Guidance for Building SaaS applications on Amazon EKS using GitOps

This reference architecture shows how to provision an Amazon EKS cluster with critical add-ons.

AWS Cloud

Eg&

Developer

Al

Configuration
File

i

DevOps
Engineer

AWS
CloudFormation|

Availability Zone B Availability Zone C

E EC2 Instance
with Gitea

894

Gitea
Source
Repositories

Endpoint for
Amazon ECR Amazon EC2

® @

I
I | | I
1 1 L | 1
I 1 : 1 1
I | | I
| PUb“C Subnet 1 : @ Public subnet 2 : : @l Public subnet 3 :
I
1 | : | |
I | P! I
| | H 1 g 1
| Private subnet 1 Ianate subnet 2 : | Private subnet 3 :
L S [i Tt 0
I _IIIII_ _IIIII- e Karpenter I : : : : I | _lllll_ _Illll_ I I
1 | Jc79E Im7gE NodePool 1 |4C7/9E Jm7gE : 1| 3Jc79E Im7gE 11
| T T ?\flux 1 UUuuy LUy | 1 T e 11
: 11 L1 \\‘:é\':l : L L | : L1l L1 : :

3 = = ux 3 = F I] E =

1 4c7gkE 4179 E 1 EC7gEEr7gE ! 4c7gE 4179 E 11
1 B g e n g n gy ol Controller ! Uy LU |_I T YT 11

el e e e i e e e e e il el il ittt nls
: Critical 1 e Ly I
1 Addons ! ! e 1
|y | | OB |
| [~ EKSMNG || L[] ¥ ,
L AWS VPC : Karpenter | I : AWS Load :
! CNI | I Balancer |
: I 1 Controller |
| I : I I

I
| | Intra Subnet 1 , Intra Subnet 2 : :Intra Subnet 3 |
I | I I
. = | =) | = .
I | | I
I

! EKS Managed ENI | EKS Managed ENI | 1 | EKS Managed ENI | |
. M I ——— [— b B — —— '

Endpoint for
Amazon EKS Amazon EBS

® @

Endpoint for

[:l-)u
So

Network
Load Balancer

Endpoint for

Amazon EC2 Code-

adWws

4 .E‘Terraform

Reviewed for technical accuracy November 11, 2025
N © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Server IDE

Peering

—>0

connection

2 L2 5 85 8 2

Karpenter Cluster Argo Argo
Controller Admin Events Controller Workflows Controller

|
oLl —

Amazon EKS Cluster

AWS Reference Architecture

DevOps engineer defines a per-environment
Terraform variable file that controls environment-
specific configuration. This configuration file is used
in all steps of deployment process by various
configurations to provision different Amazon
Elastic Kubernetes Service (Amazon EKS)
environments.

DevOps engineer applies the environment
configuration using Amazon CloudFormation which
deploys an Amazon Elastic Compute Cloud
(Amazon EC2) Instance with a VSCode IDE used
to apply Terraform.

An Amazon Virtual Private Cloud (VPC) is
provisioned and configured based on specified
configuration. According to best practices for
Reliability, three Availability Zones (AZs) are
configured with corresponding VPC endpoints to
provide access to resources deployed in private
VPC and other VPC connected by VPC Peering.

User facing AWS Identity and Access Management
(IAM) roles (Cluster Admin, Karpenter Controller,
Argo Workflow, Argo Events, LB Controller, TF
Controller) are created for various Amazon EKS
cluster resources access levels, per Kubernetes
security best practices.

Amazon EKS cluster is provisioned with Managed
Nodes Group (MNG) that runs critical cluster add-
ons (CoreDNS, AWS Load Balancer Controller,
and Karpenter) on its compute node instances.
Karpenter manages compute capacity to other add-
ons, as well as business applications deployed by
user while prioritizing provisioning Amazon EC2
Spot instances for the best price-performance.

Other important Amazon EKS add-ons (Flux
controller etc.) are deployed based on the
configurations defined in the per-environment
Terraform configuration file (see Stepl above).

Gitea source code repositories running on Amazon
EC2 can be accessed by Developer users to
update microservices source code.

. aal gl Gi d itories holdlthe prod
Guidance for Building SaaS applications on Amazon EKS using GitOpS @ e miciermices samicatonvode.
This architecture diagram shows a GitOps driven workflow on Amazon EKS clusters using FluxV2 for provisioning tenant resources. 33?3&2 GitOps releases and Tenant resource

and Consumer container images and push them to
aws AWS Cloud Amazon Elastic Container Registry (ECR).

___ '
Region Amazon ECR stores the Tenant Template Helm
Amazon ECR a % Gitea chart that references the producer and consumer

e service images.
Amazon ECR

a Gitea Actions is responsible to build the Producer

References & = : L
y¢ Tenant Helm /\°<\ /\o<\ &~ &— </> </> Flux watches environment definition in Git and
HELM - im: . < a Amazon ECR to deploy changes to the Amazon
A 9 Producer Consumer Gitea Actions Producer service Consumer service Elastic Kubernetes Service (Amazon EKS)

service image service image source code source code cluster, so that the cluster deployments match the
expected state declared in the Git source repo and
the correct version of Helm chart is deployed in the

cluster.

AWS application tenant
resources The Argo Workflows controller is used for
templating and automating variable replacement

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
H during onboarding, offboarding, and deployment
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

° flux-system ns argo-workflows ns

%’ Gitea Amazon EKS e
vie

processes. Argo Workflows automates these steps
by committing the changes to the Git repository,
which then triggers the rest of the GitOps pipeline.

HELM Tenant ‘.’

Watches 0
MNA release ‘ \\%5\\ ﬂ u X ﬁ

1
1
1
1
1
1
1
1
1
1
1
1
1
: 1
GitOps Repo Reconciles e:
1
1
1
1
1
1
1
1
1
1
1
1
1

Pool resources (basic tier)

I
I
1
! N S
>:
I
I
1
-

(Amazon Simple Queue Service (Amazon SQS)
and Amazon DynamoDB). Basic tier tenants are
served by the same microservice instances and
infrastructure resources. This approach optimizes
resource usage and reduces costs by sharing the
infrastructure among multiple tenants.

a Basic tier application tenants share AWS resources

)l Pool namespace (basic tier)

Amazon SQS Amazon DynamoDB

N

Pool
environment
release config

<>

= = e e e e e e e e e e e e e e

aWS Reviewed for technical accuracy November 11, 2025
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Flux continuously watches Git repositories for
changes. In this case, it monitors the repository
containing the Terraform Custom Resource
Definition (CRD) and the Terraform module.

Guidance for Building SaaS applications on Amazon EKS using GitOps

This architecture diagram shows how Tofu Controller works with FluxV2 on Amazon EKS cluster to provision AWS managed
resources through Terraform.

@ AmazonEKs e m e mm e — e —

When a Terraform CRD is created in the cluster
(defined in the Git repository), Flux detects this new
resource and starts the reconciliation process.

The TF Controller is responsible for monitoring the
Terraform CRD within the flux-system namespace.
When it detects a new or updated Terraform CRD,
it initiates the necessary actions.

The TF Controller launches a tf-runner pod. This
pod pulls the specified Terraform module from the
Git repository and executes it, managing the
infrastructure as defined in the CRD.

1
Git Repository o
flux-system Namespace 1

1
1
1
1
I i
Source Controller j
Q - e ' HELM Terraform CRD
1
i

The tf-runner pod provisions the required
resources, such as Amazon Simple Storage
Services (Amazon SQS) queues and Amazon
DynamoDB tables, based on the Terraform
module’s definitions.

@ — — flux <—

HELM Terraform Module

o ok :

TF Controller TF-Runner

1 1
1

o - =
1 1
1 1
1 1
>I 1
1 N\ C 1
0 : & -
: :
1 1
1 1
1 1
1 1

The state and plan of the Terraform execution are
stored as Kubernetes secrets (e.g., tfstate and
tfplan). This ensures that the state is preserved and
can be accessed by subsequent Terraform
operations.

1
]
1
1
D |
« 1
— 1
o 1
=} 1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
_!

Managed Resources

Secret Secret
Amazon SQS Amazon DynamoDB

tfplan tfstate

aWS Reviewed for technical accuracy November 11, 2025
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

