

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Uber builds efficient & scalable
autonomous vehicle simulations on AWS Batch

C M P 3 2 8 - R

Jo Adegbola

Sr. Manager, Software
Development

AWS

Matt Ranney

Senior Staff Engineer

Uber

Steve Kendrex

Sr. Product Manager

AWS

Categories Capabilities Options

Broadest and deepest platform choice

General purpose

Burstable

Compute intensive

Memory intensive

Storage (high I/O)

Dense storage

GPU compute

Graphics intensive

Amazon Elastic Block Store
(Amazon EBS)

Amazon Elastic Inference

270+
for virtually every

workload and
business need

Choice of processor
(AWS, Intel, AMD)

Fast processors
(up to 4.0 GHz)

High memory footprint
(up to 12 TiB)

Instance storage
(HDD and NVMe)

Accelerated computing
(GPUs and FPGA)

Networking
(up to 100 Gbps)

Bare Metal

Size
(Nano to 32xlarge)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Introducing AWS Batch

Fully

managed

No software to install or

servers to manage. AWS

Batch provisions,

manages, and scales your

infrastructure.

Integrated with

AWS services

Natively integrated with the

AWS platform, AWS Batch

jobs can easily and securely

interact with services such as

Amazon Simple Storage

Service (Amazon S3), Amazon

DynamoDB, and Amazon

Rekognition

Optimized

resource

provisioning

AWS Batch automatically

provisions compute

resources tailored to the

needs of your jobs using

Amazon Elastic Cloud

Compute (Amazon EC2) and

Amazon EC2 Spot

Who uses AWS Batch

Gene sequencing

Autonomous vehicle

ML and simulation

Weather/systems modeling

Financial market/

risk analysis

Oil and gas

exploration

And much more

Typical AWS Batch job architecture
Input is put

to S3 bucket
Output is put

to S3 bucket

Job queue with

runnable jobs

Job definition

Application

image + config

IAM role

AWS Batch

compute environment

Scheduler

New: Allocation strategies for AWS Batch

Spot Capacity Optimized—Allow AWS to predict the deepest Spot
capacity pools, and launch instances accordingly. Available in Spot
only.

Best Fit—Same behavior as previously: CEs that are created through
SLI/SDK will default to this (to preserve backwards compatibility).
Spot or On-demand CE’s supported. Not recommended for most use
cases.

Best Fit Progressive—Same as Best Fit, but when we reach a capacity
error (ICE, Reclaim, EC2 Limit), AWS Batch will progressively sort
through the list and pick the next best fit instance type.
Recommended for OD CEs or in Spot CEs with a specific use case.

Make capacity/throughput/cost tradeoffs

CE1

(on-demand)

CE2

(Spot)

Allocation strategy:

Best fit progressive

Allocation strategy: Spot

capacity optimized

Max vCPU:

100

Instance:

optimal

Max vCPU:

2,000

Instance:

Optimal

JQ1
SubmitJob

How does this fit together
for ML and simulations

Workflows, pipelines, and job dependencies

aws batch submit-job –-depends-on 606b3ad1-aa31-48d8-92ec-f154bfc8215f

Jobs can express a dependency on the successful
completion of other jobs or specific elements of an
array job

Use your preferred workflow engine and language
to submit jobs. Flow-based systems simply submit
jobs serially, while DAG-based systems submit
many jobs at once, identifying inter-job
dependencies.

Model example
C is dependent on A,

C N_TO_N dependency on B, same for D an C,

E and F depend on D

Job-C

C:0

C:1

C:99

Job-D

D:0

D:1

D:99

C:1 D:1

C:1 D:1

Job-A

Job-B

B:0

B:1

B:99

B:1

B:1

Job-E

Job-F

Multi-node parallel jobs on AWS Batch

Instance 1

Container 1

My job

Instance 2

Container 2

My job

Instance 3

Container 3

My job

Instance 4

Container 4

My job

A Multi-node parallel job enables
AWS Batch to run single jobs
which span multiple
Amazon EC2 instances

Think: Distributed deep learning,
HPC

Integrated with the Elastic Fabric
Adapter (EFA) for low latency
between nodes

All-or-nothing scaling

GPU scheduling

- We accept jobs based on the number of GPUs they require and scale up

P- or G-family instances accordingly

- We pin the GPU to the container to prevent oversubscription

- Will adopt new accelerators/GPUs as they are released

- Support for NVLink

Deep neural network training

AWS Batch is a natural fit for workflow managers

AWS Batch’s sophisticated

dependency capabilities

and managed retries (yes,

even on Spot termination)

makes it an easy choice to

build workflow managers

Better to eat the elephant

one piece at a time than all

at once, after all

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Uber ATG use case

Side- and rear-facing cameras work in
collaboration to construct a continuous view

of the vehicle’s surroundings

Modified base Vehicle Platform with Uber-
specific mounting provisions, electrical
harness, cooling interface, interior trim, and
software control API

Gateway Module serves as a gateway to the base
Vehicle Platform from the Uber Self Driving
System, translating messages and commanding
the vehicle’s actuators (brakes, throttle, steering)

Roof mounted antenna provide
GPS positioning and wireless

data capabilities

Top-mounted lidar provides a 360°
three-dimensional scan of the environment

Forward-facing camera array focusing both near and far
field, watching for braking vehicles, crossing
pedestrians, traffic lights, and signage

360°
radar coverage detects
vehicles and other
obstacles

Custom designed compute and storage allow for
real-time processing of data while a fully
integrated cooling solution keeps components
running optimally

Automatic Emergency Braking system operates
independently as a safeguard for certain
situations requiring activation of the vehicle
braking system

Self-driving vehicle basics

Camera

LiDAR

Radar

Ultrasonic

GPS

IMU

Wheel encoder

Perception

Prediction

Motion planning

Control

Maps

Localization

Routing

Steering

Braking

Propulsion

Sensors Software Controls

Compute

Onboard data

Onboard OS Code binaries Trained models HD maps

Read only

Sensor data Diagnostics Vehicle telemetry

Writable

• Unit tests

• Sanitizers: ASan, MSan, TSan, UBSan

• Integration tests

• Feedback cycles require end-to-end testing

Testing

Self-driving vehicle basics

Camera

LiDAR

Radar

Ultrasonic

GPS

IMU

Wheel encoder

Perception

Prediction

Motion planning

Control

Maps

Localization

Routing

Steering

Braking

Propulsion

Sensors Software Controls

Compute

Scenario-based
testing

• Time intensive

• Space intensive

• Want to test each diff independently

Track throughput

Simulation

Sensor data Vehicle hardware

Software under test

Log / results

Hardware In the Loop (HIL)

Sensor data Commodity hardware

Software under test

Log / results

Software In the Loop (SIL)

Vehicle model

Vehicle pose

Logged sensors

Log-based simulation

Perception Prediction
Motion

planning
Controls

Vehicle model

Vehicle pose

Sim engine

Virtual simulation

Partial
perception

Prediction
Motion

planning
Controls

Variations

Variations

2019-10-05

• This is an ideal workload for a public cloud

• Irregular demand

• Each test needs thousands virtual vehicles when

running and zero when done

• Some experiments utilize 100K tests

• Some require 1M

Simulation in AWS

Deployments

Engineer 1

Engineer 2

Engineer 3

Dev

stage-yyyy-mm-dd

stage-yyyy-mm-dd

Stage

prod-yyyy-mm-dd

prod-yyyy-mm-dd

Prod

Deployments

prod-yyyy-mm-dd

AWS Fargate

Amazon Aurora

Amazon Aurora

Amazon S3

AWS Lambda

Deployments atg-simulation.example

atg-simulation-stage.example

atg-simulation-dev.example/~eng1

Corporate gateway

Engineer 1

Engineer 2

Engineer 3

stage-yyyy-mm-dd

stage-yyyy-mm-dd

ALB ALB

prod-yyyy-mm-dd

prod-yyyy-mm-dd

ALB

ATG components

Web UI API Database Tracker Instance runner Sim runner Sim engine

AWS Fargate AWS Fargate Amazon Aurora AWS Fargate

ATG Components

Web UI API Database Tracker

Instance runner

Sim runner

Sim engine

AWS Fargate AWS Fargate Amazon Aurora AWS Fargate

AWS Batch

System under test

Docker container

Amazon Kinesis

Compute environments

Simulation job

Log sim CE

Virtual sim CE

Spot

Spot

GPU sim CEExperiment Spot / on demand

• Containers are large

Why not use AWS Batch directly

Large containers

Onboard OS Code binaries Trained models HD maps

Onboard

Code binaries

Models

Maps

Simulation container

OS dependencies

tmpfs

Write amplification

Container registry Pull layer Write somewhere

Extract layer Write somewhere

• Containers are large

• Job size limits

Why not use AWS Batch directly?

ATG Components

Sim manager API Tracker

AWS Batch job

AWS Batch job

AWS Batch job

• Containers are large

• Job size limits

• Smaller task lengths

Why not use AWS Batch directly

ATG components

Sim manager API Tracker Instance runner

Sim runner

System under testSim engine

Docker container

request work

AWS Batch job

AWS Batch job

AWS Batch job

• Containers are large

• Job size limits

• Smaller task lengths

• Observability

Why not use AWS Batch directly

Observability

Tracker

Instance runner
Amazon CloudWatch

Logs

Amazon Kinesis

Logs

Events

Amazon S3
Artifacts

DB

Find a Couple of Examples of the UI

57

• Structured logging with JSON

• Works well with CloudWatch Logs

• Easily integrates with other log aggregators and

JSON tools

Observability

Observability

Original log line:

[1135641617.000000] (route_map_interface_cache.cc:900) Route map interface cache: 0 / 0 nodes loaded, 0 /

629145600 bytes used (0 B / 600.000 MB)

Structured log line:

{

"level": "info",

"ts": "2006-01-02T15:04:05.132Z",

"msg": "route map interface cache stats",

"m:nodes_loaded": 0,

"m:nodes_max": 0,

"m:used_bytes": 0,

"m:max_bytes”: 629145600,

}

Observability
{

"level": "info",

"ts": "2019-10-10T19:14:43.412Z",

"caller": "awsutils/s3_downloader.go:70",

"msg": "downloaded from s3",

"deployable": "instance-runner",

"deployment": "prod-2019-10-08",

"environment": "prod",

"evaluation_id": "f1a5e24cf-686c0-46db-a5ee-f5f896621234e",

"compute_environment": "vsim-prod-spot-2019-09-20",

"aws.private_ip": "10.104.20.68",

"aws.region": "us-east-1",

"aws.availability_zone": "us-east-1a",

"aws.version": "2017-09-30",

"aws.instance_id": "i-0a58501f1ad6e1aeb6",

"aws.image_id": "ami-016b0f37bed512b2e2",

"aws.instance_type": "c5.18xlarge",

"batch_job_attempt": "1",

"batch_job_index": "34",

"batch_job_id": "709596b2-2fbc-43d6-bb18-b40a8bb72910:34",

"bucket": "avmaps-mini-maps",

"key": "14293243b6458ca2c5d6482bbe695b",

"m:s3_downloaded_bytes": 42728717568

}

• Large containers and write amplification

• Ephemeral storage on ephemeral compute

• Running out of memory

• AWS Batch is not very friendly for end users

• AWS Batch is getting faster all the time, but we still

wish it was faster

Challenges

• Handles our scale better than anything else we’ve

tried

• Works well for experiments

We still use AWS Batch

• Work with account team to validate assumptions

• Keep Docker sizes small

• Add a pre-OOM killer

• Sometimes tmpfs is the best choice

• Log everything as JSON

Recommendations

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Batch roadmap

Roadmap

• Significant improvements to the AWS Batch console

• Full integration with container insights for job-level metrics

• Speed and scale (faster scaling, higher limits)

• Custom logging configuration

• New compute strategies and types

• Better placement logic and additional scheduling methods:

Increase utilization, lower cost, increase scheduling fairness

And more

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

