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Lambda@Edge use cases

Simple HTTP 

manipulations

Dynamic content 

generation

Origin 

independence

User-agent header 

normalization
Image manipulation Pretty URLs

Adding HSTS security 

headers
Render pages API wrapper

Enforcing cache-control 

headers
Redirections Authorization

A/B testing SEO optimization Bot mitigation



Amazon CloudFront and Lambda@Edge
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How much does it cost?

Consider an API with 15M requests/month & 128MB 
Lambda@Edge function executing in 2ms. Viewer request event is 
configured on CloudFront.

Lambda@Edge is charged based on:

Number of requests: 15M*,6$/1M = 9$

Memory*Duration resource usage: 15M * 50ms * 128MB * 0,00005001$/GBS = 4,7$

Total cost is 13,7$/month



Why bother optimizing?



Is Lambda@Edge the right solution for you?



#1: Consider all the available options

• CloudFront already provides native features:

• Device identification: CloudFront-Is-Mobile-Viewer headers

• Analytics: CloudFront access logs delivered to Amazon S3 & AWS WAF logs 

• Access Control: CloudFront signed URLs/cookies, geoblocking, AWS WAF

• Leverage responsive web design

• Some logic is better off on the origin!



Optimizing Lambda@Edge configuration



#2: Invoke Lambda@Edge only when you need it

• For every request or only on cache misses?

• Use the most specific CloudFront behavior:

• Remove it when it’s not used anymore



#3: Choose the optimal memory configuration
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Optimizing Lambda@Edge code



#4: Optimize function code

• Reduce deployment package size

• Parallelism using async calls

// Node.js

let responses = await Promise.all([

httpGet({ hostname: 'HTML template', path: '' }),

ddbGet({ TableName: ddbTableName, Key: { name: 'mytable' } })

]);



// Node.js

const dns = require('dns');

let bestOrigin;

let expires = 0;

exports.handler = (event, context, callback) => {

const request = event.Records[0].cf.request;

getBestOrigin().then((origin) => {

request.origin.custom.domainName = origin;

headers.host[0].value = origin;

callback(null, request);

});

}

#5: Leverage global variables (1/2)



// Node.js

function getBestOrigin() {

const now = Date.now();

if (now < expires) return Promise.resolve(bestOrigin);

return new Promise((resolve, reject) => {

dns.resolveCname(DNS_HOST, (err, addr) => {

bestOrigin = addr[0];

expires = now + TTL;

resolve(bestOrigin);

});

});

}

#5: Leverage global variables (2/2)



#6: Optimize external network calls

// Node.js

const http = require('https’);

exports.handler = (event, context, callback) => {

http.get({ hostname: 'hello.com', path: '/’ }, (resp) => {

let data = ’’;

resp.on('data', (chunk) => { data += chunk; });

resp.on('end', () => { resolve(data); });

});

}



#6: Optimize external network calls

// Node.js

const http = require('https');

const keepAliveAgent = new http.Agent({ keepAlive: true, keepAliveMsecs: 2000 });

exports.handler = (event, context, callback) => {

http.get({ hostname: 'hello.com', path: '/', agent: keepAliveAgent }, (resp) => {

let data = ’’;

resp.on('data', (chunk) => { data += chunk; });

resp.on('end', () => { resolve(data); });

});

}



Know the limits!



#7: Know the limits!

Functional:

Blacklisted/read-only headers

Function size—1MB vs 50MB

Response size—40K vs 1MB

Resource allocation

Memory—128M vs 3G

Timeout—5s vs 30s

1K concurrent execution region

Scaling mechanism



Additional resources

• https://aws.amazon.com/lambda/edge/

• https://aws.amazon.com/blogs/networking-and-content-
delivery/lambdaedge-design-best-practices/

• https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGu
ide/lambda-edge-testing-debugging.html

• AWS Blog: Cookie syncing for AdTech; Visitor prioritization for e-
commerce; Paywall for publishers

https://aws.amazon.com/lambda/edge/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-testing-debugging.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-testing-debugging.html
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Free digital courses cover topics related to networking and 
content delivery, including Introduction to Amazon CloudFront 
and Introduction to Amazon VPC

Visit aws.amazon.com/training/paths-specialty

Validate expertise with the 
AWS Certified Advanced Networking - Specialty exam

Learn networking with AWS Training and Certification
Resources created by the experts at AWS to help you build and validate networking skills



Thank you!
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