Guidance for Building Smart Home Solutions on AWS loT

1- Data Ingestion
Smart Home devices generate various types of data (telemetry, alerts, command responses) to be consumed by different

categories of users. This diagram illustrates how to build robust data ingestion pipelines with AWS loT Core as message broker.

Smart Home

° 5

Amazon DynamoDB

g
“Hot” Data

Amazon Timestream

=l
@ “Cold” Data - Zz2]

Amazon Data Firehose S3 Tables

(Data Lake)

|
|
Devices : ~—"
' ©
! a0
LLLLL ! > M
:[=1: ' O -
{elf ——
Y : loT shadow loT rule loT action
Device ! P
(Wi-Fi capable) |
: e State changes
| a
ettt kel | : Telemetry
I D ° ° o0 loT Action
: —]! AN (\\ AN e —
S = . > B >()
: -- : : Device Data
I Local gateway | | AWS loT Core [oT rule
: (Wi-Fi capable) 1 1
|
| =
: "
|
: : I loT action
|
| LLLLL : I o Device Logs
: 3|0| E 1l
L 12 E 1l
1 TITIT 11
| Device . 4
1] > S
I (NonWi-Fi) | D
1 1 1
. 11 loT rule loT action
|
|

dWsS

"=

CloudWatch Logs

Reviewed for technical accuracy November 13, 2025
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Smart Home devices publish data to AWS loT
Core using MQTT protocol (directly or through
a local Gateway). Data can be of 3 kinds: State
changes, Telemetry or Device logs.

State changes are typically reported through
Shadow service (which stores latest desired
and reported states).

[Optional] Reported state changes are captured
by Rules Engine through a dedicated shadow
topic filter.

[Optional] The state changes captured are
routed to DynamoDB to record state changes
history.

Telemetry data is captured on regular MQTT
topics by Rules Engine.

The first rule action saves telemetry data to :
Amazon Timestream to enable near-real-time
monitoring use-cases. TTL (Time-To-Live)
value set on Timestream tables determines
how long data is stored before being discarded.

Second rule action sends telemetry data to
Amazon Data Firehose for buffering before
delivery to Data Lake.

After either a fixed time interval has elapsed or
the buffer is full, buffered data is delivered to an
S3 Table (managed Apache Iceberg table) for
long-term storage.

Logs published by device on a dedicated topic
are processed by Rules Engine.

By leveraging the CloudWatch Rule action,
logs can be streamed in real time to a
designated CloudWatch Log Group, enabling
immediate visibility and operational access for
CloudOps teams.

Guidance for Building Smart Home Solutions on AWS loT

2- Remote Command & Control

Smart Homes allow users to control and monitor their devices even when outside of the home premises. This diagram
illustrates how to build these capabilities at scale by bundling AWS loT suite with other AWS managed services.

Smart Home
Users

WAl AWS Cloud
N

Amazon Simple

N

]

Mobile client
N

Notification Service

|

|

|

|

|

|

|

. @ D

: Real-time updates Users channels @ Device changes
|

|

|

|

- o

‘

Dynamo DB Stream

&

notify
(device users)

Query
(state history)

Amazon DynamoDB

Smart Home

Vv
LiLLl
TTTIT

(Wi-Fi capable)

> N
Queries @

AWS AppSync
(GraphQL API)

A4

So

Authenticated
user

=@

send Desired state / AWS loT Core
(remote command) loT Command

N

query Amazon Timestream
(telemetry data)

Local gateway
(Wi-Fi capable)

(Non Wi-Fi)

aWS Reviewed for technical accuracy November 13, 2025
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

When a new device state change is recorded in
DynamoDB, DynamoDB stream triggers a
Lambda function to notify all device users.

The notification Lambda function retrieves the list
of authorized device users from the device table
(not represented) and publishes to each user
channel on Amazon Simple Notification Service
(Amazon SNS).

Connected users that subscribed to their
respective Amazon SNS (through Android or 10S)
receive the update in real-time.

User can also initiate queries through a GraphQL
endpoint managed by AWS AppSync.

Device State history queries are resolved by a
dedicated Lambda function.

The state history Lambda retrieves the device
history from Dynamo DB.

Remote commands are processed by a dedicated
lambda function.

Lambda function leverages either Device shadow
updates or loT Commands to deliver user
command.

Device Shadow / loT Commands services use
AWS loT Core reserved topics to communicate
with end-devices.

AWS loT Core sends MQTT messages to the
device or its gateway, based on the connectivity
model.

Telemetry data queries (e.g., visualization) are
resolved by a dedicated lambda.

Telemetry lambda function retrieves ‘hot data’
directly from Amazon Timestream (enabling
near-real-time use cases).

Guidance for Building Smart Home Solutions on AWS loT

3- Fleet Monitoring
A successful Smart Home solution requires continuous monitoring of devices operations. This diagram illustrates how to
enforce operational excellence at scale for large smart home devices fleets.

VWAl AWS Cloud
>

N—

Amazon CloudWatch

c

Metrics Insights

)

Logs

=
-
(@)

Alarm
Notification

0 ! Device & Cloud
: Logs

v

N

A\ 4

.._________<,______________________

@k

AWS loT Core

Service

Amazon Simple Notification

Operations
Channels

=

Management
Console
(AWS / Other)

Email

—
=

N
7

Amazon Q Developer
In Chat Applications

aWS Reviewed for technical accuracy November 13, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A\ 4

| m—— |
==

Admin Chat
(Slack / Chime /
Teams)

>

£

Device
Operations
Support

AWS loT Core sends both device-side and
cloud-side logs to Amazon CloudWatch.
Cloud-side logs are sent to AWSIloTLogsV2
Log group,

Device-side logs are published by device on
custom-defined MQTT topic, and forwarded to
a custom-defined CloudWatch Log group by
AWS IoT Core Rules Engine

° Device operations support team interacts with
CloudWatch service (through Console,
Command-line, ...).
This includes enabling Anomaly detection on
previous Log Groups. The anomaly model
detect common maintenance event patterns in
Log streams (like the presence of ERROR /
WARNING / CRITICAL tags).
Upon enabling, an “AnomalyCount” metric is
created. An alarm can then be defined on the
metric (a threshold set to a given number of
anomalies detected).

° When the alarms triggers, CloudWatch sends a

notification to a pre-configured Amazon Simple
Notification Service (SNS) topic to alert
device operations team.

SNS service can push direct e-mail notification
to the operations team’s distribution list e-mail.

Amazon SNS may also deliver the message to
Amazon Q Developer in Chat Applications
(prev. AWS ChatBot), if the same SNS topic
has been set on Q in Chat Applications.

Amazon Q Developer in Chat Applications
publishes the notification message to the pre-
configured Chat application group channel
(Slack, Amazon Chime and Microsoft Teams
are currently supported).

Guidance for Building Smart Home Solutions on AWS loT

4- Self-Service Diagnosis

Beyond the usual Command & Control features, Generative Al unlocks new type of use cases for Smart Home users. This
diagram illustrates how Al Agents can leverage Device documentation and past activity to enable ‘self-service’ customer support

Smart Home
Users

=\l AWS Cloud
N—""

user

|

| |

| |

| |

I I

| |

I I

I I

| |

I I

| |

| |

| |

| |

: : AWS AppSync

I I (Events API)
|

I .

' <~ @

I S .

1 1

| |

: Mobile client | Queries handler

| |

| |

| |

| | e e

I I

: : Queries .

: 2 : AWS AppSync

I @ I (GraphQL API)
|

: Authenticated :

I .

I I

I I

I I

N
7

Knowledge Bases

Device telemetry

Agent Configurations
@
=
J —
=
Foundation Instructions Agent Memory
Model & Prompts (per user)

Action Groups

User/Devices query

Helper functions

I
|

I

|

I

|

|

I

I

I

I

I

I

I

|
-
I

I

I

|

I

|

I

|

|

I

I

I
L
|

|

I

I

I

I

I

|

I
L

>
<
N——r’
Device Documentation/FAQ
-
<
N’

— e e e o o e = = e = = = e

&5
Device

Documentation /
FAQs, etc.

S3 Tables
(Devices
Telemetry)

Reviewed for technical accuracy November 13, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Smart Home user initiates a WebSocket connection
from mobile client to AppSync Events endpoint;
then subscribes to its self-service agent dedicated
channel to receive future agent responses.

User sends its query in natural language to an AWS
AppSync GraphQL endpoint.

The query resolves to a Lambda function *Queries
handler”.

Queries handler invokes the Amazon Bedrock
agent and initiates a session (with user Id as session
Id). This allows Bedrock service to retrieve the
following items and add them to the GenAl Model
context:

- The past conversations between the user and the
agent (Agent Memory feature)

- The list of devices the user has access to

The agent foundation model:

- Handles the raw request by following the Agent
instructions and prompts,

- Augments the answer with Knowledge Bases (built
using both Device Documentation and Device
Telemetry data in S3 Tables)

- Uses functions in Action Groups eventually to fulfil
intermediate tasks for customer.

- Generates a response to Queries handler request.

Queries handler publishes response to Self-Service
agent dedicated channel.

Mobile client receives response from handler in real-
time.

‘Device Documentation’ knowledge base can be
synced every time a new device model is released.
Syncing is done through a vector store service (e.g.
Amazon OpenSearch)

‘Device Telemetry’ knowledge base can be
refreshed periodically, to ensure Agent is grounded
on most recent data. Syncing is done through a
query engine (like Amazon Redshift) parsing S3
Tables

	Data Ingestion
	Slide 1

	End-User Features
	Slide 2
	Slide 3
	Slide 4

