


© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Lambda@Edge best practices

N E T 3 0 4 - R

Lee Atkinson

Principal Solutions Architect

Amazon Web Services

David Brown

Senior Product Manager

Amazon CloudFront

Amazon Web Services



Lambda@Edge use cases

Simple HTTP 

manipulations

Dynamic content 

generation

Origin 

independence

User-agent header 

normalization
Image manipulation Pretty URLs

Adding HSTS security 

headers
Render pages API wrapper

Enforcing cache-control 

headers
Redirections Authorization

A/B testing SEO optimization Bot mitigation



Amazon CloudFront and Lambda@Edge

CloudFront 

Cache

Origin 

Response

Origin
Viewer

Origin 

Request

Viewer 

Response

Viewer 

Request



How much does it cost?

Consider an API with 15M requests/month & 128MB 
Lambda@Edge function executing in 2ms. Viewer request event is 
configured on CloudFront.

Lambda@Edge is charged based on:

Number of requests: 15M*,6$/1M = 9$

Memory*Duration resource usage: 15M * 50ms * 128MB * 0,00005001$/GBS = 4,7$

Total cost is 13,7$/month



Why bother optimizing?



Is Lambda@Edge the right solution for you?



#1: Consider all the available options

• CloudFront already provides native features:

• Device identification: CloudFront-Is-Mobile-Viewer headers

• Analytics: CloudFront access logs delivered to Amazon S3 & AWS WAF logs 

• Access Control: CloudFront signed URLs/cookies, geoblocking, AWS WAF

• Leverage responsive web design

• Some logic is better off on the origin!



Optimizing Lambda@Edge configuration



#2: Invoke Lambda@Edge only when you need it

• For every request or only on cache misses?

• Use the most specific CloudFront behavior:

• Remove it when it’s not used anymore



#3: Choose the optimal memory configuration

4.03

4.97

8.1

0

1

2

3

4

5

6

7

8

9

128MB 256MB 512MB

Cost

cost($) of 1M executions

535

337

290

0

100

200

300

400

500

600

128MB 256MB 512MB

Function duration

duration(ms)



Optimizing Lambda@Edge code



#4: Optimize function code

• Reduce deployment package size

• Parallelism using async calls

// Node.js

let responses = await Promise.all([

httpGet({ hostname: 'HTML template', path: '' }),

ddbGet({ TableName: ddbTableName, Key: { name: 'mytable' } })

]);



// Node.js

const dns = require('dns');

let bestOrigin;

let expires = 0;

exports.handler = (event, context, callback) => {

const request = event.Records[0].cf.request;

getBestOrigin().then((origin) => {

request.origin.custom.domainName = origin;

headers.host[0].value = origin;

callback(null, request);

});

}

#5: Leverage global variables (1/2)



// Node.js

function getBestOrigin() {

const now = Date.now();

if (now < expires) return Promise.resolve(bestOrigin);

return new Promise((resolve, reject) => {

dns.resolveCname(DNS_HOST, (err, addr) => {

bestOrigin = addr[0];

expires = now + TTL;

resolve(bestOrigin);

});

});

}

#5: Leverage global variables (2/2)



#6: Optimize external network calls

// Node.js

const http = require('https’);

exports.handler = (event, context, callback) => {

http.get({ hostname: 'hello.com', path: '/’ }, (resp) => {

let data = ’’;

resp.on('data', (chunk) => { data += chunk; });

resp.on('end', () => { resolve(data); });

});

}



#6: Optimize external network calls

// Node.js

const http = require('https');

const keepAliveAgent = new http.Agent({ keepAlive: true, keepAliveMsecs: 2000 });

exports.handler = (event, context, callback) => {

http.get({ hostname: 'hello.com', path: '/', agent: keepAliveAgent }, (resp) => {

let data = ’’;

resp.on('data', (chunk) => { data += chunk; });

resp.on('end', () => { resolve(data); });

});

}



Know the limits!



#7: Know the limits!

Functional:

Blacklisted/read-only headers

Function size—1MB vs 50MB

Response size—40K vs 1MB

Resource allocation

Memory—128M vs 3G

Timeout—5s vs 30s

1K concurrent execution region

Scaling mechanism



Additional resources

• https://aws.amazon.com/lambda/edge/

• https://aws.amazon.com/blogs/networking-and-content-
delivery/lambdaedge-design-best-practices/

• https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGu
ide/lambda-edge-testing-debugging.html

• AWS Blog: Cookie syncing for AdTech; Visitor prioritization for e-
commerce; Paywall for publishers

https://aws.amazon.com/lambda/edge/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-testing-debugging.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-testing-debugging.html


© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Free digital courses cover topics related to networking and 
content delivery, including Introduction to Amazon CloudFront 
and Introduction to Amazon VPC

Visit aws.amazon.com/training/paths-specialty

Validate expertise with the 
AWS Certified Advanced Networking - Specialty exam

Learn networking with AWS Training and Certification
Resources created by the experts at AWS to help you build and validate networking skills



Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.


