

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Neptune best practices: How to
optimize your graph queries

Michael Schmidt

D A T 3 4 7 - R

Sr. Software Development Engineer

Amazon Web Services

Agenda

Amazon Neptune introduction, architecture, and monitoring

Query optimization and performance tuning

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Graph use cases

Connected data queries
Navigate (variably) connected structure

Filter or compute a result based on strength, weight, or quality of relationships

Social

networking

Recommendations Knowledge

graphs
Fraud detection Life Sciences Network and IT

operations

Neptune: Fully managed graph database

Fast Reliable Open

Query billions of relationships

with millisecond latency

Six replicas of your data across

three AZs with full backup and

restore

Build powerful queries easily

with Gremlin and SPARQL

Supports Apache TinkerPop

and W3C RDF graph models

Easy

Neptune architecture

Bulk load

from

Amazon S3

Database

mgmt.

Cloud-native storage

• Data is replicated six times across three
AZs

• Continuous backup to Amazon S3

• Built for eleven nines of durability

• Continuous monitoring of nodes and
disks

• 10 GB segments as unit of repair of
hotspot rebalance

• Quorum system for read/write; latency
tolerant

• Quorum membership changes do not
stall writes

• Storage volume automatically grows up
to 64 TB

AZ 1 AZ 2 AZ 3

Amazon S3

Neptune

Storage

node

Storage

node

Storage

node

Storage

node

Storage

node

Storage

node

Storage

monitoring

Read replicas

• Availability

• Failing database nodes are
automatically detected and replaced

• Failing database processes are
automatically detected and recycled

• Replicas are automatically promoted to
primary if needed (failover)

• Customer specifiable failover order

• Performance

• Customer applications can scale out
read traffic across read replicas

• Read balancing across read replicas

• Use reader endpoint

AZ 1 AZ 3AZ 2

Primary

NodePrimary

Node

Primary

master

node

Primary

NodePrimary

NodeRead

replica

Primary

NodePrimary

NodeRead

replica

Cluster

and instance

monitoring

Monitoring

AWS CloudTrail
Log all Neptune API calls to S3 buckets

Event notifications
Create Amazon SNS subscription via CLI or SDK

Sources: db-instance | db_cluster |

db-parameter-group | db-security-group |

db-snapshot | db-cluster-snapshot

Amazon CloudWatch

BackupRetentionPeriodStorageUsed GremlinRequestsPerSec NumTxCommitted TotalRequestsPerSec

CPUUtilization GremlinWebSocketOpenConnections NumTxOpened TotalServerErrorsPerSec

ClusterReplicaLag LoaderRequestsPerSec NumTxRolledBack VolumeBytesUsed

ClusterReplicaLagMaximum MainRequestQueuePendingRequests SnapshotStorageUsed VolumeReadIOPs

ClusterReplicaLagMinimum NetworkReceiveThroughput SparqlRequestsPerSec VolumeWriteIOPs

EngineUptime NetworkThroughput TotalBackupStorageBilled

FreeableMemory NetworkTransmitThroughput TotalClientErrorsPerSec

Hands on!

Run the experiments in your
Jupyter notebook to learn about:

• Basic Neptune APIs

• Loading data into Neptune

https://dashboard.eventengine.run/login

https://dashboard.eventengine.run/login

Architecture for hands-on experiments

Amazon

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Air routes dataset

• Models the world’s airline route network

• Queries operating over the airport
connectivity graph

• Sample queries

• Given

• Source and target airport

• Find

• All one-stop connections

https://github.com/krlawrence/graph/tree/master/sample-data

https://github.com/krlawrence/graph/tree/master/sample-data

Sample query: Gremlin

Gremlin

g.V() // start out with all vertices

.has('code','SEA’) // select vertices having code = ‘SEA’

.out('route’) // follow ’route’ edge

.as('via’) // save node in variable ’via’

.out('route’) // follow ‘route edge again

.has('code','FRA’) // assert we ended up in FRA

.select('via’) // jump back to the via airport

.values('code’) // select airport code

Sample query: SPARQL

SPARQL

PREFIX airport: <http://kelvinlawrence.net/air-routes/resource/airport/>

PREFIX edge: <http://kelvinlawrence.net/air-routes/objectProperty/>

PREFIX prop: <http://kelvinlawrence.net/air-routes/datatypeProperty/>

SELECT ?via ?viaCode WHERE {

airport:SEA edge:route ?via .

?via prop:code ?viaCode .

?via edge:route airport:FRA .

}

Hands on!

Run the experiments in your
Jupyter notebook to learn about:

• Running, understanding, and
tuning queries

• Performance monitoring via
CloudWatch

• Measuring latency and
throughput at client side

• Scaling throughput

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

25+ free digital training courses cover topics and services
related to databases, including:

Validate expertise with the new AWS Certified Database - Specialty beta
exam

Learn databases with AWS Training and Certification

• Amazon Aurora

• Amazon Neptune

• Amazon DocumentDB

• Amazon DynamoDB

• Amazon ElastiCache

• Amazon Redshift

• Amazon RDS

Visit aws.training

Resources created by the experts at AWS to help you build and validate database skills

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its Affiliates.

Neptune Reference Customers

Air routes dataset (RDF)

• Models the world’s airline route network

• Queries operating over the airport
connectivity graph

• Sample queries

• Given

• Source and target airport

• Find

• All one-stop connections

https://github.com/krlawrence/graph/tree/master/sample-data

https://github.com/krlawrence/graph/tree/master/sample-data

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

