp(cur loss)})
total loss = 0
start time = time.time()

Model

B A A A A R A A R A A R A A R A A A A

Build the model
S S A g o S S o S S i A S g S o o g o ol O o Sl o o

print({'Build the model')

ntokens = len(corpus.dictionary)

rnn_type = 'LETM'

model = RNNModel(rnn type, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied).to(device)

criterion = nn.CrossEntropyLoss()

Save the data into model dir to be used with the model later
for file name in os.listdir(args.data dir):
full file name = os.path.join(args.data dir, file name)
if os.path.isfile(full file name):
copy(full file name, args.model dir)

Save arguments used to create model for restoring the model later
with open(model info path, 'wb') as f:
model info = {
'rnn type': rnn type,
'ntoken’': ntokens,
'ninp': args.emsize,
'nhid': args.nhid,
'nlayers': args.nlayers,
'dropout': args.dropout,
'tie weights': args.tied
}

torch.save(model info, f)

Save the model

print('Starting training.')
for epoch in range(l, args.epochs+l):
epoch start time = time.time()
train()
val loss = evaluate(val data)
print('-" * B9)
print('| end of epoch {:3d} | time: {:5.2f}s valid loss {:5.2f} | °
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch start time),
val loss, math.exp(val loss)))

print('-" * B9)
Save the model if the validation loss is the best we've seen so far.
if not best state or val loss < best state['wval loss']:
best state = {
'epoch': epoch,

‘1r': 1r,
'val loss': wval loss,
'val ppl': math.exp(val loss),
}
print('Saving the best model: {}'.format(best state))
with open(checkpoint path, 'wb') as f:
torch.save(model.state dict(), f)
with open(checkpoint state path, 'w') as f:
f.write('epoch {:3d} | lr: {:5.2f} | valid loss {:5.2f} |
'‘valid ppl {:8.2f}'.format(epoch, lr, val loss, math.exp(val loss)))

else:
Anneal the learning rate if no improvement has been seen in the validation dataset.
1r /= 4.0

Model Deployment - PyTorchPredictor

model_fn() — load model
input_fn() — convert input payload into a PyTorch Tensor

predict_fn() — predict_fn() generates predictions from the model
based on the return value of input_fn()

output_fn() — serializes the output from predict_fn() so that it can
be returned by the SageMaker Endpoint

osting the model

In []: from sagemaker.pytorch import PyTorchModel

training job name = estimator.latest training job.name
desc = sagemaker sesslion.sagemaker client.describe training job(TrainingJobMName=training job name)
trained model location = desc['ModelArtifacts']['S3ModelArtifacts']
model = PyTorchModel (model data=trained model location,
role=role,
framework version='1.0.0",
entry point='generate.py’,
source dir='pytorch-rnn-scripts’,
git config=git confiqg,
predictor cls=J50NPredictor)

predictor = model.deploy(initial instance count=1, instance type='ml.md.xlarge')

Interpreting Results

Train on premise — Deploy in the cloud

Start the workflow from your laptop
Use your favorite IDE
Deploy to the cloud using SageMaker

28 (<

Deploy models Scale and manage
in production the production

environment

Toxic Comment Classification Challenge

- Comments from Wikipedia — human labeled

- 6 Levels — 6 Labels — Multiclass Classification

- Use Fastbert as a wrapper to use HuggingFace's Models

- Debug the lab notebook and run inference on your own text

Source:
https://www.kagqgle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://qithub.com/kaushaltrivedi/fast-bert/tree/master/sample notebooks

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://github.com/kaushaltrivedi/fast-bert/tree/master/sample_notebooks

Interpreting Results

Thank you!

Kris Skrinak Chaitanya Haz
skrinak@amazon.com chazarey@amaz

AWS
re. | nve nt © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

re: INven

