


© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deep dive into Amazon RDS Proxy 
for scaling applications

Chayan Biswas

Principal Product Manager

AWS

D A T 3 1 8



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Introduction to Amazon RDS Proxy 

Deep dive into RDS Proxy benefits – scalability, availability, and security 

Demo

Best practices

What’s next? 

Agenda



Today’s applications demand

Scalability Availability Security

Scale to hundreds of 
thousands of 
connections

availability 
DB failover times

data 
security 
access controls



Choices include

Overprovisioning 

• Precious database compute resources spent on 
managing connections

• Maintain complex failure handling code to 
overcome transient failures 

Self-managing a database proxy 

• Deploy, patch, and manage yet another 
component

• Distribute across AZs for high availability 



Amazon RDS Proxy: Skip the heavy lifting

Fully managed Connection pooling Fast and seamless failovers

A fully managed, highly available database proxy for Amazon RDS and Amazon Aurora

Pools and shares DB connections to make applications more scalable, more resilient to 
database failures, and more secure

Improved security

No need to deploy and 
maintain a proxy, highly 
available, MySQL- and 

PostgreSQL-compatible

Store passwords in 
AWS Secrets Manager and 
enforce IAM authentication

66% faster failovers and 
no loss of connectivity

Pool and share DB 
connections for 

improved scalability

Amazon 
RDS Proxy



How it works

AWS Lambda

Ruby, PHP, …

Containers

Amazon RDSConnection pooling

Seamless failovers

Improved securityAmazon 
RDS Proxy

Amazon Aurora

Application Proxy Database



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scalability



Share database connections between transactions with multiplexing

Scale to support hundreds of thousands of connections 

Connection pooling

Amazon 
RDS 

Proxy

App

App

App



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Availability



• Application connections are preserved and transactions are queued
during failovers 

• Detects failovers and connects to standby quicker, bypassing DNS 
caches and downstream TTLs

• Up to 66% faster failover times 

Seamless and fast failovers

DB

DB

Amazon 
RDS 

Proxy

App

App

App



66% faster failover



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Security



Amazon RDS Proxy authorization

Amazon RDS

Amazon Aurora

Connection pooling

Seamless failovers

Improved security

Secrets 

Manager

Secrets 

Manager

AWS IAM

User name + 

password

Lambda

Ruby, PHP, …

Containers

Amazon 
RDS Proxy

Application Proxy Database



Enforce IAM authentication with your relational databases

Improved application security



Centrally manage database credentials using Secrets Manager

Improved application security

1) R
equest a

uthenticatio
n to

ken

2) R
eceive authenticatio

n to
ken

3) Connect to Amazon RDS Proxy with 
IAM token and validate token

6) Connect to Amazon RDS 
Proxy with the secret 
(username and password)

4) C
all S

ecrets M
anager 

for m
apped identity

5) R
eceive se

cret

Amazon 
RDS Proxy

Amazon 
Aurora

Application

IAM Secrets 
Manager



…

client = boto3.client("rds")

DBEndPoint = os.environ.get("DBEndPoint")

DatabaseName = os.environ.get("DatabaseName")

DBUserName = os.environ.get("DBUserName")

token = client.generate_db_auth_token(DBHostname=DBEndPoint, Port=3306, 
DBUsername=DBUserName)sslCert = {'ca': './AmazonRootCA1.pem'}

conn = pymysql.connect(

host=DBEndPoint,

port=3306,

database=DatabaseName,

user=DBUserName,

password=token,

ssl=sslCert,

connect_timeout=5

…

Eliminate passwords embedded in code 



Security group

Amazon RDS Proxy network security

Security group

Lambda

Ruby, PHP, …

Containers

Security group

Amazon Aurora
Amazon 

RDS Proxy

Application Proxy Database



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices



• Apps don’t continuously use open connections 

• Transaction-level DB connection sharing 
improves scalability 

• Minimizes resource overhead on the database

• Changes to session state pin connections 

• Pinned connections are not multiplexed 

Connection multiplexing

App App App



• Pinning on: Set of variables, locking functions, 
table locks, temp tables, prepared statements, 
and prepared calls 

• Large queries (>16 KB)

• Not pinning on: Charset changes, TZ, collation, 
auto-commit, and SQL mode

• Changes to session state are not detected from 
stored procedures

• DB connection reused after client connection 
goes away 

• Failovers with pinned connections 

§ Client connections are closed

§ Need to reconnect and set session again

Pinned connections

App App App



• EXCLUDE_VARIABLE_SETS: Avoid pinning even when setting variables 

• Initialization query: Use same set of variables and session settings for 
all client connections 

Scale better by avoiding pinning



Monitoring Amazon RDS Proxy
You can monitor Amazon RDS Proxy using 24 Amazon CloudWatch metrics
• AvailabilityPercentage

• ClientConnections

• ClientConnectionsClosed

• ClientConnectionsNoTLS

• ClientConnectionsReceived

• ClientConnectionsSetupFailedAuth

• ClientConnectionsSetupSucceeded

• ClientConnectionsTLS

• DatabaseConnectionRequests

• DatabaseConnectionRequestsWithTLS

• DatabaseConnections
• DatabaseConnectionsBorrowLatency

• DatabaseConnectionsCurrentlyBorrowed
• DatabaseConnectionsCurrentlyInTransaction

• DatabaseConnectionsCurrentlySessionPinned
• DatabaseConnectionsSetupFailed

• DatabaseConnectionsSetupSucceeded

• DatabaseConnectionsWithTLS

• MaxDatabaseConnectionsAllowed

• QueryDatabaseResponseLatency
• QueryRequests

• QueryRequestsNoTLS

• QueryRequestsTLS

• QueryResponseLatency

99.99% SLA



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What’s next?



• Scale-out reads on Aurora Read Replicas 

• Pool and share read-only connections 

• Transaction-level load balancing 

• Coming soon for Aurora MySQL and Aurora PostgreSQL read replicas 

Coming soon: Aurora Read Replica support

Primary Read only



Amazon RDS Proxy documentation and user guide

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Improving application availability with Amazon RDS Proxy

https://aws.amazon.com/blogs/database/improving-application-availability-with-amazon-
rds-proxy/

Introducing the serverless LAMP stack – Part 2 relational databases

https://aws.amazon.com/blogs/compute/introducing-the-serverless-lamp-stack-part-2-
relational-databases/

Using Amazon RDS Proxy with AWS Lambda

https://aws.amazon.com/blogs/compute/using-amazon-rds-proxy-with-aws-lambda/

Resources

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://aws.amazon.com/blogs/database/improving-application-availability-with-amazon-rds-proxy/
https://aws.amazon.com/blogs/compute/introducing-the-serverless-lamp-stack-part-2-relational-databases/
https://aws.amazon.com/blogs/compute/using-amazon-rds-proxy-with-aws-lambda/


© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Related sessions

D A T 2 1 0
Transforming 
Hilton’s reservation 
system with Amazon 
Aurora PostgreSQL

D A T 2 1 4
Increase availability 
and ROI with fully 
managed AWS 
databases

D A T 4 0 3
How Amazon Aurora 
helps you protect 
your data from 
mistakes

D A T 4 0 4
Deep dive on 
Global Database 
for Amazon Aurora



Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.


