

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Setting up and optimizing your
HPC cluster on AWS

C M P 4 0 2 - R

Pierre-Yves Aquilanti, Ph.D.

Senior HPC Specialized Solutions Architect

Amazon Web Services

Francesco Ruffino

Sr. HPC Specialized SA

Amazon Web Services

Compute & orchestration building blocks

Instances
• Virtualized

• Bare metal

Different capabilities

(CPU, RAM, SSD, network, accelerators)

Provisioning
• Amazon EC2 Auto Scaling groups: scale up & down

• Instance fleets: capacity at scale across AZs

Serverless & containers
• Event-driven functions (AWS Lambda)

• Batch schedulers, containers orchestrators

Workflow, notifications, queues
• Workflow management

• Notification & message queues

Focus on the workload

and not infrastructure

Compute on events

or requests

Base compute layer

Workflow management

and communication

Abstraction

Base infrastructure

VPC & subnets

Security groups

Instances & services

Public subnetVPC Private subnet

Security group

Bastion

Visualization

Compute

Lustre

✓ :22

✓ :443

:22

✓ :998

Admin

Users

• Virtual Private Cloud: logically section of

the cloud provider infrastructure

• Subnet: logical partition of a network

• Virtual firewalls

• Instances

• Managed services

• …

& instances• VPC

EC2 Auto Scaling in more detail

Logical unit
Purpose of scaling or management

Launch templates
Kind, size, storage, ssh keypair,

user data, security groups

Scaling options
▪ Manual, schedule, predictive

▪ Notify on start, stop, terminate…

Min

Max

Desired

Auto Scaling group

Input Data Output data

Work unit

queue

Email notification

Scale up/down

Metrics or heuristics

EC2 Auto Scaling compute system?

Min: 0 Desired: 0 Max: 25

Imagine that nodes are added when jobs are submitted

and removed when they finish

Submit

Start 0 instances in the cluster, 25 max authorized

Job 1, request 288 cores, 8 instances

cores / node: 36

Provision 8 instances and execute Job 1

Finalize Job 1

Idle 5 min

Submit Job 2, request 864 cores, 24 instances

Provision 16 new instances and execute Job 2

Finalize Job 2

Idle 5 min

Terminate 24 instances

Stop 0 instances in the cluster

But after 2 minutes
Desired: 8Desired: 24

aws autoscaling \
--launch-configuration-name \
--key-name my-key-pair \
--image-id \
--instance-type

Putting it all together

Part of the next hands-on

User

Region

Availability Zone

Auto Scaling group

Compute nodes
Head node Lustre

Object

storage

Not busy
Any node to

terminate

Building an auto-scaling HPC cluster
• Similar to on-premises but with auto-scaling

• Still a classical HPC system with a scheduler (S UR , SG …),

Lustre, placement groups (tightly coupled)

• The same familiar interface with an elastic capacity

Additional technical considerations

When ready, instances send notifications to a message

queuing service. The scheduler watch this queue and

add the compute nodes as they appear

When not busy, they will lock themselves up, check the

scheduler queue, send a notification and terminate.

Launching a cluster in minutes

• AWS CloudFormation does the
heavy lifting on your behalf

$ pcluster create mycluster

$ pcluster update mycluster

$ pcluster stop mycluster

$ pcluster start mycluster

$ pcluster delete mycluster

• Key commands to manage a cluster

Simple architecture

VPC

Availability Zone

Auto Scaling group

Head-node

/shared (nfs)

/lustre

Data

bucket

• Post install configuration
• Install applications scripts

• Amazon Elastic Block Store (Amazon

• EBS) Snapshot bootstrap
• Application installations or static configurations

• Other details
• Amazon Elastic File System (Amazon EFS) can be

shared across clusters

• Lustre partition can be mounted but per AZ

• Public/private subnets for head/compute

• Link to AD for user mapping if required

Example of configuration file

[aws]
aws_region_name = ${REGION}

[global]
cluster_template = default
update_check = false
sanity_check = true

[cluster default]
key_name = key-pair-name
vpc_settings = public
ebs_settings = myebs
compute_instance_type = c4.xlarge
master_instance_type = c4.xlarge
cluster_type = ondemand
placement_group = DYNAMIC
placement = compute
min_queue_size = 0
max_queue_size = 8
initial_queue_size = 0
disable_hyperthreading = true
scheduler = slurm

[vpc public]
vpc_id = ${VPC_ID}
master_subnet_id = ${SUBNET_ID}

[ebs myebs]
shared_dir = /shared
volume_type = gp2
volume_size = 20

[aliases]
ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS}

[fsx myfsx]
shared_dir = /lustre
storage_capacity = 3600
import_path = s3://mybucket

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Review for the lab

What you will build today

Use the 12-character

hash to log in to

your account

https://dashboard.eventengine.run

https://dashboard.eventengine.run/

What you will build today

Objectives for this lab
1. Install AWS ParallelCluster and configure it

2. Create a cluster and connect to it

3. Run an application

4. Tear down the cluster

https://dashboard.eventengine.run

Login: your 12-character hash

Lab: Section III

http://bit.ly/aws-hpc

https://dashboard.eventengine.run/
http://bit.ly/aws-hpc

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Hiroshi Kobayashi

Sr. Solutions Architect – Global Engineering Services- WDC

Storage everywhere
Smartphone

Mobility

Radio telescopes on the top of the
mountains

→ Various environment conditions

Silicon-to-system engineering
Run millions of simulations in:

Material level

Device level

System level

Cloud’s scalability enables us to
explore this huge design space

Why cloud?

The world’s first image of a black hole

Image credit: Event Horizon Telescope Collaboration

Western Digital’s unique ability to design, tune, and optimize

across the entire portfolio technology stack

A pipeline for quick cluster
optimization and its records

Git base operation
• All changes are recorded in Git

• Cluster config files → management node

• Custom bootstrap scripts → Amazon S3

Python virtual environments
• AWS ParallelCluster development is very

active

• Mixed version of clusters

Pipeline

Admin

Users

hook

push

push

scripts

push

configs

pcluster

xxx

run

post install

scripts

Amazon

CloudWatch

put

metrics

AWS Cloud

ParallelCluster

AWS Auto Scaling

Spot/on-demand

compute nodes

Master

node

S3 bucket

Management

node

Git

Jenkins

ssh/vnc

• AWS ParallelCluster can execute arbitrary code either before (pre-install) or after (post-install) the main
bootstrap action

• Main post-install script calls actual setup scripts

post_install = s3://<bucket-name>/projects/mycluster/scripts/00-cluster-

init.sh

• Differentiate between master and compute nodes execution by sourcing
/etc/parallelcluster/cfnconfig file and evaluating cfn_node_type env var

Custom bootstrap

Monitoring
• Compute node GPU usage

• Shared storage usage

• SGE active/dead node

• Installed and configured in post-install script

Backup
• Fully utilizing AWS Backup

• Tag base backup

• Tags were added in post-install script

Monitoring & backup

Amazon

CloudWatch

AWS Backup

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Anh Tran Pierre-Yves Aquilanti, Ph.D.

trnh@ pierreya@

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

