aws re: Invent

AIM326-R

Implementing ML workflows with Kubernetes and Amazon SageMaker

David Ping

Principal ML Solutions Architect Amazon Web Services

Aditya Bindal

Senior Product Manager Amazon Web Services

Suhas Guruprasad

ML Lead Zalando

Agenda

- Machine learning is a hard problem
- Fully managed machine learning with Amazon SageMaker
- Kubernetes architecture
- Build ML workflows with Amazon SageMaker and Kubernetes
- Machine learning at Zalando
- Demo

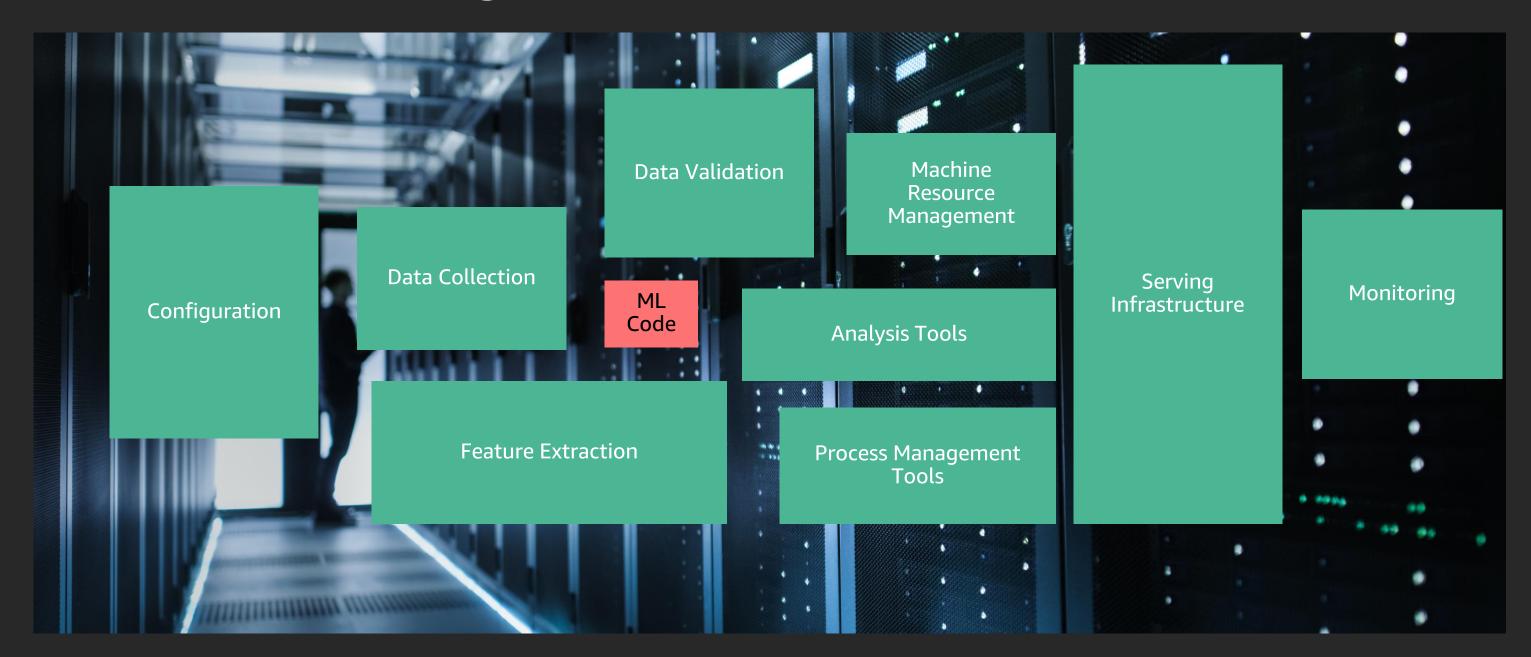
Data scientist

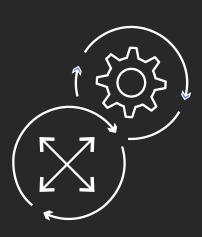
K8s DevOps engineer

- Focuses on data science, business outcome and speed to market
- Wants minimum dependency on the DevOps team for experimentation and model development
- No or limited K8s and infrastructure knowledge

- Wants to leverage existing K8s investment and best practices
- Wants to manage using familiar K8s construct and syntax
- Limited ML knowledge & engineering experience with ML workloads

Machine learning is hard





Do-it-yourself

Opportunity for both?

Managed service

Fully managed machine learning with Amazon SageMaker

Amazon SageMaker is a fully managed service that covers the entire machine learning workflow

instances

Jupyter notebook High-performance algorithms

Large-scale training

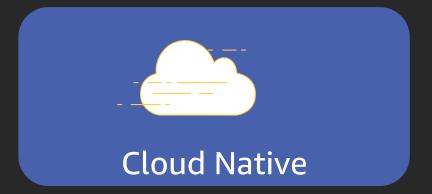
Optimization

One-click deployment

Fully managed with auto-scaling

Built on modern application architecture





- Built-in algorithms for training and hosting
- Managed ML containers for training and hosting
- Bring-your-own containers for training and hosting

- No server to manage
- API driven
- Pay by usage
- Built-in monitoring and logging

- Multi-AZ deployment
- Scale with powerful compute resources
- IAM, VPC, Encryption
- Resource on-demand or SPOT, Amazon Elastic Inference, Multi-Model Endpoint

Minimized dependency on DevOps engineering

instances

Jupyter notebook High-performance algorithms

Large-scale training

Optimization

One-click deployment

Fully managed with auto-scaling

Run Amazon SageMaker in a pipeline

Workflow orchestration

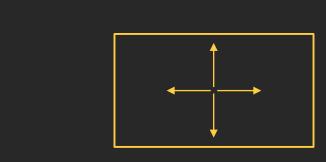
Data Pipeline

ML Pipeline

Kubernetes architecture

What is Kubernetes (aka K8s)?

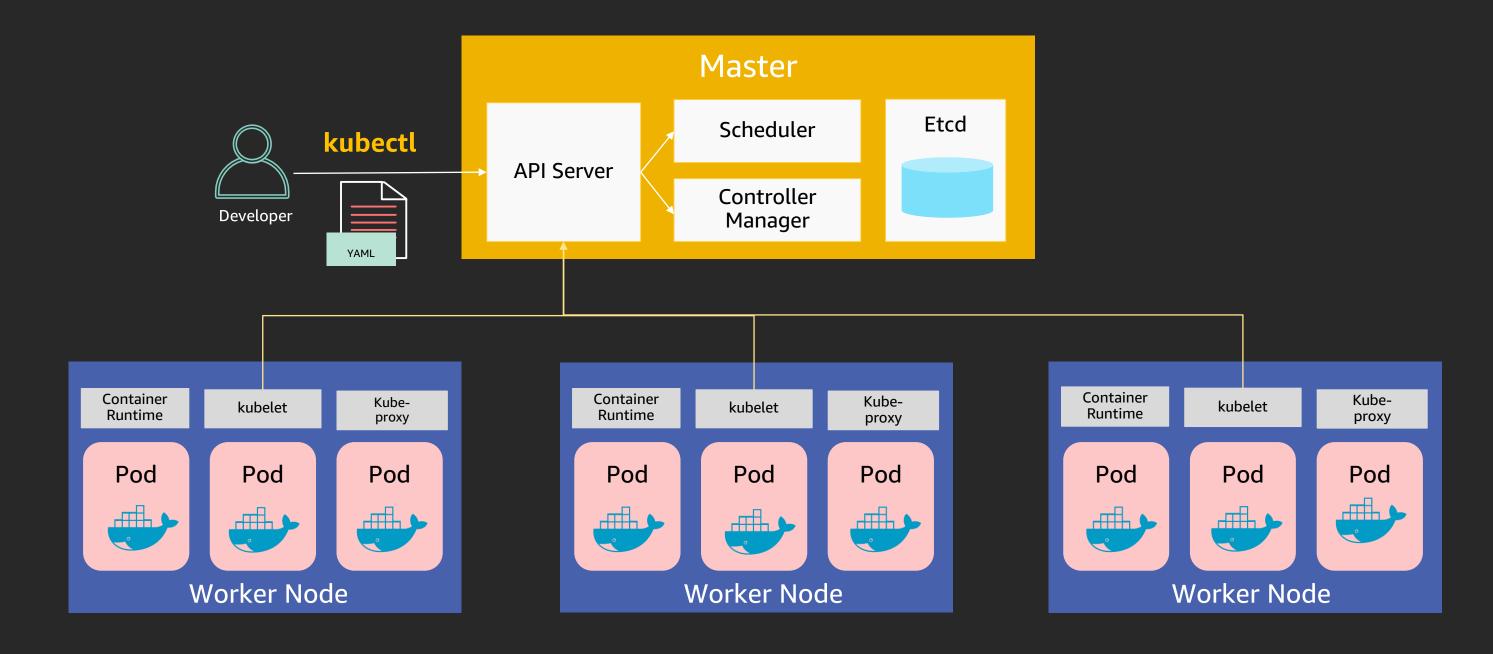
Open-source container management platform



Helps you run containers at scale

Gives you primitives for building modern applications

Kubernetes architecture



Building ML workflows with Kubernetes and Amazon SageMaker

Using Kubernetes for ML is hard to manage and scale

Build and manage services within Kubernetes cluster for ML

+

Make disparate open-source libraries and frameworks work together in a secure and scalable way

+

Requires time and expertise from infrastructure, data science, and development teams

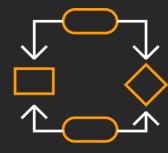
Ε

Need an easier way to use Kubernetes for ML

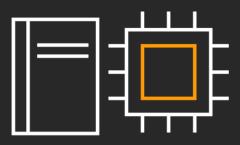
Introducing Amazon SageMaker Operators for Kubernetes Kubernetes customers can now train, tune, and deploy models in Amazon SageMaker

Train, tune, and deploy models in Amazon
SageMaker

Orchestrate ML workloads from your Kubernetes environments

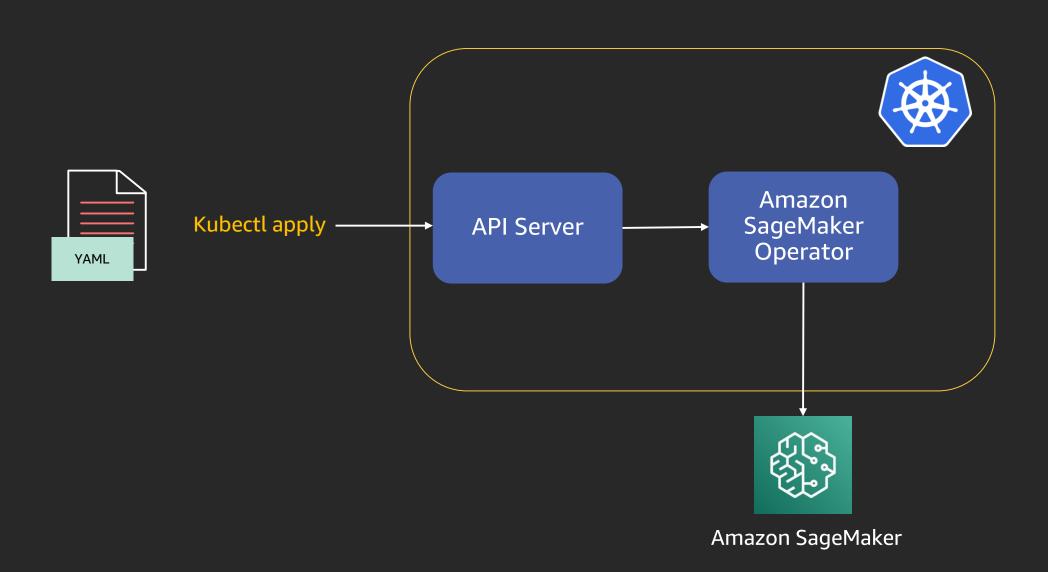


Create pipelines and workflows in Kubernetes



Fully managed infrastructure in Amazon SageMaker

Under the hood – Amazon SageMaker and Kubernetes



Key Features

- Amazon SageMaker
 Operators for training, tuning, inference
- Natively interact with Amazon SageMaker jobs using K8s tools (e.g., get pods, describe)
- Stream and view logs from Amazon SageMaker in K8s
- Helm Charts to assist with setup and spec creation

Why together?

Orchestration

Repeatable Pipelines

Automation

CI / CD

ML Operations & troubleshooting

Optimization, monitoring, logging

Model hosting

Model training

Security & compliance

Service provisioning

Infrastructure & configuration

Machine learning at Zalando

Zalando.

The starting point for fashion.

ZALANDO AT A GLANCE

5.4 billion EUR

revenue 2018

~ 14,000 employees in Europe

> 80%
of visits via
mobile
devices

> 300 million

> 29

million active

customers

visits per month

> 450,000

product choices

2,000 brands

17 countries

"A sustainable fashion platform with a net positive impact for people and planet"

We leverage **Machine Learning** across the platform to deliver a better customer experience.

Get the Look

Perfectly combined by fashion experts. Get fresh outfit ideas for the new season and every occasion.

All Styles

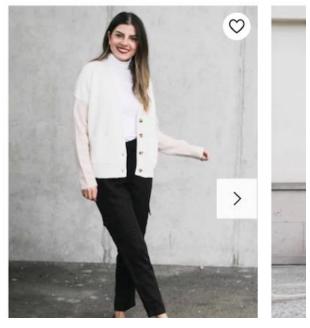
Classic

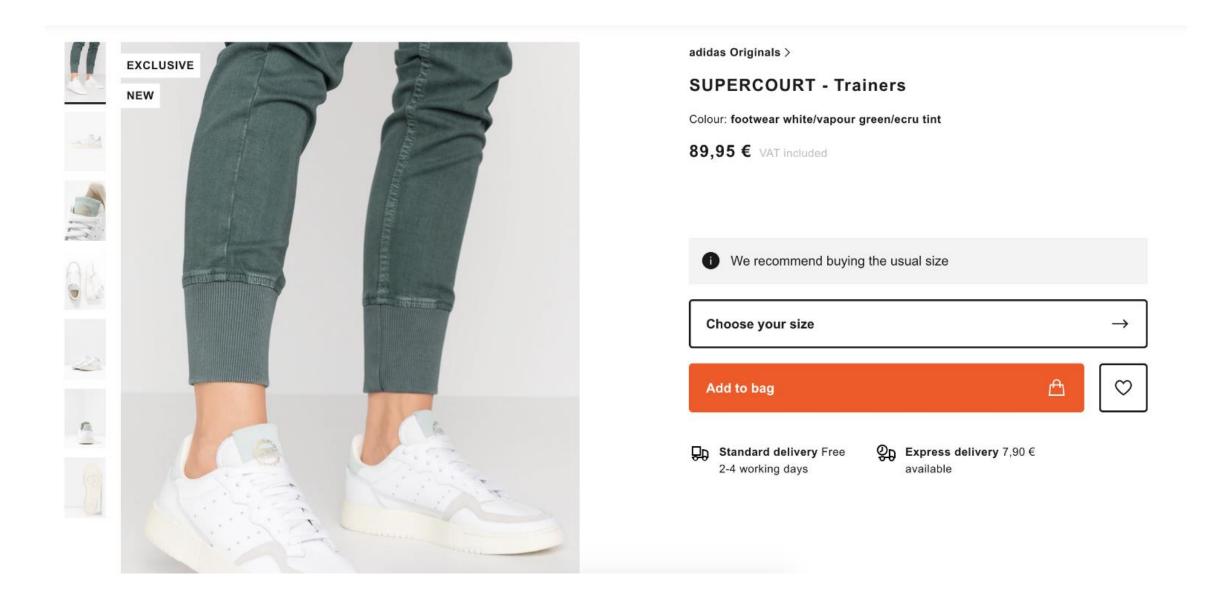
Casual

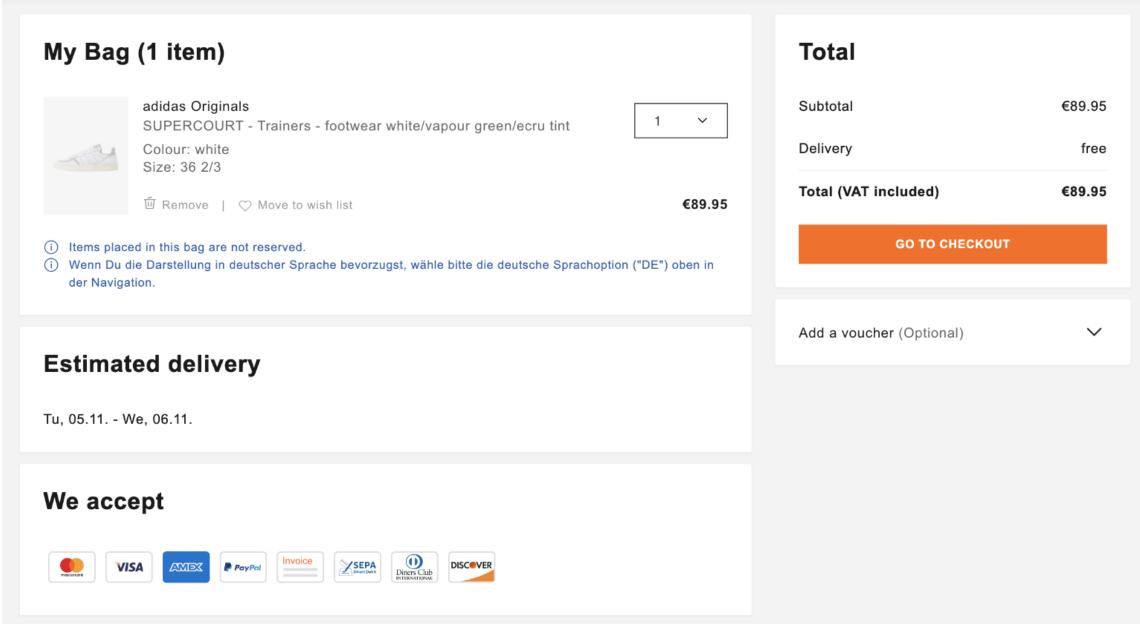
Trendy

Party

Inspired by you







But what constitutes an ML project and how is it different from traditional software?

MICROSERVICES AT ZALANDO

code and commits to GitHub

MICROSERVICES AT ZALANDO

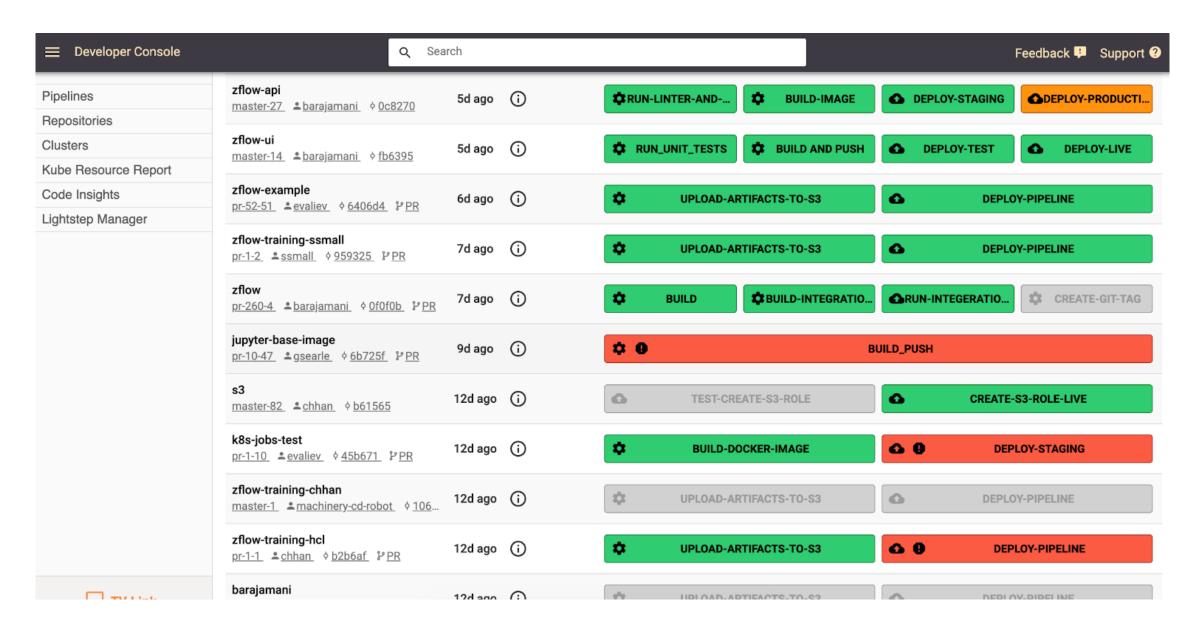
code and commits to GitHub CONTINUOUS
DEPLOYMENT
builds triggered by pull
requests

MICROSERVICES AT ZALANDO

code and commits to GitHub CONTINUOUS
DEPLOYMENT
builds triggered by pull
requests

Software runs on one of our >140 Kubernetes clusters on AWS

CONTINUOUS DEPLOYMENT



THE MACHINE LEARNING JOURNEY

ANALYSIS
Exploratory Data
Analysis

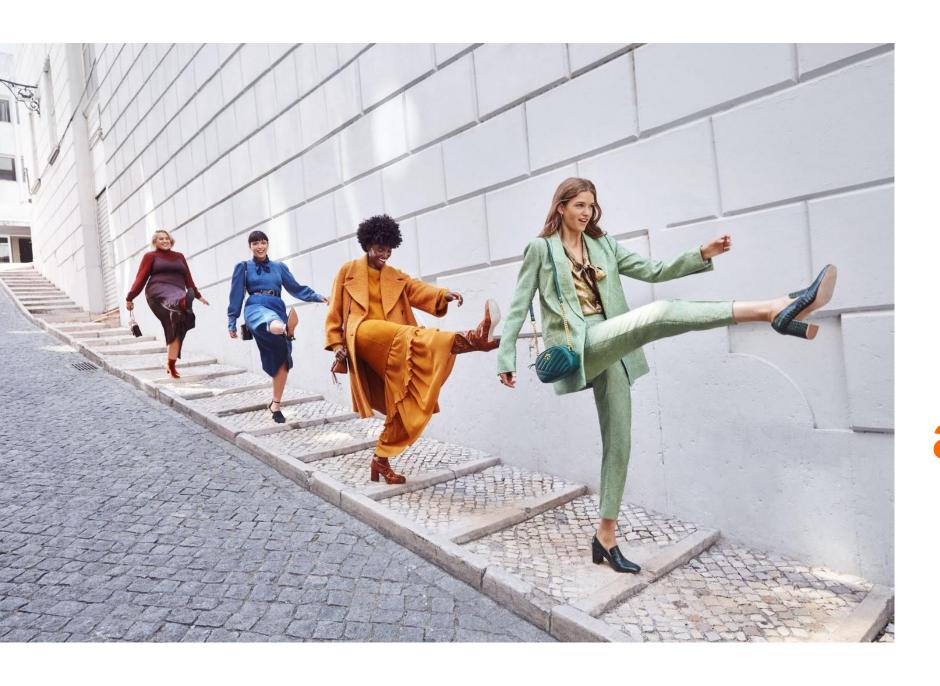
THE MACHINE LEARNING JOURNEY

TRAINING
Features, Training &
Evaluating models

THE MACHINE LEARNING JOURNEY

TRAINING
Features, Training &
Evaluating models

OBSERVATIONS
Run A/B tests, see
KPIs & adjust



Building a central ML platform: What are the challenges?

SPEED
Research to
production time

SPEED
Research to
production time

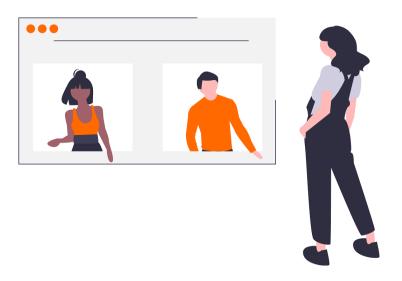
SAFETY
Understanding, testing,
reproducibility, monitoring

SPEED
Research to
production time

SAFETY
Understanding, testing,
reproducibility, monitoring

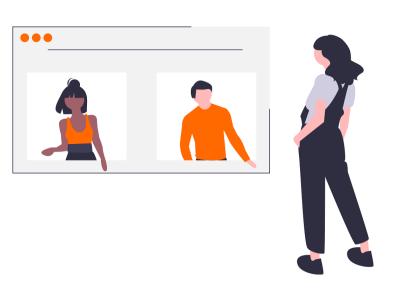
SCALE
Run thousands of
experiments

COST-EFFICIENCY
Experiments must be cheap at scale



COST-EFFICIENCY
Experiments must be cheap at scale

COLLABORATION
Across multiple job
families



COST-EFFICIENCY
Experiments must be cheap at scale

COLLABORATION
Across multiple job
families

SATISFACTION

Job satisfaction

and happiness

zalando

Relooking at the ML journey to define the ML pipeline for the ML platform

THE MACHINE LEARNING JOURNEY

ANALYSIS
Exploratory Data
Analysis

TRAINING
Features, Training &
Evaluating models

OBSERVATIONS
Run A/B tests, see
KPIs & adjust

> zalando

MACHINE LEARNING PIPELINES



FUNDAMENTAL

ML should be about pipelines,
not just data or models

Using Amazon SageMaker for ML pipelines at Zalando

TRAINING JOBS

Training jobs repr. core of a pipeline.

TRAINING JOBS

Training jobs repr. core of a pipeline.

ALGORITHMS

Built-in and bring-yourown docker images.

TRAINING JOBS

Training jobs repr. core of a pipeline.

ALGORITHMS

Built-in and bring-yourown docker images. **INTEGRATED**

With AWS offerings.

TRAINING JOBS

Training jobs repr. core of a pipeline.

ALGORITHMS

Built-in and bring-yourown docker images.

INTEGRATED

With AWS offerings.

"SERVERLESS"

Training instances are managed, jobs easy to distribute.

TRAINING JOBS

Training jobs repr. core of a pipeline.

"SERVERLESS"

Training instances are managed, jobs easy to distribute.

ALGORITHMS

Built-in and bring-yourown docker images.

BATCH & APIs

In the same package.

Easy to reason and deploy.

INTEGRATED

With AWS offerings.

TRAINING JOBS

Training jobs repr. core of a pipeline.

"SERVERLESS"

Training instances are managed, jobs are easy to distribute.

ALGORITHMS

Built-in and bring-yourown Docker images.

BATCH & APIs

In the same package.

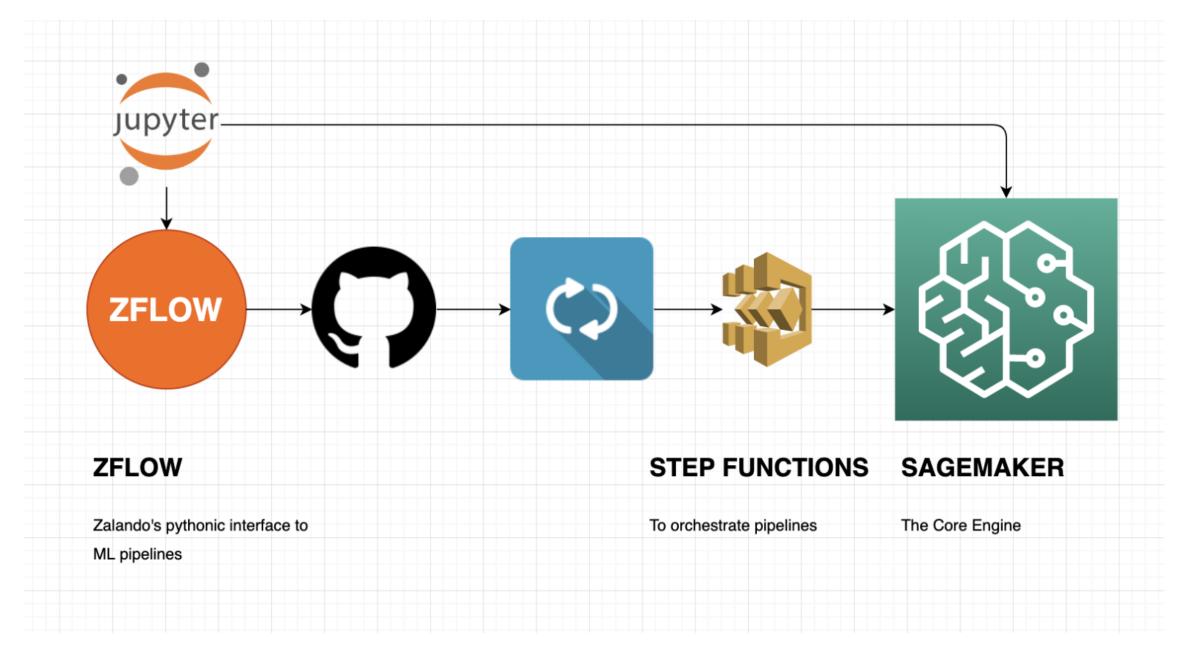
Easy to reason and deploy.

INTEGRATED

With AWS offerings.

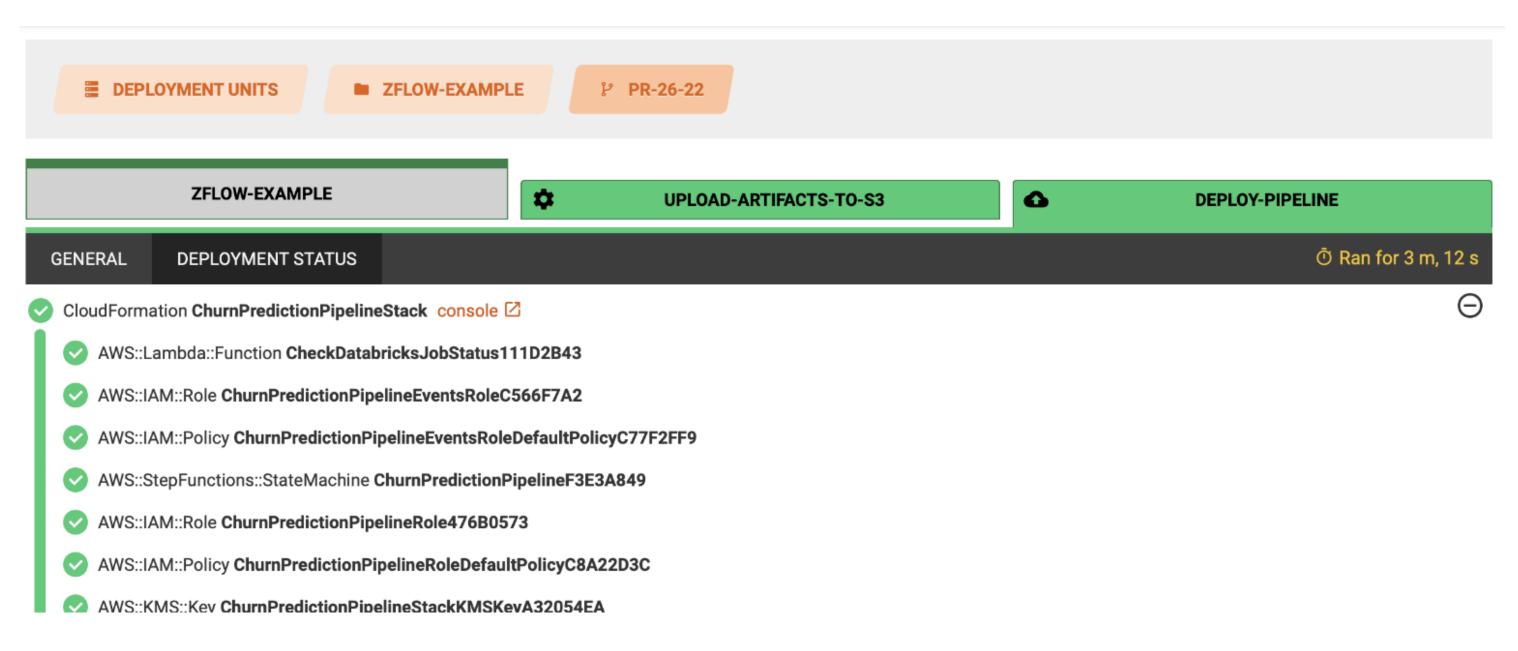
SCRIPT MODE

Easy to write quick
TensorFlow scripts and
tie in to pipelines

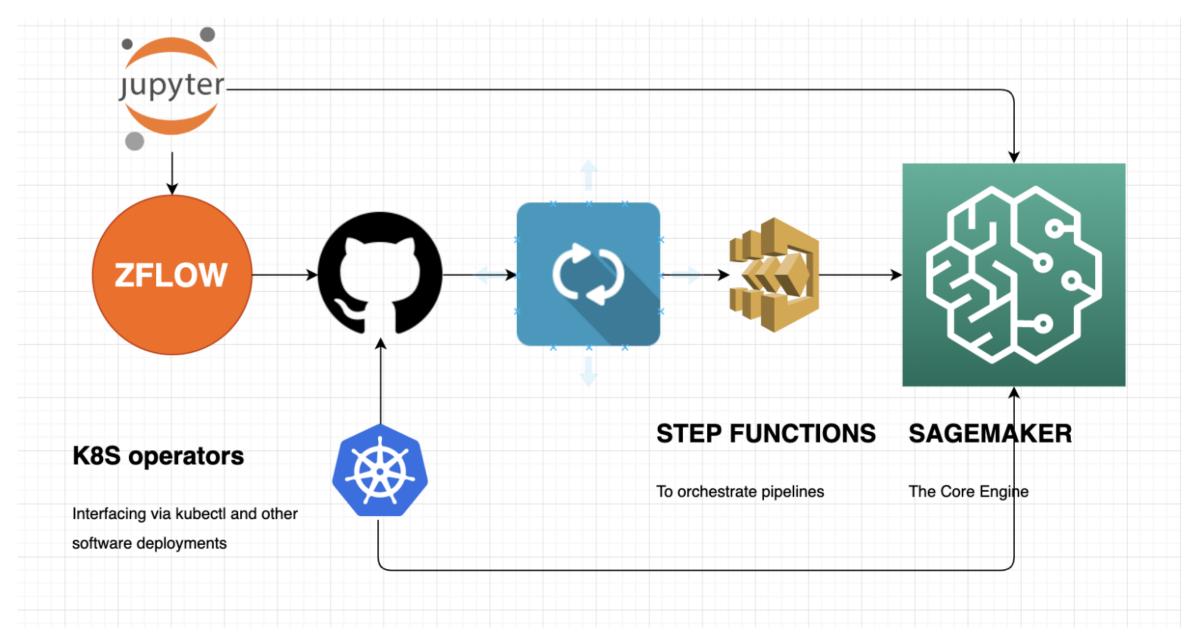



```
training stage = training job(
    name="...",
    input data configs="...",
    hyperparameters="..."
batch transform stage =
batch transform job (
    name="...",
    s3 input path="...",
    s3 output path="..."
```

```
pipeline = PipelineBuilder("my_pipeline")
pipeline
    .add_stage(data_processing_stage)
    .add_stage(training_stage)
    .add_stage(batch_transform_stage)
```



UPCOMING




```
apiVersion: sagemaker.aws.amazon.com/v1
kind: TrainingJob
metadata
    name: kmeans-mnist
spec
    algorithmSpecification
        trainingImage: .../kmeans:1
        trainingInputMode: File
        hyperParameters: ...
        inputDataConfig:
    resourceConfig
        instanceType: ml.c4.8xlarge
```


SPEED
Notebooks + consistent
interfaces

SPEED
Notebooks + consistent
interfaces

SAFETY
Amazon
SageMaker
training/scoring

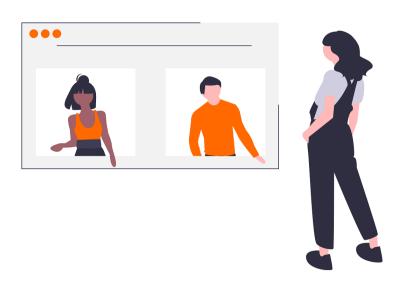
SPEED

Notebooks + consistent
interfaces

SAFETY
Amazon
SageMaker
training/scoring

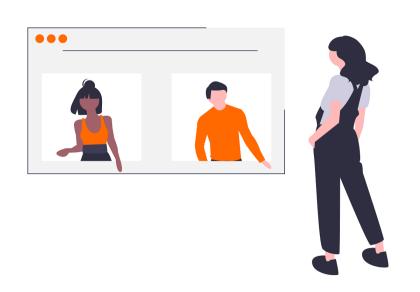
SCALE
Amazon
SageMaker
training/scoring

COST-EFFICIENCY
Amazon SageMaker
training/scoring



COST-EFFICIENCY
Amazon SageMaker
training/scoring

COLLABORATION
Consistent interfaces



COST-EFFICIENCY
Amazon SageMaker
training/scoring

COLLABORATION
Consistent interfaces

SATISFACTION
Central team
support
zalando

Machine learning at scale offers exciting new opportunities for us to serve our customers better.

Demo

In summary

- Machine learning is a hard problem
- Amazon SageMaker simplifies ML with modern application architecture
- Kubernetes is great for large-scale container orchestration
- Amazon SageMaker and Kubernetes can provide greater benefits when combined

Thank you!

Please complete the session survey in the mobile app.

