aws re: Invent

ANT335-R2

How to scale data analytics with Amazon Redshift

ANT-335-R2, Thursday, Dec 5, 2019, 12:15 PM - 1:15 PM - Venetian, Level 3, Lido 3005

Vinay Shukla

Principal Product Manager, AWS

Maor Kleider

Principal Product Manager, AWS

Jonathan Burket

Senior Software Engineer, Duolingo

Large trends in data

Exponential growth of event data

End-to-end insights from analyzing all your data

Challenges of data analytics at scale

Data volume, variety, velocity

Performance, concurrency

Multiple analytics needs

Security, governance

Increasingly costly, inflexible

Amazon Redshift architecture

Massively parallel, shared-nothing architecture

Leader node

SQL endpoint, stores metadata

Coordinates parallel SQL processing

Free for any cluster with two or more nodes

Compute nodes

Local, columnar storage

Executes queries in parallel

Load, backup, restore

Amazon Redshift Spectrum nodes

Serverless, not managed by customer, bring power proportional to cluster slices

Execute queries directly against data lake

Challenges with growing data: volume, variety, velocity

Data at any scale: Query all your data Unified view: Local storage and Amazon S3 Data Lake

Directly query exabytes in S3

No data loading, eliminate ingestion time

Unified view of data across Amazon Redshift and S3

Scale compute and storage separately

No server to maintain for S3 query

Support for Parquet, ORC, Avro, CSV, JSON, Grok, and other open file formats

Pay only for the amount of data scanned

Challenges with rapidly growing data

Amazon Redshift Architecture

Leader Node

Either

Compute optimized

DC2.8xlarge

2.56 TB SSDs storage

DC2.large

.16 TB SSDs storage

Storage optimized

DS2.8xlarge

16 TB HDDs storage

DS2.XL

2 TB HDDs storage

Growing dark data

Solution until NOW

Add nodes

Delete old data

Unload data to data lake

3rd generation compute instance: RA3 Scale compute and storage independently

Size data warehouse only based on steady-state compute needs

Scale and pay independently for compute and storage

Automatic, no changes to any workflows, no need to manage storage

RA3: Unmatched performance at unbeatable price

RA3.16xl

Can scale to tens of PB of data (8 PB compressed)

On demand price — \$13.04/node/hr

For storage pay \$0.024/GB/month

2x performance and 2x storage capacity compared to DS2.8XL at the same on-demand price

3x price-performance compared to any other Cloud DW

Up-to 64 TB in managed storage per RA3.16xl node

Coming soon RA3.4xl

RA3: Node specification

Node size: ra3.16xlarge

Node counts: 2-128

vCPUs: 48

Memory (GiB): 384

Managed storage quota: 64 TB (compressed)

Largest cluster: 8 PB (compressed)

AWS Nitro System

Breaks apart hypervisor, storage, networking, and management

Offloads to dedicated hardware and software

RA3: Migration from DS2

Most DS2.8XL clusters will get up to 2x performance and 2x storage with RA3.16XL for the same on-demand price (in 2:1 ratio) Can migrate in 2:1, 3:1, or even 4:1 node count ratio (DS2.8XL:RA3.16XL)

Smaller DS2 clusters with under 10 TB, best suited for RA3.4XL

RA3: Migration from DC2

Larger DC2.8XL clusters who need more storage capacity can potentially benefit from RA3 Can migrate in 3:1
node count ratio
(DC2.8XL to RA3:16XL)
for price-equivalent

At price-equivalent RA3 provides similar performance to DC2 but provide 8x more storage capacity

For smaller clusters with 5-10 TB of data, stay with DC2 for best price-performance

RA3 evaluation results: 3 examples

Customer 1

Compared price-equivalent 14 nodes DS2.8XL to 7 nodes of RA3.16XL; most queries were up-to 2.1x faster.

Customer 2

Compared price-equivalent 15 nodes of DC2.8XL to 5 nodes of RA3.16XL; most queries were 1.25x faster, some queries were .8x slower.

Customer 3

Compared price-equivalent 16 node DS2.8XL to 8 nodes of RA3.16XL; most queries and ETL were 1.3x faster.

RA3: Migration considerations

Migrate using restore from snapshot

- Get a new RA3 cluster in minutes
- Validate the new RA3 cluster and delete the old cluster
- Use modify cluster to rename the RA3 cluster to old cluster's name
- Reduces the flexibility of Elastic Resize

Another option is classic resize

- Classic resize copies data from old to new cluster and renames the cluster upon completion (Classic resize is slower than restore)
- Retains full flexibility of Elastic Resize

duolingo

Analytics data stored in Amazon Redshift

Redshift disk utilization

Date ranges queried by ad-hoc queries

Experience with RA3 Queries above yellow line were slower; below were faster

- 2x Faster COPY performance
- 78% of ad-hoc queries performed faster (median improvement: 2.1x)
- 2.3x average runtime improvement for our query benchmark

Performance and concurrency at ever increasing scale

AQUA for Amazon Redshift - Advanced Query Accelerator

A new distributed and hardware-accelerated processing layer that will make Amazon Redshift **10x faster** than any other cloud data warehouse without increasing cost

Preview!

Minimize data movement over the network by pushing down operations to AQUA Nodes

AQUA Nodes with custom AWS-designed analytics processors to make operations (compression, encryption, filtering, and aggregations) faster than traditional CPUs

Available only with RA3, no code changes required.

Available in preview.

Two forms of compute elasticity

Vertical scaling

How can I speed up my running jobs?

Add more nodes with Elastic Resize

Horizontal scaling

How do I support spikes in users without provisioning for peak demand?

Enable concurrency scaling

Question

Answer

Elastic resize: Change cluster performance

Add or remove compute nodes to an existing cluster

Completes within few minutes

Minimal disruption to sessions and queries running

Concurrency scaling: Eliminate wait time for bursts of users

Scale-out to multiple Amazon Redshift clusters from a single endpoint in seconds

Support virtually unlimited concurrent users and queries while maintaining SLAs

Per-second billing for additional clusters used

Free 1hr usage per day (free for 97% of clusters)

35x improvement in throughput in 2019

Multiple analytics needs

Enable all your analytical workloads: Choose best tool for the job

Exabyte scale

Store and analyze relational and non-relational data

Purpose-built analytics tools

Cost effective

Store at 2.3 cents per GB/month in Amazon S3 Query with Amazon Athena at ½ cent per GB scanned DW with Amazon Redshift for \$1,000/TB/year

Give access to everyone

Amazon QuickSight: \$.0.30/session up to max of \$5 per month. No usage, no fee; little usage, little fee; max \$5 per month

Export Amazon Redshift data as Parquet to S3

Amazon Redshift now supports exporting data to S3 in Parquet format. This makes sharing data across the data lake easier and faster, without conversion.

Parquet is an open data format supported by

EMR, Athena, and Redshift

Amazon Redshift Unload command now supports Parquet format. This allows data in Redshift to be exported as Parquet to be processed by EMR or Athena without any data conversion.

Security

Amazon Redshift: Security is built in at no extra cost

AWS IAM integration

End-to-end encryption

Integration with AWS Key Management Service

Select compliance certifications*

*Full list of compliance certifications is available here: https://aws.amazon.com/compliance/

Network isolation

Unified column level access control for the data lake

Single-Sign On with Azure Active Directory

Amazon Redshift now integrates with Azure Active Directory to provide Single-Sign On

Single-Sign On with Azure Active Directory

SAML compliant Single-sign On.

Redshift ODBC/JDBC drivers support industry standard SAML workflows and integrate with both on-premise and Cloud SSO providers. Azure AD, Active Directory Federation Services, Okta, Ping Federate.

Benefits

Simple: Re-use corporate identity with Redshift

Compliance: use Azure AD base password policies, password rotation, onboarding etc

Reduce TCO: easier Amazon Redshift

Amazon Redshift Federated Query

Query and join data from one or more RDS and Aurora PostgreSQL databases

Analytics on operational data without data movement and ETL delays

Integrate operational data with data warehouse and S3 data lake

Flexible and easy way to ingest data avoiding complex ETL pipelines

Intelligent distribution of computation to remote sources to optimize performance

Materialized views Compute once, query many times

Speed up queries by orders of magnitude

Joins, filters, aggregations, and projections

Simplify and accelerate ETL/BI pipelines

- Incremental refresh
- User triggered maintenance

Easier and faster migration to Amazon Redshift

Amazon Redshift automates tuning and maintenance

Simplified user experience

Optimizes for peak performance as workloads and data scale

Automatic data layout changes and smart recommendations based on continuous analysis of workloads

Automatic Analyze

Automatic Table Distribution Style

Automatic Vacuum Delete

Automatic Table Sort

New Amazon Redshift console

Modernizes interface and enhances user experience

Gain visibility to health of all clusters in your account

Simplify creation and management of clusters

Reduced time to diagnose user query performance issues

Share Query Editor with non-admin users

Monitoring of User Queries Diagnose query performance faster

Monitor your queries

View all rewritten query in context

Visual analysis of query plan

Correlate with cluster performance

View in-place recommendation

Query Editor

Easier to run and analyze your queries

Share the query editor to nonadmin users as a separate URL

Command assist, autocomplete and keyboard shortcuts

Visually analyze your query results

In-place analysis of query plan

Stored procedures support to simplify migrations

Use Schema Conversion Tool to automatically convert your stored procedures

Migrating to Amazon Redshift is even easier!

Amazon Redshift supports Stored Procedures in PL/pgSQL format Stored procedures used for ETL, data validation, and custom business logic close to data.

```
CREATE OR REPLACE PROCEDURE test_sp1(f1 int, f2 varchar)
AS $$

BEGIN

RAISE INFO 'f1 = %, f2 = %', f1, f2;

END;

$$ LANGUAGE plpgsql;

call test_sp1(5, 'abc');

INFO: f1 = 5, f2 = abc
```

Spatial processing

Spatial Analytics at scale — ingest, store and analyze spatial data

Seamlessly integrate spatial and business data

Get new dimension of insights and value

New data type GEOMETRY

40+ SQL spatial functions Accessors, Constructors, Predicates

Spatial processing — sample query


```
SELECT name, ST_X(shape) as lng, ST_Y(shape) as lat, price
FROM accommodations
WHERE ST_Within(shape, ST_GeomFromText( 'POLYGON((13.111839294433596
52.4285942596063, 13.111839294433596 52.60117089057946, 52.4285942596063))', 4326))
LIMIT 5000
```

Data Types

GEOMETRY
Point, Linestring, Polygon,
MultiPoint, MultiLinestring,
MultiPolygon,
GeometryCollection

Spatial Accessors

ST_NumGeometries,
ST_GeometryType,
ST_Dimension, ...

Spatial Predicates

ST_Covers, ST_Equals,
ST_Within, ST_DWithin,...

Spatial Functions

ST_Distance,
ST_Azimuth, ...

Spatial Formats

WKT/WKB, EWKT/EWKB, GeoJSON Ingestion: CSV

Amazon Redshift benefits

Tens of thousands of customers use Amazon Redshift and process exabytes of data per day

Data lake & AWS integrated

Lake Formation catalog and security, Exabyte scale query (spectrum & federated), AWS integrated (DMS, CloudWatch)

Best performance

3x faster than other cloud data warehouses

Lowest cost

75% less expensive than all other cloud data warehouses and predictable costs

Most scalable

Virtually unlimited concurrency, scale compute and storage independently

Most secure & compliant

AWS-grade security, (e.g. VPC, encryption with KMS, Cloud Trail), Certifications such as SOC, PCI, DSS, ISO, FedRAMP, HIPAA

Fully managed

Easy to provision and manage, automated backups, AWS support, 99.9% SLAs

Thank you!

Please complete the session survey in the mobile app.

