
Reviewed for technical October 28, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Reference Architecture

To teach the robot to perform tasks like pushing a T-

bar into a T-slot on a workbench, connect to the

simulation environment and choose between a

single environment for simple tasks or multiple

parallel environments for complex training scenarios.

Connect to Isaac Sim simulation environments

running in Amazon Elastic Kubernetes Service

(Amazon EKS) through Amazon DCV. Deploy the

DCV server as a DaemonSet to provide visualization

capabilities for simulation pods. Run multiple Isaac

Sim environments in parallel across Amazon EKS

nodes to enable concurrent processing for

simulations and dataset generation.

Optional: Consider AWS Batch as an alternative

orchestration service to manage multiple Amazon

Elastic Compute Cloud (Amazon EC2) instances

running Isaac Sim simulations, providing automatic

scaling and job management for distributed

simulation workloads.

In the NVIDIA Isaac Sim simulation environment,

step up the environment with the Universal Scene

Description (USD) file.

Isaac Sim generates robot manipulation scenarios

with randomized T-bar and robot positions,

publishing scene data (camera images, robot poses,

object positions) to Robot Operating System 2 (ROS

2) topics at 10-30 Hz frequency.

Amazon Bedrock foundation models analyze the

robot workspace conditions (object distances, robot

positioning, environmental constraints) and return

high-level strategy recommendations. For advanced

and complex tasks, use Amazon Bedrock

AgentCore with Strands agents and Model Context

Protocol (MCP) server to coordinate and orchestrate

the tasks.

The application logic in the simulation environment

processes AI strategies and uses ML algorithms to

generate safe robot positions and velocities, while

simultaneously storing all episode data through the

HuggingFace LeRobot library for optimized

formatting and preprocessing.

1

2

3

4

5

6

Guidance for Using Bedrock FM & AWS Trainium in AI Robot Fleet Training
Imitation Learning Simulation Environment
This architecture diagram shows a robotic learning system integrating the intelligence of foundation models with ML and

mathematical algorithms, accelerated by AWS Trainium/GPU infrastructure and managed through cloud-native technologies.

AWS Cloud

User

1

Simulation Environment Development & Training

Environment

Deployment Environment &

Fleet Management

Region

Amazon Bedrock

2

Amazon EKS Amazon EKS

Amazon S3

Amazon DCV

7

AWS Lambda

8

2

4

3

5

Terminal

9

Terminal

AWS IoT Core

11

AWS IoT

Device Management

6

10

Industrial

Robots

AWS IAM

12

AWS Trainium

Node n

AWS Trainium

Node 1

Reviewed for technical October 28, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Reference Architecture

Guidance for Using Bedrock FM & AWS Trainium in AI Robot Fleet Training
Imitation Learning Simulation Environment
This architecture diagram shows a robotic learning system integrating the intelligence of foundation models with ML and

mathematical algorithms, accelerated by AWS Trainium/GPU infrastructure and managed through cloud-native technologies.

AWS Cloud

User

1

Simulation Environment Development & Training

Environment

Deployment Environment &

Fleet Management

Region

Amazon Bedrock

2

Amazon EKS Amazon EKS

Amazon S3

Amazon DCV

7

AWS Lambda

8

2

4

3

5

Terminal

9

Terminal

AWS IoT Core

11

AWS IoT

Device Management

6

10

Industrial

Robots

AWS IAM

12

AWS Trainium

Node n

AWS Trainium

Node 1

Completed episodes are organized using LeRobot's

standardized directory structure organize

(data/chunk-000/episode_000000.parquet) and

automatically uploaded with metadata files enabling

seamless integration with LeRobot training pipelines.

The Amazon Simple Storage Service (Amazon

S3) bucket triggers AWS Lambda functions upon

new episode uploads to updatethe LeRobot dataset

indices and notify the Amazon EKS or GPU training

orchestration system of available data for

processing.

The Amazon EKS cluster with dedicated AWS

Trainium node groups (trn1.32xlarge instances) or

GPUs receives training job requests and provisions

containerized training environments with LeRobot

framework.

LeRobot's ecosystem processes Amazon S3

episode data, implementing DiffusionPolicy with

GPU/Trainium optimizations. The system executes

mixed-precision distributed training and packages

final models for Amazon S3 and HuggingFace Hub.

The pipeline uses transformers, accelerator-specific

operations, and standardized workflows throughout.

AWS IoT Core manages robot fleet deployment by

creating AWS IoT Jobs for model distribution.

Robots subscribe to these jobs, download and

validate LeRobot models from Amazon S3, and

execute standardized deployment steps. The AWS

IoT device management with IoT jobs monitors

deployment progress and can trigger rollbacks if

needed. Successfully deployed robots publish

operational metrics while performance data streams

to Amazon S3.

The imitation learning pipeline uses AWS IAM roles

for service-to-service authentication between core

components (Amazon EKS, Amazon S3, Amazon

Bedrock, AWS Lambda, AWS IoT Core) and

controls access to resources. Robot devices

authenticate using IoT thing policies while accessing

Amazon S3 for model downloads, with all cross-

service communications enforced through least-

privilege IAM policies.

7

8

9

10

11

12

Reviewed for technical October 28, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Reference Architecture

A developer deploys the NVIDIA Isaac Sim

on Amazon Elastic Kubernetes Service (Amazon

EKS) and accesses its interface via Amazon DCV.

The developer defines a task (e.g. opening a box)

within the Isaac Sim environment, which serves as

the simulation environment for the reinforcement

learning agent to train on.

The Isaac Sim controller pods leverage Amazon

Bedrock to sample reward functions from the Large

Language Model (LLM). This automated process of

generating reward functions is a key innovation, as

crafting effective reward functions manually can be

very challenging.

Amazon SQS receives the award function along

with the training and simulation input data, as a

message. The Amazon SQS queue acts as the

intermediary between the reward function generation

and the training execution.

The Isaac Sim training pods read the message from

the Amazon SQS queue and execute the training

and simulation processes.

The input data files and results are read and stored

using an Mountpoint for Amazon Simple Storage

Service (Amazon S3), which provides a cost-

effective and low-latency file storage solution for the

training artifacts.

The developer interactively observes and debugs

the training process in near real-time through

the Amazon DCV remote visualization interface,

gaining valuable insights into the agent’s learning

progress.

The developer stores new model files in an Amazon

S3 bucket for persistence.

At the time of model creation, the creation event in

Amazon S3 triggers an AWS Lambda function. This

function deploys the trained model to the physical

robot devices.

1

2

3

4

5

6

7

Guidance for Using Bedrock FM & AWS Trainium in AI Robot Fleet Training
Reinforcement Learning Training Environment
This architecture diagram shows developers how to train robotic agents using NVIDIA Isaac Sim on Amazon EKS with LLM-

generated reward functions, then automatically deploy trained models to physical robots using AWS IoT services.

AWS Cloud

User

Amazon EKS

AWS IoT Device

Management

AWS IoT CoreAWS Lambda

Amazon SQS

Amazon S3

Amazon DCV

1

Amazon Bedrock

Models

98

7

32

6

5

4

Reward Function

Generation

Amazon S3

Training Input Mountpoint

11

Region

Robots

10

AWS IAM

12

Reviewed for technical October 28, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Reference Architecture

The AWS Lambda function creates an AWS IoT

Job in the AWS IoT Device Management service.

AWS IoT Device Management handles scheduling,

retrying, and reporting the status of remote

operations on the robot devices, ensuring reliable

and scalable model deployment.

AWS IoT Device Management publishes the AWS

IoT Job to AWS IoT Core, the managed message

broker service that distributes the job information to

the connected robot devices.

The robotic devices subscribe to job

notifications from AWS IoT Core. The robotics team

implements the logic to retrieve and process robot-

side job notifications.

The robotic devices download the newly trained

model from Amazon S3 and deploy it locally on the

robot hardware, completing the loop of simulation-

based training and real-world deployment.

The reinforcement learning pipeline uses AWS IAM

roles to secure the training flow between Amazon

EKS, Amazon Bedrock (LLM reward functions),

Amazon SQS, and Amazon S3 Mountpoint for data

storage. The deployment flow leverages AWS IAM

to enable AWS Lambda's model deployment

pipeline and IoT thing policies for robot

authentication when accessing AWS IoT Core and

Amazon S3.

8Guidance for Using Bedrock FM & AWS Trainium in AI Robot Fleet Training
Reinforcement Learning Training Environment
This architecture diagram shows developers how to train robotic agents using NVIDIA Isaac Sim on Amazon EKS with LLM-

generated reward functions, then automatically deploy trained models to physical robots using AWS IoT services.

AWS Cloud

User

Amazon EKS

AWS IoT Device

Management

AWS IoT CoreAWS Lambda

Amazon SQS

Amazon S3

Amazon DCV

1

Amazon Bedrock

Models

98

7

32

6

5

4

Reward Function

Generation

Amazon S3

Training Input Mountpoint

11

Region

Robots

10

AWS IAM

12

9

10

11

12

	Slide 1
	Slide 2
	Slide 3
	Slide 4

