

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Transforming Hilton’s
reservation system with
Amazon Aurora
Eddie Maier
Director of Cloud Platforms
Hilton

Erick Dame
Sr. Solutions Architect
AWS

D A T 2 1 0

https://www.portal.reinvent.awsevents.com/content/sessionDetail.do%3FSESSION_ID=1E1FC274BB8A41275A95FAE1B0FBF434

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Hilton overview

The journey of Hilton's reservation system to AWS

Testing the design

Architecting for zero downtime

Future plans

Agenda

WORLDWIDE
SUPPLY
SUPPLY Properties*

6,215
*Seven independent. Data as of June 30, 2020

*Seven independent. Data as of June 30, 2020

Hilton

Hilton is a leading global hospitality company with
18 brands spanning the lodging sector
Our brands are comprised of:

More than 6,200 properties
More than 983,000 rooms
In 118 countries and territories

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Journey of Hilton’s
Reservation System to AWS

An agile approach to platform and application architectures
• Chose Amazon Aurora as the underlying database solution
• Started with Availability Engines and Aurora MySQL
• Database platforms changed to Amazon Aurora with PostgreSQL compatibility by the end of

the migration
• Optimization efforts occurred across each iteration

An iterative journey
A T H R E E - Y E A R J O U R N E Y I N T H E M A K I N G

Understand basic database engine differences

PostgreSQL is a lowercase
data dictionary

Use “exception handlers”
when needed, not by default

PostgreSQL has six
different index types

Store your BLOBs in Amazon
S3 instead of the database

search_path replaces
PUBLIC SYNONYM

PostgreSQL has
64 datatypes

Application and platform
architects drafted a target scope
• Create reference architecture for

new environment
• Incorporate core reservation functions
• Preserve target transaction rates from

datacenters in new AWS environment
• Leverage certain tools for data

replication between on-premise
and cloud environments

• Ensure architectures so that current recovery
point objective (RPO) and recovery time
objective (RTO) would be met

• Engage AWS support, IEM process:
https://aws.amazon.com/premiumsupport/
programs/iem/

Planning for the migration

https://aws.amazon.com/premiumsupport/programs/iem/

AWS Database Migration Process
STEP 1: Convert or copy your schema

Copy or
convert schema

Source DB or DW Destination DB or DWAWS SCT

STEP 2: Move your data

Source DB or DW Destination DB or DW

Data

3rd Party

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Testing the design

Testing for success

• Rigorous application testing
and tuning to get optimal query
response time

• Results determine target
infrastructure needed for
the release

• Infrastructure testing and drills
part of the new environment

• Lessons learned

AWS Cloud

Region

Availability Zone Availability Zone

Writer

Transactions

SQL

Readers

Transactions

SQL

Readers

Transactions

SQL

Testing for failures

Additional fault injection queries can be found here:
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Managing
.FaultInjectionQueries.html

AZ
1

AZ
2

AZ
3

SHARED CLUSTER STORAGE VOLUME

Writer

Transactions

Caching

SQL

Reader

Transactions

Caching

SQL

Reader

Transactions

Caching

SQL

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Managing.FaultInjectionQueries.html

Monitoring and performance insights

• Analyze and tune Database Performance
• Available through AWS Management Console

and AWS API SDK
• Set up alarms for key issues

• Database load is determined by average
active sessions (AAS)

• Categorized data by wait events, SQL, hosts,
and users

• SQL statistics for queries NEW!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Achieving a zero
downtime deployment

Architecting for zero downtime

MONITOR RESILIENCY CONFIGURATION VALIDATE SIMPLIFY
Create monitors and
notification channels

across all tiers

Ensure enough
instances are

always available

Tune settings for
planned recovery

scenarios

Test successful and
failure conditions

repeatedly

Automate and
script as much as

possible

AUTOMATED BACKUPS
• Between 1–35 days retention
• Recover up to the last ~5 min point in time

SNAPSHOTS
• Instantly create user snapshots
• No performance impact
• Copy snapshots to another region
• Share snapshots with other AWS accounts

RESTORE
• Time depends on cluster volume size
• Always creates a new DB cluster

Aurora backup and restore

VOLUME

Writer

Transactions

Caching

SQL

Reader

Transactions

Caching

SQL

Amazon S3
RDS Service Managed

t
0

1 2 6
t
0

5 6
t
2

3

Automated backup

VOLUME

Writer

Transactions

Caching

SQL

Restore to t4

Source Cluster Restored Cluster

Data changes over time

t0 t1 t2 t3 t4 t5 t6

Source Region Target Region

Event
(time-based)

Amazon CloudWatch

Amazon Aurora

Lambda function
Amazon Aurora

Snapshot
Cross Region

Snapshot

Amazon Aurora

Cross Region Snapshot

Treat Infrastructure as Code, Even for Databases!

Code Commit Execute Deploy

• Once you have a pattern, “stamp” it out in code
• For Amazon Aurora with PostgreSQL compatibility, define DB parameter

groups in code
• Dynamic parameters apply immediately, while a static parameter will

not change until there is a reboot

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.htm
l#Aurora.Managing.ParameterGroups

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.html

The migration

Transition event
was in two phases

over two weeks

Successfully
migrated while

completely remote

Zero customer
impact across

the world

Zero
data loss

• Break out the parameter groups being used across clusters.

• Use Datadog to monitor long running transactions, if they are open
longer than x amount of time, say 30 sec (this may need to be tuned).

• As a best practice it is good to set the
“idle_in_transaction_session_timeout”, in param group. By default, it is
turned off in PostgreSQL 10. You can set the value so that it kills
transactions open for x amount of time. In the PostgreSQL community,
10 seconds is commonly used.

• Monitor the Replica lag either in Cloudwatch or Datadog, this is a good
metric to have on your dashboard and to see trending.

• On-going tuning - Go through often vacuumed tables and tweak
vacuuming, tune vacuum configurations to handle tables with a high
rate of change.

Additional items

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Future plans

• Eliminated several maintenance
events with new architecture

• Migrate to newer versions
of PostgreSQL

• Continue to optimize
• Begin to investigate AWS

components like Amazon RDS Proxy
and Amazon Aurora Global Database

What’s next?

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Related sessions
D A T 2 0 1
What’s new in Amazon
Aurora

D A T 4 0 3
How Amazon Aurora
helps you protect your
data from mistakes

D A T 4 0 4
Deep dive on Global
Database for Amazon
Aurora

Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Eddie Maier

Director of Cloud
Platforms
Hilton

Erick Dame

Sr. Solutions Architect
AWS

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

