

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless big data processing

Doug Gartner

S V S 3 2 5 - R

Solutions Architect

Amazon Web Services

Serverless review

No infrastructure provisioning,

no management

Automatic scaling

Pay for value Highly available and secure

Serverless compute engine

for containers

Long-running

Bring existing code

Fully managed orchestration

AWS Fargate

AWS Lambda and AWS Fargate

Serverless event-driven

code execution

Short-lived

All language runtimes

Data source integrations

AWS Lambda

• Know the limits and concurrency behavior

• Minimize package size to necessities

• Avoid using recursive code in your Lambda function

• Use environment variables to modify operational behavior

• Self-contain dependencies in your function package

• Consider use layers for reuse

• Delete large unused functions (75-GB limit)

https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

AWS Lambda best pract ices

Tweak your function’s computer power

Lambda exposes only a memory control, with the % of CPU core and
network capacity allocated to a function proportionally

Is your code CPU, network, or memory-bound? If so, it could be cheaper to choose more
memory.

Data catalog

▪ Hive Metastore compatible with enhanced functionality

▪ Crawlers automatically extract metadata and create tables

▪ Integrated with Amazon Athena, Amazon Redshift Spectrum

Job execution

▪ Runs jobs on a serverless Spark platform

▪ Provides flexible scheduling

▪ Handles dependency resolution, monitoring, and alerting

Job authoring

▪ Automatically generates ETL code

▪ Build on open frameworks (e.g., Python and Spark)

▪ Developer-centric: editing, debugging, sharing

AWS Glue components

What is an AWS Glue job?

An AWS Glue job encapsulates the business logic that performs

extract, transform, and load (ETL) work

• A core building block in your production ETL pipeline

• Provide your PySpark ETL script or have one automatically generated

• Supports a rich set of built-in AWS Glue transformations

• Jobs can be started, stopped, monitored

What is an AWS Glue trigger?

Triggers are the “glue” in your AWS Glue ETL pipeline

Triggers

• Can be used to chain multiple AWS Glue jobs in a series

• Can start multiple jobs at once

• Can be scheduled, on-demand, or based on job events

• Can pass unique parameters to customize AWS Glue job runs

Three ways to set up an AWS Glue ETL pipeline

• Schedule-driven

• Event-driven

• State machine–driven

Schedule-driven AWS Glue ETL pipeline

We work our way backward from a daily SLA deadline

Event-driven AWS Glue ETL pipeline

Let Amazon CloudWatch Events and AWS Lambda drive the pipeline

Serverless optimization

AWS Glue data processing units
Job execution in AWS Glue

• Number of actively running executors

• Number of completed stages

• Number of maximum needed executors

Right tool for the right job

When to use AWS Glue versus AWS Lambda versus Amazon EMR?

• Size of data?
If your data volume isn’t heavy, don’t overengineer

• Frequency of data ingest?
Is the data analysis fairly constant and consistent, or does it come in on regularly scheduled
intervals (e.g., 1 hour)?

• In-line analysis?
Do you need to perform streaming analysis of the data? (see Amazon Kinesis Data Analytics)

Downstream datastores

When to use a different datastore
• Amazon S3 is an excellent “catch-all”

• Use data characteristics and metrics to determine when to use Amazon Redshift, Amazon
Relational Database Service (Amazon RDS), or another option

• Work backward from your main objectives while remaining flexible

Amazon Simple Storage

Service (Amazon S3)
Amazon RDS

Amazon DynamoDBAWS Lake Formation Amazon DocumentDB (with

MongoDB compatibility)

Amazon Neptune

Amazon Redshift

Amazon Elasticsearch

Service (Amazon ES)

Serverless query and analysis

Amazon Athena
• Optimize for storage, optimize for compute

• Use Amazon Redshift Spectrum if your queries are computationally heavy and need to take
advantage of active cluster memory

• Use approximate functions for exploratory analysis

Amazon QuickSight
• Iterate on exploratory analysis with eventual publishing to dashboards

• Leverage Cross Source Join when ad-hoc analysis is necessary

• Use Templates for common dashboards

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Free, on-demand courses on serverless, including

Visit the Learning Library at https://aws.training

Additional digital and classroom trainings cover modern
application development and computing

Learn serverless with AWS Training and Certification
Resources created by the experts at AWS to help you learn modern application development

• Introduction to Serverless

Development

• Getting into the Serverless

Mindset

• AWS Lambda Foundations

• Amazon API Gateway for

Serverless Applications

• Amazon DynamoDB for Serverless

Architectures

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Python libraries

Numpy, SciPy, and Pandas
Lambda layer published to support both

Lambda Runtime API

import numpy as np

from scipy.spatial

import ConvexHull

def lambda_handler(event, context):

Smart resource allocation

Match resource allocation (up to 3 GB) to logic

Stats for Lambda function that calculates 1000 times all prime numbers

up to 1,000,000

128 MB 11.722965 sec $0.024628

256 MB 6.678945 sec $0.028035

512 MB 3.194954 sec $0.026830

1024 MB 1.465984 sec $0.024638

Green = best Red = worst

Smart resource allocation

Match resource allocation (up to 3 GB) to logic

Stats for Lambda function that calculates 1000 times all prime numbers

up to 1,000,000

128 MB 11.722965sec $0.024628

256 MB 6.678945sec $0.028035

512 MB 3.194954sec $0.026830

1024 MB 1.465984sec $0.024638

Green = best Red = worst

+$0.00001−10.256981 sec

