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Guidance for Building SaaS applications on Amazon EKS using GitOps
This reference architecture shows how to provision an Amazon EKS cluster with critical add-ons.

DevOps engineer defines a per-environment 

Terraform variable file that controls environment-

specific configuration. This configuration file is used 

in all steps of deployment process by various

configurations to provision different Amazon 

Elastic Kubernetes Service (Amazon EKS)

environments.

DevOps engineer applies the environment 

configuration using Amazon CloudFormation which 

deploys an Amazon Elastic Compute Cloud 

(Amazon EC2) Instance with a VSCode IDE used 

to apply Terraform.

An Amazon Virtual Private Cloud (VPC) is 

provisioned and configured based on specified 

configuration. According to best practices for 

Reliability, three Availability Zones (AZs) are 

configured with corresponding VPC endpoints to 

provide access to resources deployed in private 

VPC and other VPC connected by VPC Peering.

User facing AWS Identity and Access Management 

(IAM) roles (Cluster Admin, Karpenter Controller, 

Argo Workflow, Argo Events, LB Controller, TF 

Controller) are created for various Amazon EKS 

cluster resources access levels, per Kubernetes 

security best practices.

Amazon EKS cluster is provisioned with Managed 

Nodes Group (MNG) that runs critical cluster add-

ons (CoreDNS, AWS Load Balancer Controller, 

and Karpenter) on its compute node instances. 

Karpenter manages compute capacity to other add-

ons, as well as business applications deployed by 

user while prioritizing provisioning Amazon EC2 

Spot instances for the best price-performance. 

Other important Amazon EKS add-ons (Flux 

controller etc.) are deployed based on the 

configurations defined in the per-environment 

Terraform configuration file (see Step1 above).

Gitea source code repositories running on Amazon 

EC2 can be accessed by Developer users to 

update microservices source code.
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Guidance for Building SaaS applications on Amazon EKS using GitOps
This architecture diagram shows a GitOps driven workflow on Amazon EKS clusters using FluxV2 for provisioning tenant resources.

Gitea source code repositories hold the producer 

and consumer microservices application code, 

along with GitOps releases and Tenant resource 

definitions.

Gitea Actions is responsible to build the Producer 

and Consumer container images and push them to 

Amazon Elastic Container Registry (ECR).

Amazon ECR stores the Tenant Template Helm 

chart that references the producer and consumer 

service images.

Flux watches environment definition in Git and 

Amazon ECR to deploy changes to the Amazon 

Elastic Kubernetes Service (Amazon EKS)

cluster, so that the cluster deployments match the 

expected state declared in the Git source repo and 

the correct version of Helm chart is deployed in the 

cluster.

The Argo Workflows controller is used for 

templating and automating variable replacement 

during onboarding, offboarding, and deployment 

processes. Argo Workflows automates these steps 

by committing the changes to the Git repository, 

which then triggers the rest of the GitOps pipeline.

Basic tier application tenants share AWS resources 

(Amazon Simple Queue Service (Amazon SQS) 

and Amazon DynamoDB). Basic tier tenants are 

served by the same microservice instances and 

infrastructure resources. This approach optimizes 

resource usage and reduces costs by sharing the 

infrastructure among multiple tenants.
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Guidance for Building SaaS applications on Amazon EKS using GitOps
This architecture diagram shows how Tofu Controller works with FluxV2 on Amazon EKS cluster to provision AWS managed 

resources through Terraform.

Flux continuously watches Git repositories for 

changes. In this case, it monitors the repository 

containing the Terraform Custom Resource 

Definition (CRD) and the Terraform module.

When a Terraform CRD is created in the cluster 

(defined in the Git repository), Flux detects this new 

resource and starts the reconciliation process.

The TF Controller is responsible for monitoring the 

Terraform CRD within the flux-system namespace. 

When it detects a new or updated Terraform CRD, 

it initiates the necessary actions.

The TF Controller launches a tf-runner pod. This 

pod pulls the specified Terraform module from the 

Git repository and executes it, managing the 

infrastructure as defined in the CRD.

The tf-runner pod provisions the required 

resources, such as Amazon Simple Storage 

Services (Amazon SQS) queues and Amazon 

DynamoDB tables, based on the Terraform 

module’s definitions.

The state and plan of the Terraform execution are 

stored as Kubernetes secrets (e.g., tfstate and 

tfplan). This ensures that the state is preserved and 

can be accessed by subsequent Terraform 

operations.
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