


© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architecting and operating resilient 
serverless systems at scale

David Yanacek

S V S 4 0 7 - R

Principal Engineer

AWS Lambda

Amazon Web Services



Table of contents

Avoid brownout by 
rejecting excess load

Prevent a backlog 
from extending 
recovery time

Quickly diagnose 
and mitigate issues

Prevent one 
dependency from 

affecting unrelated 
functionality



Structure



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.











Back in high school…















Amdahl’s Law, Universal Scalability Law



0

50

100

150

200

250

M
in

im
u

m
 l

a
te

n
cy

 (
m

s)

Throughput (TPS)

Latency vs throughput

Latency



0

50

100

150

200

250

M
in

im
u

m
 l

a
te

n
cy

 (
m

s)

Throughput (TPS)

Latency vs throughput

Latency Client Timeout

(client timeout)

(total brownout)



0

50

100

150

200

250

0 50 100 150 200 250 300 350

G
o

o
d

p
u

t 
(T

P
S

)

Throughput (TPS)

Goodput vs throughput



0

50

100

150

200

250

0 50 100 150 200 250 300 350

G
o

o
d

p
u

t 
(T

P
S

)

Throughput (TPS)

Goodput vs throughput



Servers are too optimistic



0

50

100

150

200

250

0 50 100 150 200 250 300 350

G
o

o
d

p
u

t 
(T

P
S

)

Throughput (TPS)

Goodput vs throughput

(wasted work)



Clients retry



0

50

100

150

200

250

0 150 300 450 600 750 900 1050

G
o

o
d

p
u

t 
(T

P
S

)

Throughput (TPS)

Goodput vs throughput



Amazon EC2 

Auto Scaling



Understand tipping points



0

50

100

150

200

250

M
in

im
u

m
 l

a
te

n
cy

 (
m

s)

Throughput (TPS)

Latency vs throughput

Latency Client Timeout



Chapter one

Avoid brownout by 
rejecting excess load

Prevent a backlog 
from extending 
recovery time

Quickly diagnose 
and mitigate issues

Prevent one 
dependency from 

affecting unrelated 
functionality



Cheaply reject excess work



(rejected)

0

50

100

150

200

250

M
e

d
ia

n
 l

a
te

n
cy

 (
m

s)

Throughput (TPS)

Latency vs throughput

Latency Client Timeout

(accepted)



0

50

100

150

200

250

M
e

d
ia

n
 l

a
te

n
cy

 (
m

s)

Throughput (TPS)

Latency vs throughput

Latency Client Timeout



0

50

100

150

200

250

0 150 300 450 600 750 900 1050

G
o

o
d

p
u

t 
(T

P
S

)

Throughput (TPS)

Goodput vs throughput, 

with and without load shedding

Goodput With Load Shedding



Don’t waste work



Timeout wasting work



Timeout wasting work



Timeout wasting work



Layers of waste



Server(less?)-side timeouts in Lambda



Server-side timeouts



0

50

100

150

200

250

0 50 100 150 200 250 300 350

G
o

o
d

p
u

t 
(T

P
S

)

Throughput (TPS)

Goodput vs throughput

Before With server-side timeouts

Better, still not great



(Un?)Intended consequences?



Bounded work



Checkpointing



Checkpointing



Checkpointing



Bounded work



Don’t take on too much work



EC2 instance contents

Elastic network 

interface
EBS volume

vCPUs

Degrading performance with load
L
a

te
n

cy

Throughput

Latency vs throughput



EC2 instance contents

Elastic network 

interface
EBS volume

vCPUs

Degrading performance with load
L
a

te
n

cy

Throughput

Latency vs throughput



EC2 instance contents

Elastic network 

interface
EBS volume

vCPUs

Degrading performance with load
L
a

te
n

cy

Throughput

Latency vs throughput



EC2 instance contents

Elastic network 

interface
EBS volume

vCPUs

Degrading performance with load
L
a

te
n

cy

Throughput

Latency vs throughput



Fixed resources per unit of work

Lambda execution 

environment



Lambda execution 

environment

Fixed resources per unit of work



Fixed resources per unit of work

Lambda execution 

environment

Lambda execution 

environment

Request1 Request2



Fixed resources per unit of work

Lambda execution 

environment

Lambda execution 

environment

Lambda execution 

environment

Request1 Request2 Request3



Fixed resources per unit of work

Lambda execution 

environment

Lambda execution 

environment

Lambda execution 

environment

Request2Request4 Request3



Workload isolation means predictable performance
L
a

te
n

cy

Throughput

Latency vs throughput
Lambda function resources



Workload isolation means predictable performance

Lambda function resources

L
a

te
n

cy

Throughput

Latency vs throughput



Workload isolation means predictable performance

Lambda function resources

L
a

te
n

cy

Throughput

Latency vs throughput



Don’t take on too much work



Load shedding recap

Wasting work 
reduces throughput

Give the same resources 
to each request

Make scaling more 
predictable and testable

Keep latency low for the 
work you take on



Chapter two

Avoid brownout by 
rejecting excess load

Prevent a backlog 
from extending 
recovery time

Quickly diagnose 
and mitigate issues

Prevent one 
dependency from 

affecting unrelated 
functionality



Running out of concurrency



EC2 instance contents

Elastic network 

interface
EBS volume

vCPUs

Application bottlenecks



Concurrency, visualized



Concurrency with low request rate, low latency



Concurrency increases with arrival rate



Concurrency increases with latency



Little’s Law









Service

Database

Cache

Client







Dependency isolation 
within AWS Lambda



Lambda architecture*



2. ReserveSandbox

5. Init

1. Invoke

6. Invoke

Lambda architecture: Cold invoke
AWS Cloud

Users

Region

Availability Zone1 

Availability Zone 2, etc.

Frontend Worker manager Placement

3. ClaimSandbox

Workers

4. CreateSandbox



2. ReserveSandbox

3. Prepare

Users

1. Invoke

4. Invoke

Lambda architecture: Warm invoke
AWS Cloud

Users

Region

Availability Zone1 

Availability Zone 2, etc.

Frontend Worker manager Placement

Workers



Warm invoke



Cold invoke



Concurrency from warm invokes



Flipping modes to cold invokes



Concurrency limits



Approaching concurrency limits



Exceeding concurrency limits



Worker manager behavior

• Automatically scale

• Spread out increases in traffic to other worker managers

• Favor reusing existing sandboxes over creating new ones



Worker manager behavior

• Automatically scale

• Spread out increases in traffic to other worker managers

• Favor reusing existing sandboxes over creating new ones



Isolating concurrency



Isolating concurrency



Isolating concurrency



Isolating concurrency



Dependency isolation: Why?



API isolation: How?



Modal behavior protection: How?



Chapter three

Avoid brownout by 
rejecting excess load

Prevent a backlog 
from extending 
recovery time

Quickly diagnose 
and mitigate issues

Prevent one 
dependency from 

affecting unrelated 
functionality











API 

Gateway 

endpoint

Chat queue

Groups

table

Archive

tableAlice

Bob

Basic chat architecture

Chat service



Users

SQS queue

Chat service

Lambda function

Chat

tables

Endpoint

Business as usual



Chat service

Users

SQS queue Lambda function

Chat

tables

Endpoint

Surge in traffic



Chat service

Users

Lambda function

Chat

tables

Surge subsides, backlog remains

SQS queue



Ideal customer experience?



(Un)Ideal customer experience?

3:00

2:45

3:15

SQS queue



Queue backlogs are bad









Making FIFO behave LIFO



Priority queues



Priority is not known upfront

High priority Low priority



Priority is not known upfront

High priority Low priority



Move old messages to low-priority queue

High priority Low priority



Time to Live (TTL)





Backpressure (throttling)

Users

Queue

Chat service

Lambda function

Chat

tables

API Gateway



Backpressure (throttling)

Users

Queue

Chat service

Lambda function

Chat

tables

API Gateway



Backpressure (throttling)

Users

Queue

Chat service

Lambda function

Chat

tables

API Gateway



Priority queues + throttling: Best of both worlds?

Users

Chat service

Lambda functions

Chat

tables

Warm 

queue

Surge 

queue



Shuffle-sharding



Under the hood: Lambda async



Lambda async
AWS Cloud

Users

Region

Availability Zone1 

Availability Zone 2, etc

Application 

Load Balancer

1. Invoke async 2. Enqueue 3. Receive

4. Invoke

5. Delete

Async queueFrontend Poller



Lambda async

Frontend Poller

Async queue



Lambda async

Frontend Poller

Async queue



Lambda async (this is not what happens)

Frontend Poller

Async queue



Queue per workload

Frontend Poller

(many more queues)



Queue per workload

Frontend Poller

(many more queues)



Polling is not free

Frontend Poller

(many more queues)



Shuffle-sharding



Shuffle-sharding

(fixed number of N queues)



Shuffle-sharding

(map each workload to K queues)

(fixed number of N queues)



Shuffle-sharding: Enqueue

Poller

(find emptier)

Frontend



Shuffle-sharding: Enqueue

Poller

(enqueue)

Frontend



Shuffle-sharding: Busy workload

PollerFrontend

(hot workload)



Shuffle-sharding: Busy workload

(find emptier)

PollerFrontend



Shuffle-sharding: Busy workload

(enqueue)

PollerFrontend



Shuffle-sharding: Magical resource isolation

≈
𝑠ℎ𝑎𝑟𝑑𝑠𝑖𝑧𝑒!

𝑛𝑜𝑑𝑒𝑠 !



Shuffle-sharding: Magical resource isolation

Overlap % workloads

0 53.6%

1 42.8%

2 3.6%

Nodes = 8

Shard size = 2



Shuffle-sharding: Magical resource isolation

Overlap % workloads

0 77%

1 21%

2 1.8%

3 0.06%

4 0.0006%

5 0.0000013%

Nodes = 100

Shard size = 5



Isolate busy workloads

(isolate busy workload)



Avoiding queue backlogs

• Backlogs build quickly, introduce modes



Avoiding queue backlogs

• Backlogs build quickly, introduce modes

• Auto Scaling and Lambda react quickly

Amazon EC2 

Auto Scaling

AWS 

Lambda



Avoiding queue backlogs

• Backlogs build quickly, introduce modes

• Auto Scaling and Lambda react quickly

• Priority queueing emulates LIFO



Avoiding queue backlogs

• Backlogs build quickly, introduce modes

• Auto Scaling and Lambda react quickly

• Priority queueing emulates LIFO

• Move old messages to low priority



Avoiding queue backlogs

• Backlogs build quickly, introduce modes

• Auto Scaling and Lambda react quickly

• Priority queueing emulates LIFO

• Move old messages to low priority

• Message TTLs for stale information



Avoiding queue backlogs

• Backlogs build quickly, introduce modes

• Auto Scaling and Lambda react quickly

• Priority queueing emulates LIFO

• Move old messages to low priority

• Message TTLs for stale information

• Apply backpressure

Queue



Avoiding queue backlogs

• Backlogs build quickly, introduce modes

• Auto Scaling and Lambda react quickly

• Priority queueing emulates LIFO

• Move old messages to low priority

• Message TTLs for stale information

• Apply backpressure

• Surge queue excess traffic

Warm 

queue

Surge 

queue



Avoiding queue backlogs

• Backlogs build quickly, introduce modes

• Auto Scaling and Lambda react quickly

• Priority queueing emulates LIFO

• Move old messages to low priority

• Message TTLs for stale information

• Apply backpressure

• Surge queue excess traffic

• Shuffle-sharding for isolation



Chapter four

Avoid brownout by 
rejecting excess load

Prevent a backlog 
from extending 
recovery time

Quickly diagnose 
and mitigate issues

Prevent one 
dependency from 

affecting unrelated 
functionality



AWS X-Ray tracing





Amazon CloudWatch insights



Amazon CloudWatch insights





Amazon CloudWatch Contributor Insights



Amazon CloudWatch ServiceLens



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Don’t take on too much work

G
o

o
d

p
u

t 
(T

P
S

)

Throughput (TPS)

Goodput vs throughput



Reject excess work

G
o

o
d

p
u

t 
(T

P
S

)

Throughput (TPS)

Goodput vs throughput

Goodput With Load Shedding



Workload isolation means 
predictable performance

L
a

te
n

cy

Throughput

Latency vs throughput

Lambda execution 

environment

Request1



Bounded work



Compartmentalize dependencies

Service

Database Cache

Clients



Compartmentalize dependencies



Compartmentalize dependencies

AWS Lambda

Amazon 

API Gateway



Watch out for queue backlogs

Queues are quick to 
fill, slow to drain

Shift the backlog 
into a low-priority 

queue

Prevent a backlog 
from becoming 
unmanageable

Drop messages that 
are no longer relevant

Isolate backlogs in 
unrelated 
workloads



Serverless == resiliency



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Free, on-demand courses on serverless, including 

Visit the Learning Library at https://aws.training

Additional digital and classroom trainings cover modern 
application development and computing

Learn serverless with AWS Training and Certification
Resources created by the experts at AWS to help you learn modern application development

• Introduction to Serverless

Development 

• Getting into the Serverless

Mindset 

• AWS Lambda Foundations 

• Amazon API Gateway for 

Serverless Applications 

• Amazon DynamoDB for 

Serverless Architectures



Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.


