
Guidance for Data Lakes on AWS

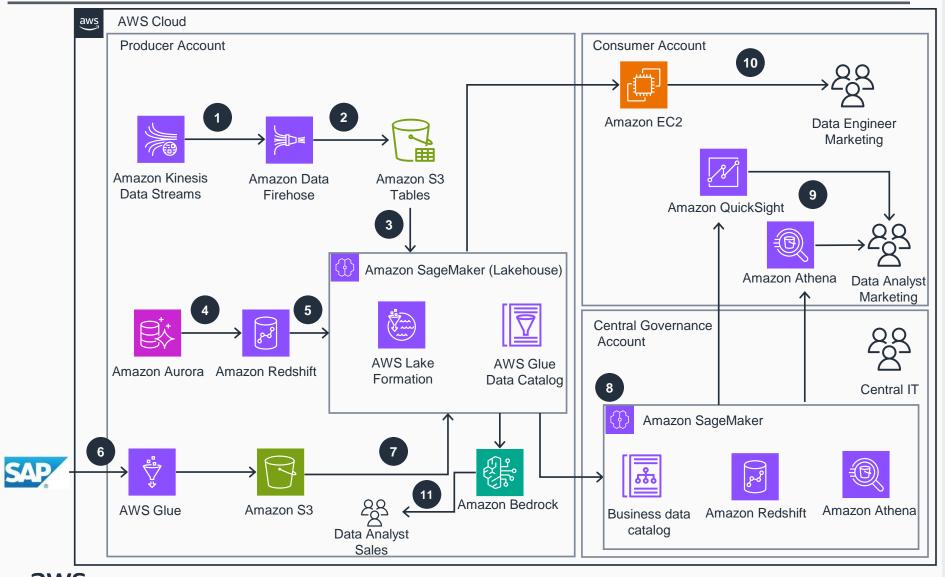
AWS Serverless Data Lake Framework

This architecture diagram shows how to build a data lake on AWS in addition to demonstrating how to process, store, and consume data using serverless AWS analytics services.

EventBridge has a rule that sends a message in Amazon Simple Queue Service (Amazon SQS), which invokes an AWS Lambda function.

an event in Amazon EventBridge.

The Lambda function triggers the AWS Step Functions workflow, in which another Lambda function reads files from the S3 raw bucket and performs transformation. It also writes the new set of JSON files in the S3 stage bucket.


The data administrator uploads JSON files in the Amazon Simple Storage Service (Amazon S3) raw bucket. Object creation in Amazon S3 triggers

- A Lambda function updates the Amazon DynamoDB table with the Step Functions job status.
- Once the files are created in the S3 stage bucket, it triggers an event in EventBridge, which has a rule that sends a message in Amazon SQS with created file details.
- The **Eventbridge** scheduler runs at certain intervals and invokes a **Lambda** function that retrieves messages from **Amazon SQS** and starts another **Step Functions** workflow.
- AWS Glue extract, transform, load (ETL) reads the data from the AWS Glue database stage, then converts the files from JSON to Parquet format.
- AWS Glue ETL writes the Parquet files in the S3 analytics bucket. AWS Glue crawler crawls the Parquet files in the same bucket and then creates analytics tables in AWS Glue database analytics.
- All the staging and analytics catalogs are maintained in the **AWS Glue** Data Catalog.
- A Lambda function updates the DynamoDB table with the Step Functions job status.
- Business analysts use **Amazon Athena** to query the **AWS Glue** database analytics.

Guidance for Data Lake on AWS

Multi-Source Analytics Lakehouse with Al-Powered Insights

This architecture diagram shows how to build a data lake on AWS in addition to demonstrating how to process, store, and consume data using Lakehouse for Amazon SageMaker and Amazon SageMaker Unified Studio.

- Ingest store inventory data with Amazon Kinesis Data Streams, which feeds the data into Amazon Data Firehose.
- Upload store inventory streaming data into Amazon Simple Storage Service (Amazon S3) Tables.
- Catalog store inventory data into Lakehouse for Amazon SageMaker, managed with AWS Lake Formation, as a federated AWS Glue catalog.
- Ingest store, product, and promotions dimension data from Amazon Aurora (MySQL) to Amazon Redshift Serverless via Zero-ETL.
- Catalog dimension data into Lakehouse for **Amazon SageMaker** as a federated catalog.
- Ingest store sales data from SAP using AWS Glue via Zero-ETL. AWS Glue writes the store sales data into Amazon S3 in Apache Iceberg open table format.
- 7 Catalog store sales data into Lakehouse for **Amazon SageMaker** as a federated catalog.
- 8 Control access and governance through Amazon
 SageMaker Unified Studio from the central governance
 account. The producer account publishes the sales
 data. The consumer account subscribes and accesses
 the sales data.
- The marketing team generates insights from unified data using Amazon Athena. The data is pulled from Lakehouse for Amazon SageMaker. The sales team can also use Amazon QuickSight to visualize the data.
- The marketing team's data engineer with an existing Spark platform accesses sales data from Lakehouse for Amazon SageMaker by running Spark jobs on Amazon Elastic Compute Cloud (Amazon EC2) using an open Iceberg REST API.
- Sales team generates insights from unified data using Amazon Bedrock foundation models with Amazon Bedrock Knowledge Bases using Retrieval Augmented Generation (RAG) in the Producer account by using natural language gueries.