
Reviewed for technical accuracy November 11, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Karpenter

NodePool

Amazon EKS Cluster

Availability Zone A

Private subnet 1

c7g

c7g

m7g

r7g

AWS VPC

CNI

EKS Managed ENI

Critical

Addons

EKS MNG

Karpenter AWS Load

Balancer

Controller

Guidance for Building SaaS applications on Amazon EKS using GitOps
This reference architecture shows how to provision an Amazon EKS cluster with critical add-ons.

DevOps engineer defines a per-environment

Terraform variable file that controls environment-

specific configuration. This configuration file is used

in all steps of deployment process by various

configurations to provision different Amazon

Elastic Kubernetes Service (Amazon EKS)

environments.

DevOps engineer applies the environment

configuration using Amazon CloudFormation which

deploys an Amazon Elastic Compute Cloud

(Amazon EC2) Instance with a VSCode IDE used

to apply Terraform.

An Amazon Virtual Private Cloud (VPC) is

provisioned and configured based on specified

configuration. According to best practices for

Reliability, three Availability Zones (AZs) are

configured with corresponding VPC endpoints to

provide access to resources deployed in private

VPC and other VPC connected by VPC Peering.

User facing AWS Identity and Access Management

(IAM) roles (Cluster Admin, Karpenter Controller,

Argo Workflow, Argo Events, LB Controller, TF

Controller) are created for various Amazon EKS

cluster resources access levels, per Kubernetes

security best practices.

Amazon EKS cluster is provisioned with Managed

Nodes Group (MNG) that runs critical cluster add-

ons (CoreDNS, AWS Load Balancer Controller,

and Karpenter) on its compute node instances.

Karpenter manages compute capacity to other add-

ons, as well as business applications deployed by

user while prioritizing provisioning Amazon EC2

Spot instances for the best price-performance.

Other important Amazon EKS add-ons (Flux

controller etc.) are deployed based on the

configurations defined in the per-environment

Terraform configuration file (see Step1 above).

Gitea source code repositories running on Amazon

EC2 can be accessed by Developer users to

update microservices source code.

1

2

3

4

5

6

7

Configuration

File

1

3

5

5

55 5

5

6

7

c7g

c7g

m7g

r7g

c7g

c7g

m7g

r7g

Network

Load Balancer

Flux

Controller

2

AWS

CloudFormation

Endpoint for

Amazon ECR

Endpoint for

Amazon EKS

Endpoint for

Amazon EC2

Endpoint for

Amazon EBS

Gitea

Source

Repositories

EC2 Instance

with Gitea

Amazon EC2 Code-

Server IDE

Terraform

VPC

Cluster

Admin

Karpenter

Controller

Argo

Events

Argo

Workflows

TF

Controller

LB

Controller

4

Developer

AWS Cloud

Region

VPC

Public Subnet 1 Public subnet 2

Private subnet 2

Intra Subnet 2

Availability Zone B Availability Zone C

Public subnet 3

Private subnet 3

Intra Subnet 3Intra Subnet 1

Peering

connection

EKS Managed ENI EKS Managed ENI

DevOps

Engineer

Reviewed for technical accuracy November 11, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Guidance for Building SaaS applications on Amazon EKS using GitOps
This architecture diagram shows a GitOps driven workflow on Amazon EKS clusters using FluxV2 for provisioning tenant resources.

Gitea source code repositories hold the producer

and consumer microservices application code,

along with GitOps releases and Tenant resource

definitions.

Gitea Actions is responsible to build the Producer

and Consumer container images and push them to

Amazon Elastic Container Registry (ECR).

Amazon ECR stores the Tenant Template Helm

chart that references the producer and consumer

service images.

Flux watches environment definition in Git and

Amazon ECR to deploy changes to the Amazon

Elastic Kubernetes Service (Amazon EKS)

cluster, so that the cluster deployments match the

expected state declared in the Git source repo and

the correct version of Helm chart is deployed in the

cluster.

The Argo Workflows controller is used for

templating and automating variable replacement

during onboarding, offboarding, and deployment

processes. Argo Workflows automates these steps

by committing the changes to the Git repository,

which then triggers the rest of the GitOps pipeline.

Basic tier application tenants share AWS resources

(Amazon Simple Queue Service (Amazon SQS)

and Amazon DynamoDB). Basic tier tenants are

served by the same microservice instances and

infrastructure resources. This approach optimizes

resource usage and reduces costs by sharing the

infrastructure among multiple tenants.

1

2

3

4

5

6

Tenant Helm

chart image

Amazon ECR

Gitea

Tenant

release

GitOps Repo

Pool

environment

release config

Amazon ECR

flux-system ns

Amazon EKS

argo-workflows ns

Pool namespace (basic tier)

Reconciles

Pool resources (basic tier)

AWS application tenant

resources

1

2

1

References

3

Watches

4

5

6

AWS Cloud

Region

Gitea ActionsProducer

service image

Consumer

service image

Amazon SQS Amazon DynamoDB

Gitea

Producer service

source code

Consumer service

source code

Reviewed for technical accuracy November 11, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Guidance for Building SaaS applications on Amazon EKS using GitOps
This architecture diagram shows how Tofu Controller works with FluxV2 on Amazon EKS cluster to provision AWS managed

resources through Terraform.

Flux continuously watches Git repositories for

changes. In this case, it monitors the repository

containing the Terraform Custom Resource

Definition (CRD) and the Terraform module.

When a Terraform CRD is created in the cluster

(defined in the Git repository), Flux detects this new

resource and starts the reconciliation process.

The TF Controller is responsible for monitoring the

Terraform CRD within the flux-system namespace.

When it detects a new or updated Terraform CRD,

it initiates the necessary actions.

The TF Controller launches a tf-runner pod. This

pod pulls the specified Terraform module from the

Git repository and executes it, managing the

infrastructure as defined in the CRD.

The tf-runner pod provisions the required

resources, such as Amazon Simple Storage

Services (Amazon SQS) queues and Amazon

DynamoDB tables, based on the Terraform

module’s definitions.

The state and plan of the Terraform execution are

stored as Kubernetes secrets (e.g., tfstate and

tfplan). This ensures that the state is preserved and

can be accessed by subsequent Terraform

operations.

1

2

3

4

5

6
TF Controller

flux-system Namespace

Source Controller

TF-Runner

TF-CRD

Managed Resources

Secret

tfplan

Secret

tfstate

Git Repository

Terraform CRD

Terraform Module

1 2

3

4

5

6

AWS Cloud

Region

Amazon EKS

Amazon SQS Amazon DynamoDB

