
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Roadmap for Containers, Application
Networking, and Amazon Linux

Abby Fuller

C O N 2 1 7

Containers and Linux @ AWS

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kind of.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Patterns and abstractions make applications
repeatable

With distributed systems comes complexity;
abstractions can mitigate this. How can we make
building and running applications streamlined,
repeatable, and modular? [ecs-cli 2.0]

Control over what you care about (and sensible
defaults for the rest)

The other face of abstractions is the ability to
customize where it matters to you, whether that
means control over how much you want to pay
[Fargate Spot, Savings Plan], or how many knobs you
want to tweak [EKS on Fargate, EKS IAM roles for
service accounts/pods].

This also means control over the tools you use: We
aim to provide sensible default tools built off of OSS
tools and standards [FireLens], but it also means the
ability to use a totally different set of tools if you want
[eksctl with Weave, upstream Kubernetes for EKS,
Argo/Flux]. We contribute back to projects that our
customers use to help them work better with AWS
[atlassian/escalator, spinnaker]

Always-evolving compute

It’s not just about reimplementing EC2 at the
container level - we are fundamentally changing how
developers think [like Lambda]. With Fargate [ECS on
Fargate, EKS on Fargate], developers no longer have
to manage their infrastructure at the cluster level, but
it can’t stop there.

How can we remove the concepts of clusters entirely?
How can we eliminate the need for things like CRDs?

Abstractions, patterns, integrations, sensible defaults,
and the ability to tweak just the settings you care
about. Everything you write should be be business
logic, but how can we get there?

Stronger integrations with other AWS services

Integrations between AWS services should feel
seamless. Not just container native, but AWS native.

Whether it’s autoscaling, networking, or monitoring,
we’ve focused on having tight, first class integrations
between all parts of AWS [ENI trunking, CloudWatch
Container Insights, Cluster Autoscaling].

More community transparency, more feedback from
our users

This year, we’ve opened up our roadmap for all of the
AWS container and application networking services
[roadmaps for ECS, Fargate, EKS, ECR, App Mesh].
Developers can see what we’re working on, what’s
shipping soon, and what we’re thinking about
building next, plus join developer previews and
comment on RFCs.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

We’ve launched a lot over the last year

Here’s a few highlights

ECS (Elastic Container Service)

Compute Savings Plan

Support for additional log drivers (SumoLogic, FluentD)

Container Insights integration

Additional CloudWatch events

Additional CloudFormation support

Multiple target groups per load balancer

Run task definitions locally

FireLens support

ENI density improvements

EKS (Elastic Kubernetes Service)

Support for Windows nodes

Managed worker node groups

Instance draining with Spot

IAM Roles for service accounts (pods)

Container insights integration

New CNI versions

Deep learning benchmarking utility

Control plane metrics endpoint

Argo/Flux GitOps

Fargate

FireLens support

Support for additional log drivers

More CloudFormation support

More CloudWatch events support

More regions

Support for Compute Savings Plan

Price reduction (1/7/2019)

ECR (Elastic Container Registry)

FIPS compliance

VPC private endpoint policies (PrivateLink support)

Immutable image tags

Support for additional CloudWatch events

Image vulnerability scanning

EventBridge support

App Mesh

GA! + Preview Channel

HTTP2/gRPC support

Cookie-based, HTTP and TCP based routing

Weave Flagger integration

EKS and CloudMap integration

App Mesh Controllers for Kubernetes

In Preview Channel: end-to-end encryption with ACM and customer-
managed certificates, cross account support

What about re:Invent launches?

EKS on Fargate

Fargate Spot

Cluster Autoscaling

ECS Capacity Providers

ecs-cli v2 preview

ECS, EKS, and App Mesh support for Outposts

New and exciting at re:Invent

AWS EKS support for AWS Fargate

Use EKS to run Kubernetes pods on AWS Fargate.

In other words, run Kubernetes-based applications without managing or
provisioning infrastructure. With Fargate, define and pay for resources at
the pod level. Pods run with a VM-level isolation boundary.

With Fargate, customers don’t need to be Kubernetes operations experts
to run a secure, available, cost-optimized cluster.

Fargate Spot

Now run your Fargate-based tasks on Spot capacity. Fargate Spot is spare
Fargate capacity at a savings of up to 70%.

per-second
significant discount

savings
up to 70%

EC2 Spot vs Fargate Spot

Amazon EC2 Spot AWS Fargate Spot

Unused EC2 Capacity

Save up to 90% over On-Demand

Can be reclaimed by EC2 (with

two-minute warning)

You choose instance pools,

recommend flexibility across

multiple instance types and use

Capacity optimized allocation

strategy

Unused Fargate Capacity

Save up to 70% over standard

Fargate

Can be reclaimed

(with two minute warning)

Automatic diversification

ECS Cluster Capacity Providers

With ECS Capacity Providers, customers will be able to define multiple
Auto Scaling Groups in a single cluster; each ASG is associated with its
own Capacity Provider.

A Capacity Provider can be EC2 Spot, EC2 On-Demand, Fargate Spot, or
Fargate On-Demand.

Capacity Providers

Future: Mixing Capacity Providers

ECS Cluster Autoscaling

Two pieces: a new ECS cluster scaling metric, and container-aware
instance termination management.

The new metric, called the task reservation, measures the total
percentage of cluster resources needed by all ECS workloads in the
cluster. This metric enables the scaling policy to scale out quicker and
more reliably than it could when using CPU or memory reservation
metrics. Customers can also use this metric to reserve spare capacity in
their clusters.

ECS Cluster Autoscaling

Part two: Instance termination management

With instance termination management, ECS controls which instances the
scaling policy is allowed to terminate on scale in, with the objective of
minimizing disruptions of running containers. These improvements help
customers achieve lower operational costs and higher availability of their
container workloads running on ECS.

ecs-cli v2

Create, release and manage production ready containerized applications
on ECS. Applications built with the ecs-cli are modern and serverless by
default, and include operations (like debugging and deployments) as part
of the workflow.

Once you've built something you're excited to deploy, let the ecs-cli set
up a CI/CD pipeline for you, with built-in testing hooks and manual gates.
Tail your logs, monitor your key metrics and push updates all from the
comfort of your terminal.

ecs-cli v2

Use the ecs-cli to:

• Bring your existing Docker apps

• Set up staging and production environments, cross region and cross
account

• Set up production-ready, battle-tested ECS Clusters, Services and
infrastructure

• Set up CI/CD Pipelines for all of the micro-services that make up your
Project

• Monitor and debug your applications

How can you find out more?

The ecs-cli is open source, and published on GitHub. Ask questions, file
issues, or download the source here.

https://github.com/aws/amazon-ecs-cli-v2

How can you learn more?

Some breakouts and other options (that you can still
go to)

• CON333-R2 - Best practices for CI/CD using AWS Fargate and
Amazon ECS (Clare Liguori, Hsing-Hui Hsu)

• CON208-R2 - [REPEAT 2] Build your microservices application on
AWS Fargate (Nathan Peck, Adam Keller)

• CON328-R1 - [REPEAT 1] Improving observability of your containers
(Akshay Ram, Shubha Rao, Sharanya Devaraj)

• CON324/325 - Container Cost Optimization, ECS Capacity Providers
(both Nick Coult)

• CON312 - chalk talk on Cluster Autoscaling

• Containers coverage on twitch.tv/aws

After re:Invent

Containers and App Mesh GitHub roadmaps (more on that in a bit)

Container blog: https://aws.amazon.com/blogs/containers/welcome-to-
the-aws-containers-blog/

Breakout sessions from re:Invent are posted on YouTube

Workshops: ecsworkshop.com, eksworkshop.com

App Mesh Examples: https://github.com/aws/aws-app-mesh-examples

https://github.com/aws/containers-roadmap/projects/1
https://github.com/aws/aws-app-mesh-roadmap/projects/1
https://aws.amazon.com/blogs/containers/welcome-to-the-aws-containers-blog/
http://ecsworkshop.com/
http://eksworkshop.com/
https://github.com/aws/aws-app-mesh-examples

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What’s Amazon Linux?

Linux distro designed to provide a stable, secure, and
high performance execution environment for
applications running on EC2. Support for the latest
EC2 instance type features plus packages that enable
easy integration with AWS. We provide security and
maintenance updates to all instances running the
Amazon Linux AMI. Packages available via yum.

What are we focusing on?

Upcoming AL1 deprecation (December 30, 2020)

• Extended maintenance support through June 30, 2023

• Specific packages/CVE classes that will be covered by EMS coming
soon

What’s new with AL2? Let’s talk about Extras.

Iterating on the container space, both as a host OS for containers (like the
ecs-optimized AMI), and as an OS inside containers (FROM: amazon-linux-
2)

Getting more frequent package and AMI updates (newer software faster)

Most importantly: We want to hear from you!

abbyfull@amazon.com
trawets@amazon.com

mailto:abbyfull@amazon.com
mailto:trawets@amazon.com

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do YOU want to see?

Here’s what we’re thinking about

tl;dr: more focus on abstractions and developer
experience, more ability to tweaks knobs when you
need them.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Public GitHub roadmaps

https://github.com/aws/containers-roadmap/projects/1

Public GitHub roadmaps

https://github.com/aws/aws-app-mesh-roadmap/projects/1

Developer previews

https://github.com/aws/containers-roadmap/issues?q=is%3Aopen+is%3Aissue+label%3A%22Developer+Preview%22

Developer previews

https://github.com/aws/aws-app-mesh-roadmap/issues?q=is%3Aopen+is%3Aissue+label%3A%22Phase%3A+In+Preview%22

Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Abby Fuller

@abbyfuller
abbyfull@amazon.com

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

