AWS Invent

N F X 3 0 1

How Netflix is using IPv6 to enable hyperscale networking

Donavan Fritz (he/him)

Sr Network SRE Netflix

Agenda

Why IPv6

Co-innovation between Netflix and AWS

Netflix progress

Lessons learned and best practices

How to get started and how to show IPv6 is worthwhile

Flat network

Flat network

Flat network and now, containers

Flat network and now, containers

Where we have been

Flat network

Carry over from Amazon EC2 classic Lots of client-side load balancing Business logic

Containers

IP per container Same network posture as EC2 instances

Where we have been

Where we are going

Flat network

Carry over from Amazon EC2 classic Lots of client-side load balancing Business logic

Containers

IP per container
Same network posture as EC2 instances

Continued growth

More accounts, more VPCs

On premises

Studio Gaming (?)

Flat network

Containers
Continued growth
On premises

100+ VPCs Full IP reachability

Flat network

Containers
Continued growth
On premises

"N" IPs per ENI Short-lived IPs

Flat network

ENI density
Continued growth
On premises

"N" IPs per ENI Short-lived IPs

Flat network
ENI density
Continued growth
On premises

1000+ (?) VPCs
Full IP reachability

Flat network
ENI density
Continued growth

On premises

Full IP reachability on premises

Flat network

Continued growth

Not really "flat" (!)
Public vs. private IPv4

ENI density

On premises

Flat network

Continued growth

Not really "flat" (!)
Public vs. private IPv4

ENI density

On premises

AWS limits IPv4 address reuse EIP update lag

Flat network

Not really "flat" (!)
Public vs. private IPv4

ENI density

AWS limits
IPv4 address reuse
EIP update lag

Continued growth

AWS routing limits (VPC peering, etc.)
Private IPv4 address exhaustion

On premises

Flat network

Not really "flat" (!)
Public vs. private IPv4

ENI density

AWS limits
IPv4 address reuse
EIP update lag

Continued growth

AWS routing limits (VPC peering, etc.)
Private IPv4 address exhaustion

On premises

Private IPv4 address exhaustion AWS routing limits (AWS Direct Connect, etc.)

Ideas considered

Ideas considered

"Amazon EC2 classic"

- ✓ We've done this before!
- Does not address ENI density

"Tiny bubbles"

- ✓ Well defined pattern
- Client-side load balancing
- Does not address ENI density

Ideas considered

"Amazon EC2 classic"

- ✓ We've done this before!
- Does not address ENI density

"Tiny bubbles"

- ✓ Well defined pattern
- 🔀 Client-side load balancing
- Does not address ENI density

Focus on ENI density

Prefix delegation

Focus on ENI density

Source: https://twitter.com/_joemag_/status/1418345704964063232

10.0.0.0/8

172.16.0.0/12

10.0.0.0/8

100.64.0.0/10

192.168.0.0/16

172.16.0.0/12

/28 per prefix 16 IPs /28

/28 per prefix	16 IPs	/28
4 prefixes per ENI	64 IPs	/26

/28 per prefix	16 IPs	/28
4 prefixes per ENI	64 IPs	/26
8K ENIs per zone	524k IPs	/13

/28 per prefix	16 IPs	/28
4 prefixes per ENI	64 IPs	/26
8K ENIs per zone	524k IPs	/13
3 zones per Region	1.5m IPs	/12 & /13

/28 per prefix	16 IPs	/28
4 prefixes per ENI	64 IPs	/26
8K ENIs per zone	524k IPs	/13
3 zones per Region	1.5m IPs	/12 & /13
3 Regions	4.5m IPs	/10 & /13

/28 per prefix	16 IPs	/28
4 prefixes per ENI	64 IPs	/26
8K ENIs per zone	524k IPs	/13
3 zones per Region	1.5m IPs	/12 & /13
3 Regions	4.5m IPs	/10 & /13
Double it!	9m IPs	/9 & /12

Focus on ENI density

Focus on ENI density

192.0.2.96 →
192.0.2.15 →
...
192.0.2.99 →
192.0.2.43 →

2001:db8::96 →
2001:db8::15 →
...
2001:db8::99 →
2001:db8::43 →

Elastic network interface

Elastic network interface

Flat network

Continued growth

ENI density

On premises

Flat network

Continued growth

ENI density

On premises

Prefix delegation

Flat network

No NAT

ENI density

Prefix delegation

Continued growth

On premises

Inter-VPC IPv6 reachability

1 – Customer gateway 2 – VPC peering 3 – AWS Transit Gateway 4 – Internet gateway **AWS Cloud** VPC **VPC** Internet gateway Internet gateway

Flat network

No NAT

ENI density

Prefix delegation

Continued growth

No IPv4 address exhaustion AWS limits (routing, etc.)

On premises

Flat network

No NAT

ENI density

Prefix delegation

Continued growth

No IPv4 address exhaustion Network setup not explicitly required

On premises

Flat network

No NAT

ENI density

Prefix delegation

Continued growth

No IPv4 address exhaustion Network setup not explicitly required

On premises

Network setup not explicitly required

IPv6 co-innovation with AWS

IPv6 open issues with AWS

IPv6 open issues with AWS

Netflix innovation within AWS

Netflix AWS IPv6 adoption progress 2021

Started 2021 with IPv6 being <1% of all interservice flows in VPC

Old code is not fun, especially Java

Old code is not fun, especially Java

Assigning IPv6 to a node does not mean IPv6 is used

Old code is not fun, especially Java

Assigning IPv6 to a node does not mean IPv6 is used

Happy Eyeballs masks IPv6 problems

Old code is not fun, especially Java

Assigning IPv6 to a node does not mean IPv6 is used

Happy Eyeballs masks IPv6 problems

Little IPv6 support for AWS Managed Services

Communication

Communication

 Use BYOIP for IPv6 to have summarizable address space, similar to private IPv4

Communication

Use BYOIP for IPv6 to have summarizable address space, similar to private IPv4

Overlay IPv6 with IPv4

Communication

Use BYOIP for IPv6 to have summarizable address space, similar to private IPv4

Overlay IPv6 with IPv4

 Match IPv4 IP range rules with corresponding IPv6 IP range rules

Dual stack workstations and dev machines

Dual stack workstations and dev machines

Enable IPv6 on the edge
 Update security groups
 Update DNS records

Dual stack workstations and dev machines

Enable IPv6 on the edge
Update security groups
Update DNS records

Focus on workloads in VPC
 Overlay IPv6 with IPv4
 Edge inwards

How do I show IPv6 is worthwhile to the business?

Economics

IPv6 is faster

Expensive boundary: public IPv4 vs. private IPv4

Middle boxes and operational risk

Thank you!

Donavan Fritz

dfritz@netflix.com @DonavanFritz linkedin.com/in/DonavanFritz

