


© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless at scale

S V S 2 1 9 - S

Will Hattingh

Distinguished Engineer, Architect

Capital One

Tanusree McCabe

Distinguished Engineer, Architect

Capital One



Agenda

What is serverless?

Patterns

Conclusion



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



A service is serverless if the following apply

• “No” servers

• There are no servers exposed that need to be directly administered

• Elastic

• Service scales automatically and is highly available

• Pay as you go

• You only pay for what you use

“Managed” services are similar but still require the user to perform 

some server administration (e.g., Amazon ECS)



Representative serverless offerings

Serverless is applicable for web-based applications, 

real-time analytics, and processing

AWS 

Fargate

AWS 

Batch

AWS 

Lambda

Compute

AWS Step 

Functions

Amazon API 

Gateway

Integration

Amazon 

CloudWatch

Mobile

AWS 

X-Ray

Monitoring

Amazon 

SNS

Amazon 

SQS

AWS Aurora 

Serverless

Database

Amazon 

DynamoDB

Storage

Amazon 

S3

Analytics

Amazon 

Kinesis

Amazon 

Athena

AWS 

Glue



Capital One by the numbers

• Thousands to hundreds of thousands of AWS Lambda functions

• Multi-regional footprint

• Many PBs of data

• Many TB/day ingestion

• Thousands of serverless applications

• Numerous environments



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Event-based architecture suits serverless

• Asynchronous call enables decoupled systems

• Enables immutable, persistent, shareable events

• Highly resilient to failure

• Able to scale effectively

• Highly observable and extensible system

• Independently releasable

• Independently optimizable

Producer Consumer

Event

Event Store

Create Subscribe



Event-based IRL: Static website hosting

• ALBs have limits

• Streaming is not available

• Gzip is your friend

• Private static websites

• Private single-page application (SPA)

• Hot Lambda shares memory

• Caching reduces calls

Lessons learned

Application 

Load Balancer 

(ALB)

Lambda Amazon S3



Event-based IRL: API Server 

• ALBs have limits

• Gzip is your friend

Data processing

• Co-location of API server and 
ETL job reduces latency and 
improves security

• Amazon API Gateway private 
link policy improves security

Lessons learned

Lambda Amazon S3
Amazon API 

Gateway



Event-based IRL: Event-driven Lambda

• Funnel to singular Amazon 
SQS/Lambda

• Cross-account roles need to 
be carefully managed

• Cloud platform log ingestion

• Cloud compliance monitoring

• ETL

• Log grokking and alerting at 
hyper scale

• Image optimization is free; no 
more build time requirements

Lessons learned

Amazon 

S3

Amazon

SNS

Amazon 

SQS

Lambda



Event-based IRL: Data processing (1)

• Sharding vs. concurrency 

• Amazon Kinesis SDK 
updates can be a surprise

• Data loss prevention

• Monitoring -> ML features

• Multi-headed subscription 
does not exist currently

Lessons learned

Amazon 

CloudWatch

log group

Amazon 

Kinesis
Amazon 

Kinesis 

Data 

Analytics

Amazon 

Kinesis 

Data 

Firehose

Amazon 

S3



Event-based IRL: Data processing (2)

• Amazon Athena 
performance varies based 
on query complexity and 
dataset structuring

• .CSV file formats can be 
hard to be consistent

• Data catalog

• Auto-classification

• Can’t control “right” 
association of AWS Glue 
crawler IAM role

• Cross-account access can be 
a limiter

Lessons learned

Amazon S3

AWS Glue

Amazon 

Athena

Amazon S3



Event-based IRL: Rules engine

• Max input/result data size 
can be breached if a loop 
of wait conditions is 
implemented

• Redundant state outputs 
should use override logic

• Self-healing

• Policy-driven automation

• Transmitting state data has 
helped using persistent store 

• Cross-account Lambda 
invocation limit needs to be 
handled

Lessons learned

Lambda
Lambda

Lambda

AWS 

Step 

Functions

DynamoDB



Event-based IRL: CDN customization

• Lambda@Edge is only 
available in UE1 for config

• Logs are written to the same 
region as execution

• Filter

• Rewrite

• A/B testing made easy

• Routing is complex multi-
region (failover conditions)

Lessons learned

Amazon 

CloudFront

Lambda@Edge



Event-based IRL: Multi-region resiliency

• AWS doesn’t have a 
replication SLA

• Resiliency by reducing 
blast radius

• Multi-write

• Active-active

• Allows rolling deployments

• Lambda@Edge can help 
with failover

Lessons learned

Region 1 Region 2 Region 3

Amazon S3 Amazon S3 Amazon S3

Lambda



Successful scaling can break the things

• Rapid scaling causes downstream 
impact

• Downstream must support scaling

• API gateways can be overrun

• Limits and enablement

• Does downstream support rate limits?

• How does the calling application handle 
rate limits?

• What happens when you hit all the circuit 
breakers?

Region 1

Backend 

Application

Region 2

Backend 

Application

Region 3

Backend 

Application

Region 1

Region 2

Region 3



Lessons learned regarding security

• Lambda is ephemeral

• Security focus shifts to surrounding infrastructure

• Re-run containers can still be attacked

• Memory space needs to be secured

• IAM can be complex

• Conditional based on ARN

• Trade-off roles vs. resource-based policy based on complexity

• Managing ingress is better than managing egress

• Private network options have trade-offs

• Public API endpoints 

• Private link 

• Private DNS resolution



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



In summary

• Developing serverless solutions requires an AWS account – no true 
local development

• Need to optimize deployment architecture

• Need to enable observability from the onset



Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.


