

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mastering AWS Lambda streaming
event sources

Adam Wagner

S V S 3 2 3 - R

Solutions Architect

Amazon Web Services

Related breakouts

SVS317-R – Serverless stream processing pipeline best practices

SVS401-R – Optimizing your serverless applications

SVS335-R – Serverless at scale: Design patterns and optimizations

API304 – Scalable serverless event-driven applications using Amazon SQS
& Lambda

Agenda

Introduction to streaming event sources for AWS Lambda

Scaling

Monitoring and error handling

Common issues

Performance and optimization

Session expectations

• Chalk-talk format – Please ask questions

• What we will cover

• The details of using Lambda with streaming event sources

• Scaling

• Monitoring

• Error handling

• Performance and optimization

• What we won’t cover

• What is serverless?

• What is Lambda?

• Event sources outside of Amazon Kinesis Data Streams and
Amazon DynamoDB Streams

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Kinesis

Easily collect, process, and analyze video and data streams in real time

Capture, process,

and store video

streams for

analytics

Load data streams

into AWS

data stores

Analyze data

streams with SQL

Build custom

applications that

analyze data

streams

Amazon Kinesis

Video Streams

Amazon Kinesis

Data Streams

Amazon Kinesis

Data Firehose

Amazon Kinesis

Data Analytics

Amazon DynamoDB

Amazon DynamoDB

Document or key-value

Scales to any workload

Fully managed NoSQL

Access control

Event-driven programming

Fast and consistent

DynamoDB Streams

DynamoDB DynamoDB stream

✓ Stream of item changes

✓ Exactly once, guaranteed delivery

✓ Strictly ordered by key

✓ Durable, scalable

✓ Fully managed

✓ 24-hour data retention

✓ Sub-second latency

✓ Event source for Lambda

DynamoDB Streams

What we’re talking about today

Kinesis

Data Streams
Lambda

Data

Produce

r

Data

Produce

r

Data

producer

Downstream

system

Clients

Produce

r

Clients

Produce

r

Clients

DynamoDB DynamoDB stream Lambda

Downstream

system

Kinesis Data Streams

Kinesis

Data Streams Lambda service

Data

ProducerData

ProducerData

producer

Lambda function A

Lambda function B

DynamoDB Streams

Clients

Produce

r

Clients

Produce

r

Clients

DynamoDB DynamoDB stream
Lambda service

Lambda function A

Lambda function B

Kinesis data stream shard detail

Data

ProducerData

ProducerData

producer

FunctionKinesis data

stream

Shard

Shard

Shard

Shard

Lambda service

Kinesis data stream

Data

ProducerData

ProducerData

producer

FunctionKinesis data

stream

Shard

Shard

Shard

Shard

Kinesis data stream

FunctionKinesis data

stream

Shard

Shard

Shard

Shard

Kinesis data stream shard-level detail

Shard

1. Lambda service polls the shard
once per second for a set of records.
Then synchronously invokes the
Lambda function with the batch of
records.

2. If the Lambda returns successfully,
the Lambda service advances to the
next set of records and repeats step
1.

3. If the Lambda errors, by default
the Lambda service invokes the
function with the same set of records
and will continue to do so until it
succeeds or the records age out of
the stream.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kinesis data stream scaling

FunctionKinesis data

stream

Shard

Shard

Shard

Shard

Kinesis data stream scaling

aws kinesis update-shard-count --stream-name reinvent19-01
--target-shard-count 8 --scaling-type UNIFORM_SCALING
{

"StreamName": "reinvent19-01",
"CurrentShardCount": 4,
"TargetShardCount": 8

}

FunctionKinesis data

stream

Shard

Shard

Shard

Shard

Kinesis data stream scaling
FunctionKinesis data

stream

Shard

Shard

Shard

Shard

Shard

Shard

Shard

Shard

aws kinesis update-shard-count --stream-name reinvent19-01
--target-shard-count 8 --scaling-type UNIFORM_SCALING
{

"StreamName": "reinvent19-01",
"CurrentShardCount": 4,
"TargetShardCount": 8

}

Kinesis data stream scaling

FunctionKinesis data

stream

Shard

Shard

Shard

Shard

• Scale more than twice per rolling 24-hour

period per stream

• Scale up to more than double your current

shard count for a stream

• Scale down below half your current shard

count for a stream

• Scale up to more than 500 shards in a stream

• Scale a stream with more than 500 shards

down unless the result is less than 500 shards

• Scale up to more than the shard limit for your

account

Kinesis data stream scaling … more detail

Function

Shard

Shard

Kinesis data stream

Shard

Shard

Shard

Shard

• The stream scales up by

splitting shards

• Splitting a shard creates two

new child shards that split

the partition keyspace of

the parent shard

• Lambda will not start

receiving records from the

child shards until it’s

processed all records from

the parent shard

Throughput considerations

FunctionKinesis data

stream

Shard

Shard

Shard

Shard

Parallelization Factor

FunctionKinesis Stream

Shard

Shard

Shard

Shard

• Adds Lambda parallelization per shard

• Setting of 1 is the same as the current

behavior, maximum setting is 10

• Batching via partition keys to maintain in order

processing per partition key

• Works with both Kinesis Data Streams and

DynamoDB Streams

--parallelization-factor 1

Parallelization Factor

Kinesis Stream

Shard

Shard

Shard

Shard

Function

--parallelization-factor 2

• Adds Lambda parallelization per shard

• Setting of 1 is the same as the current

behavior, maximum setting is 10

• Batching via partition keys to maintain in order

processing per partition key

• Works with both Kinesis Data Streams and

DynamoDB Streams

Parallelization Factor

Kinesis data stream scaling

FunctionKinesis data

stream

Shard

Shard

Shard

Shard

• Auto-scale your shard count using Application

Auto Scaling:

https://aws.amazon.com/blogs/big-

data/scaling-amazon-kinesis-data-streams-

with-aws-application-auto-scaling/

• Scale conservatively to leave overhead for

bursts of traffic

• Scale your shard count to match your Lambda

throughput and/or use Parallelization Factor

• Test! Test! Test! Measure unit tests to watch

for performance regressions, and also test at

scale!

https://aws.amazon.com/blogs/big-data/scaling-amazon-kinesis-data-streams-with-aws-application-auto-scaling/

DynamoDB Streams scaling

FunctionDynamoDB stream

Shard

Shard

Shard

Shard

DynamoDB

DynamoDB on-demand vs. provisioned capacity

DynamoDB on-demand scaling

DynamoDB tables using on-demand capacity mode automatically adapt to your application’s traffic

volume. On-demand capacity mode instantly accommodates up to double the previous peak traffic on a

table. For example, if your application’s traffic pattern varies between 25,000 and 50,000 strongly

consistent reads per second where 50,000 reads per second is the previous traffic peak, on-demand

capacity mode instantly accommodates sustained traffic of up to 100,000 reads per second. If your

application sustains traffic of 100,000 reads per second, that peak becomes your new previous peak,

enabling subsequent traffic to reach up to 200,000 reads per second.

DynamoDB on-demand scaling

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kinesis data stream monitoring

Kinesis

Data Streams
Lambda

Data

ProducerData

ProducerData

producer

Downstream

system

DynamoDB stream monitoring

Clients

Produce

r

Clients

Produce

r

Clients

DynamoDB DynamoDB stream Lambda

Downstream

system

Error handling options

A number of new options are available to tune error handling

• Maximum retry attempts – min 0, default/max 10,000

• Maximum Record Age in seconds – min 60, default/max 604,800

• Bisect Batch on Function Failure

• On-Failure Destination

Bisect Batch on Function Failure

Recursively split the failed batch and retry on a
smaller subset of records, eventually isolating
the problematic records

• Boolean – false by default

• These retries do NOT count towards
MaximumRetryAttempts

• Make sure your function is idempotent

On-Failure Destination

An SNS Topic or SQS Queue, which is sent the metadata about a failed
batch of records

• Used only after configured retry limit or maximum record age are
reached.

• Remember the bisected batch retries are not counted towards retry
limit.

• Does not contain the actual records, but does contain all the
information needed to retrieve them!!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Common issues

• Kinesis Data Streams

• IteratorAge is growing rapidly

• ReadProvisionedThroughputExceeded throttles

• DynamoDB Streams

• IteratorAge is growing rapidly

• Rapid growth in Lambda concurrency

Kinesis Data Streams IteratorAge is growing rapidly

• Initial questions

• How many Lambda functions subscribed to the stream?

• Does the Lambda function show any errors?

• Does the Lambda function show any throttles?

• Is there a large increase in Kinesis Data Streams metrics IncomingRecords or IncomingBytes?

Kinesis Data Streams IteratorAge is growing rapidly

Kinesis

Data Streams
Lambda

Data

ProducerData

ProducerData

producer

Downstream

system

Kinesis Data Streams IteratorAge is growing rapidly

• Solutions

• If the Lambda is erroring

• Configure an SQS Queue or SNS Topic for failed batches

• Configure MaximumRetryAttempts, BisectBatchOnFunctionError, and
MaximumRecordAgeInSeconds

• Update the Lambda function to log records causing errors and return successfully

• If the Lambda is throttling?

• Increase per function limit/reservation, or raise the account level limit

Kinesis Data Streams IteratorAge is growing rapidly

• Solutions

• If there is a large increase in KDS Metrics IncommingRecords or IncommingBytes

• If this is temporary, you may be able to wait it out. Watch IteratorAge to make sure it
doesn’t climb too high

• Increase the stream data retention, this can be increased up to 7 days

• Increase the Parallelization Factor

• Increase the number of shards in the stream

• Increase the memory assigned to the Lambda function or otherwise optimize the
function’s performance

Kinesis Data Streams
ReadProvisionedThroughputExceeded

The 5 read/sec. or 2 MiB/sec. limit is being hit

• Use enhanced fanout or remove one or more subscribers

• Remember that Kinesis Data Firehose and Kinesis Data Analytics are subscribers as well!

DynamoDB Streams IteratorAge is growing rapidly

• Initial questions

• How many Lambda functions subscribed to the stream?

• Does the Lambda function show any errors or throttles?

• Does the Lambda function show an increase in duration?

• Is there a large increase in the DynamoDB table write (WCU) metrics

• Is there a large increase in the DynamoDB stream metrics

DynamoDB Stream IteratorAge is growing rapidly

• Solutions

• If there is a large increase in writes on the DDB Table:

• If this is temporary, you may be able to wait it out. Watch IteratorAge to make sure it
doesn’t climb too high

• Unlike KDS you can NOT increase the data retention time, so you need to take action more
quickly

• Increase the memory assigned to the Lambda function or otherwise optimize the
function’s performance

• Increase the Parallelization Factor

• If there are more than two Lambda functions subscribed to the stream, consider adding a
Kinesis Data Stream for increasing the fan-out

DynamoDB stream fanout

Clients

Produce

r

Clients

Produce

r

Clients

DynamoDB DynamoDB stream Lambda Kinesis

Data Streams

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

• What matters to your application?

• End-to-end latency

• Overall cost

• Kinesis Data Streams enhanced fanout (EFO)

• DynamoDB Streams

• Small messages in Kinesis Data Streams

• Aggregation/de-aggregation libraries

• Compression

• Low throughput streams—batch window to the rescue

Lambda supports Kinesis Data Streams Enhanced
Fan-Out and HTTP/2 for faster streaming

Enhanced fan-out allows customers to scale the
number of functions reading from a stream in
parallel while maintaining performance

HTTP/2 data retrieval API improves data delivery
speed between data producers and Lambda
functions by more than 65%

Amazon Kinesis

Data Streams

Kinesis Data Streams: Enhanced Fan-Out

When to use standard consumers:

• Total number of consuming applications is low (< 3)

• Consumers are not latency-sensitive

• Newer error handling options are needed*

• Minimize cost

When to use Enhanced Fan-Out consumers:

• Multiple consumer applications for the same Kinesis Data Stream

• Default limit of 5 registered consuming applications. More can be
supported with a service limit increase request

• Low-latency requirements for data processing

• Messages are typically delivered to a consumer in less than 70 ms

Optimizing Small Messages in Kinesis

• Kinesis Data Streams per shard write limits

• 1MiB/sec or 1,000 messages/sec

• With high volumes of small messages you reach the 1,000 messages/sec limit easily

• This leads to lower throughput per shard and higher costs

Aggregation is the answer!

Aggregation / de-aggregation options

• Producer side

• Kinesis Producer Library(KPL)(https://github.com/awslabs/amazon-kinesis-producer)

• Kinesis Aggregation Library(https://github.com/awslabs/kinesis-aggregation)

• Consumer side within Lambda

• Kinesis Aggregation Library(https://github.com/awslabs/kinesis-aggregation)

• Java, Node.js, and Python versions available

• Another option if your data has a consistent format is Avro

https://github.com/awslabs/amazon-kinesis-producer
https://github.com/awslabs/kinesis-aggregation
https://github.com/awslabs/kinesis-aggregation

Low-throughput streams

Lambda triggered with very small batches

Leads to higher cost per message

For archiving workloads the resulting payload is too small

FunctionKinesis data stream

Shard

Shard

Shard

Shard

Batch window

• Additional knob to tune the stream trigger

• Set a time to wait before triggering. Max five minutes, set in seconds.

• Batch size is still respected and will trigger on full batches before the batch window is up

• Works for both Kinesis Data Streams and DynamoDB Streams triggers

FunctionKinesis Stream

Shard

Shard

Shard

Shard

Conclusion

• Be clear on the goals of your streaming system

• Understand how your system scales

• Prepare for failures, make use of the new rror handling options

• Test individual components as well as end to end

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Free, on-demand courses on serverless, including

Visit the Learning Library at https://aws.training

Additional digital and classroom trainings cover modern
application development and computing

Learn serverless with AWS Training and Certification
Resources created by the experts at AWS to help you learn modern application development

• Introduction to Serverless

Development

• Getting into the Serverless

Mindset

• AWS Lambda Foundations

• Amazon API Gateway for

Serverless Applications

• Amazon DynamoDB for Serverless

Architectures

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

